
CS 1301 Final Exam Review Guide
(Python 3 - Calico)

A. Programming and Algorithm

1. Binary, Octal-decimal, Decimal, and Hexadecimal conversion

• Definition
Binary (base 2): 10011 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20

Octal-decimal (base 8): 725 = 7*82 + 2*81 + 5*80

Decimal (base 10): 342 = 3*102 + 4*101 + 2*100

Hexadecimal (base 16): C1A = 12*162 + 1*161 + 10*160

• Conversion
General process:

Decimal  Binary  Octal-decimal / Hexadecimal
* You can do octal-decimal / hexadecimal to decimal
conversion either by definition directly or by general process
(convert to binary version first and than to decimal).

Decimal  Binary
Example: 499 10  () 2

Step 1: Divide 499 by 2. Write down the result and the
remainder as following:

Step 2: Keep doing this for
all the quotients until you get
0 for quotient.
Step 3: Copy the remainders
in a reverse order.
Result: 499 10 111110011 2

Binary  Decimal
Example: 1011101 2  () 10

Step1: calculate by definition

1011101 2 = 1*26 + 0*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*20

Result: 1011101 2  93 10

Binary  Octal-decimal
Example: 1011101 2  () 8

Step 1: Divide the binary digits into groups of three from
the right side since 8 = 23

1011101 2  (1) (011) (101) 2

Step 2: Convert each group of numbers from binary to
decimal by definition

(1) 2 = 1*20 = 1
(011) 2 = 0*22 + 1*21 + 1*20 = 3
(101) 2 = 1*22 + 0*21 + 1*20 = 5

Step 3: Combine the conversion results
Result: 1011101 2  135 8

Octal-decimal  Binary
Example: 71 8  () 2

Step 1: Convert each digit to binary (please see the
previous ‘decimal to binary’ part for more details)

7  111
1  1

Step 2: If some of the results have less than three digits,
prepend leading zeroes.

7  111
1  001

Step 3: Combine the results.
Result: 71 8  111001 2

Binary  Hexadecimal
Example: 1011101 2  () 16

Step 1: Divide the binary digits into groups of four from the
right side since 16 = 24

1011101 2  (101) (1101) 2

Step 2: Convert each group of numbers from binary to
decimal by definition

(101) 2 = 1*22 + 0*21 + 1*20 = 5
(1101) 2 = 1*23 + 1*22 + 0*21 + 1*20 = 13

Step 3: If some of results are greater than 9, convert them
to letters by the following rules:
10  A, 11  B, 12  C, 13  D, 14  E, 15  F
Step 4: Combine the conversion results
Result: 1011101 2  5D 16

Hexadecimal  Binary

Example: C2 16  () 2

Step 1: Convert each digit to binary (please see the
previous ‘decimal to binary’ part for more details)

C  12 1100
2  10

Step 2: If some of the results have less than four digits,
prepend leading zeroes.

C  1100
2  0010

Step 3: Combine the results.
Result: C2 16  11000010 2

2. Logical Operation

• and
True False

True True False
False False False

• or
True False

True True True
False True False

• not
not True = False
not False = True

• Order and Priority
Order: left to right
Priority: parentheses > not > and > or

3. Error and try-except

• Three kinds of Error

Syntax Error: An error in a program that makes it impossible to
parse — and therefore impossible to interpret.

Runtime Error: An error that does not occur until the program
has started to execute but that prevents the program from
continuing.

Semantic Error: An error in a program that makes it do
something other than what the programmer intended.

• try-except
try:

block1
except:

block2
block1 will be executed first. If an error occurs during block1’s
execution, the flow of execution will immediately jump to block2
(skipping any remaining statements in block1). If no error
occurs, block2 will be skipped.

4. Conditional Statement

• Conditional Statement: A statement that controls the flow of execution
depending on some condition.

• if
if aBooleanExpression:

statements
The statements will be executed when the boolean expression
is True.

• elif
elif aBooleanExpression:

statements
The statements will be executed only when the boolean
expression is True and all other previous boolean expressions
in the same if group are False.

• else
else:

statements
The statements will be executed when all the previous boolean
expressions in the same if group are False.

• if Group
An if group always begins with an if statement, which is the
only if statement in the group.
It might have some elif statements, and at most one else
statement at the end.
All the conditional statements in the same if group must have
same indentation.

At most one block of statements will be executed in an if group.

**Note: you do not need to have an elif or else statement
accompanying every if statement.

5. Iteration

• Iteration: Repeated execution of a set of programming statements.

• for Loop
for item in aSequence:

statements
The statements will be executed for every item in aSequence.
For each execution, the variable identifier defined by the
programmer (item) will be assigned to point to the next item in
the sequence, and may be used to refer to it in the block of
statements. At the end of the for loop, the variable will remain
pointing at the last item in the sequence.

• while Loop
While aBooleanExpression:

statements
The statements will be executed repeatedly until the Boolean
expression becomes False.
* When using while loop, do not forget to initialize the counter

before the loop and do increment/decrement in the loop

6. Recursion

• Recursion: The process of calling the function that is currently
executing.

• Three Elements:
Base Case: Also know as terminating condition, is a conditional
statement that stops recursion at some point and avoids infinite
execution.
Recursion Call: Call the function itself inside the function.
Recursive Step: The process of approaching the base case.
Usually increment or decrement.

• Recursion usually works as iteration. Do not use for loop or while
loop together with recursion unless you understand exactly what you
are doing.

• Example1:

• Example 2:

• Example 3:

7. Functional Programming and lambda Expression

• Functional Programming

map
map (aFunction, aSequence)
map applies the function to all the elements in the
sequence and returns a list that has the same length with
the original sequence.
aFunction must take in one element.
map returns a list that has the same length as the original
sequence, but the elements are modified.

reduce
reduce (aFunction, aSequence)
reduce applies the function to the first two elements in the
sequence first, and then repeatedly takes in the result that
the function returns and the following element as
parameters to reduce the length of the sequence, and
finally returns one result.
aFunction must take in two elements and return one
element.
reduce returns only one element.

filter
filter (aFunction, aSequence)
filter applies the function to every elements in the
sequence and gets a boolean. It keeps the element if the
boolean is True and removes the element if the Boolean is
False.
aFunction must take in one element and return a boolean.
filter returns a new list that is shorter or has the same
length as the original sequence, but each element is not

modified.
* filter may return something other than a list. For example,
if you filter a string it will return a string.

• lambda
lambda: A block of code which can be executed as if it were a
function but without a name.
lambda aVariable: returnedValue

8. Search and Sort

• BigO Complexity
BigO notation is used to describe how the work an algorithm
does grows as the size of the input grows. In general, you ignore
constants when calculating the BigO time complexity of an
algorithm.

• Search
a) Linear Search

Search one by one
bigO: N (Examine each of the N elements in the list)

b) Binary Search
Compare the target value to the mid point of the list. If the
mid point is not the target, divide the list in half and try
again, searching only the correct half. Repeat until either
there are no more elements to check, or until the target is
found in the list

• This algorithm can only be performed on sorted lists.
Example: Search 2 in list [1, 2, 3, 5, 8, 10, 15, 25]

Round 1:
Mid point: 8
2<8
New list: [1, 2, 3, 5]

Round 2:
Mid point: 3
2<3
New list: [1, 2]

Round 3:
Mid point: 2
2=2
Done

bigO: logN (log2N rounds. 1 comparison each round.)

• Sort
a) Selection Sort (Not required for this course)

Select the smallest number (if sort increasingly) in the list
and append it to the result list.
Example: Sort [3, 1, 4, 2] increasingly

Round 1:
Minimum: 1
Result list: [1]
New list: [3, 4, 2]

Round 2:
Minimum: 2
Result list: [1, 2]
New list: [3, 4]

Round 3:
Minimum: 3
Result list: [1, 2, 3]
New list: [4]

Round 4:
Minimum: 4

Result list: [1, 2, 3, 4]
Done

bigO: N2 (N rounds. At most N comparisons each round to
find out the smallest element.)

b) Insertion Sort
Get the first element in the list. Insert it in the right place in
the result list.
Example: Sort [3, 1, 4, 2] increasingly

Round 1:
Element: 3
Result list: [3]
New list: [1, 4, 2]

Round 2:
Element: 1
Result list: [1, 3]
New list: [4, 2]

Round 3:
Element: 4
Result list: [1, 3, 4]
New list: [2]

Round 4:
Element: 2
Result list: [1, 2, 3, 4]
Done

bigO: N2 (N rounds. At most N comparisons each round to
find out the correct location.)

c) Bubble Sort
Pass through the list of elements, and swap adjacent
elements if they are not in the correct order. It must repeat
the pass N-1 times to guarantee the entire list is sorted (If
the smallest element is at the end of the list, it will take N-1
passes to swap it down to the front of the list.)
Example: Sort [3, 1, 4, 2] increasingly

Round 1:
[3, 1, 4, 2]  [1, 3, 4, 2]
[1, 3, 4, 2]  [1, 3, 4, 2]
[1, 3, 4, 2]  [1, 3, 2, 4]
The last element in the list is guaranteed to be
correct after the first round.

Round 2:
[1, 3, 2, 4]  [1, 3, 2, 4]
[1, 3, 2, 4]  [1, 2, 3, 4]
The last two elements in the list is guaranteed to
be correct after the second round.

Round 3:
[1, 2, 3, 4]  [1, 2, 3, 4]
The last three elements in the list is guaranteed
to be correct after the third round.
Done

bigO: N2 (N-1 rounds. Each round takes N-1 comparisons.
Hence we have (N-1)* (N-1). Because we ignore
constants, this is N2)

d) Merge Sort
Divide the original list into small lists. Merge the small lists.
Example: Sort [3, 1, 4, 2] increasingly

Division stage:
Round 1: [3, 1, 4, 2]  [3, 1] [4, 2]
Round 2: [3, 1] [4, 2]  [3] [1] [4] [2]

Merge stage:
Round 1: [3] [1] [4] [2]  [1, 3] [2, 4]
Round 2: [1, 3] [2, 4]  [1, 2, 3, 4]

bigO: N*logN (log2N rounds and at most N divisions each
round in the division stage. log2N rounds and at most N
comparisons each round in the division stage.)

e) Quick Sort
Select element as pivot every round and compare the rest
elements to the pivot. Elements that are less than the pivot
are collected into an unsorted list on the left of the pivot.
Elements that are greater than or equal to the pivot are
collected into an unsorted list to the right of the pivot.
Repeat for the left and right hand collection of numbers
until the size of each collection is one, at which point the
entire list of numbers is correctly ordered.
Example: Sort [3, 1, 4, 2] increasingly

Round 1:
Pivot: 4 (random choice)
New list: [3, 1, 2, 4]

Round 2:
Pivot: 1 (random choice)
New list: [1, 3, 2, 4]

Round 3:
Pivot: 2 (random choice)
New list: [1, 2, 3, 4]

bigO: depends on pivot choices
N*logN (average)
N2 (maximum)
(Average log2N rounds, at most N rounds. At most N
comparisons each round.)

B. Python
1. Data Type

• Basic Data Type
int (integer)
float
bool (boolean)
NoneType
* char (not really a basic data type, it's really just a special
case of string, with length 1.)

• Compound Data Type
string

‘ aString ’
Elements: characters
Immutable
Function:

aString.split (mark)
Return a list of the words in the string, using mark
as the delimiter string.
* mark defaults to white space.

aString.find (character)
Return the index of character in the string, -1 if
not found.

aString.index (character)
Return the index of character in the string,
VALUE EXCEPTION if not found.

list
[item1, item2,…]
Elements: any data type (including list, called nested list)
Mutable
Functions:

aList.append (item)
Add an item at the end of the list.

aList.remove (item)
Remove the item in the list.

aList.index (item)
Return the index of item in the list, VALUE
EXCEPTION if not found.

aList.sort()
Sort the list.

tuple
(item1, item2,…)
* tuple is identified by commas but not parentheses
Elements: any data type
Immutable

dict (dictionary)
{ key1: value1, key2: value2, … } (Key-Value pairs)
Keys: any immutable data type (including basic data type
and immutable compound data type)
* Keys must be different from each other
Values: any data type
Mutable
Function:

aDict.get (key, defaultValue)
Return the value of the key in the dictionary.
* defaultValue is optional.

aDict.has_key (aKey)
Return a boolean to show whether the key is in
the dictionary.

aDict.keys()
Return a list of all the keys in the dictionary.

aDict.values()
Return a list of all the values in the dictionary.

aDict.items()
Return a list of all the key-value pairs in the
dictionary. Each item in the list is a tuple in format
(key, value).

• Type and Conversion
type (variable)

Get the type of a variable
int (variable)

Get the integer version of a variable. Variable can be
either a float (round down) or a string of integer. (You can’t
do int (‘1.5’)).

float (variable)
Get the float version of a variable. Variable can be either
an integer or a string of number.

bool (variable)
Return True or False for a variable. False for 0, None,
empty string, empty list, empty tuple, and empty dict., and
True for all others. Variable can be any data type.

str (variable)
Get the string version of a variable. Variable can be any
data type.

list (variable)
Get the list version of a variable. Variable can be any
compound data type. (get keys for dict.)

tuple (variable)
Get the tuple version of a variable. Variable can be any
compound data type. (get keys for dict.)

2. Operation

• Order: left to right

• Priority: parentheses > indexing > mathematical operation > logical
operation > lambda

• Assignment
aVariable = value

• Mathematical Operation

Addition: +
Subtraction: -
Multiplication: *
Integer Division: / *answer will be an integer
Floating Point Division: // *answer will be a float
Power: **
Modulo: %

* Only when all the numbers used in the operation are integers,
the result is an integer, with the exception of the floating-point
division. If any of the numbers is float, the result will be a float.

ex: 11/3 = 3
11//3 = 3.6
11/3.0 = 3.6

Priority: parentheses > power > multiplication, division,
modulo > addition, subtraction

• Logical Operation
•

and
True False

True True False
False False False

or
True False

True True True
False True False

not
not True = False
not False = True

Comparisons: ==, !=, <, <=, >, >=

element in aList:
Will return True or False whether the element is in aList or not.

Priority: parentheses > comparison > in > not > and > or

• Compound Data Type Operation

Concatenation (string, list, and tuple only) :
string1 + string2
list1 + list2
tuple1 + tuple2

ex: “Hello” + “World”  “HelloWorld”

Multiple concatenation (string, list, and tuple only) :
aString * aNum
aList * aNum
aTuple * aNum

ex: “Life”*3  “LifeLifeLife”

Indexing:
aString [index]
aList [index]
aTuple [index]

Sign Meaning
== Equal to
!= Not equal to
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to

aDictionary [key]
* Index starts from 0 in Python.

ex: x = “book”  x[3] = “k”

Remove elements (mutable data types only):
del aList [index]
del aDictionary [key]
del aName

String Formatting
Format operator: The % operator takes a format string and
a tuple of values and generates a string by inserting the
data values into the format string at the appropriate
locations.
“… % type1…% type2…” % (Value1, Value2, …)
Types:

d and i for decimal integer
.nf for float with n decimal places (.n is optional)

ex: “It is $%.2f” % (14.2345)  “It is $14.23”
s for string

Slicing:
aVariable [:]

Slice everything
Ex: x = “python”
 x[:] = “python”

aVariable [start :]
Slice everything after start
Ex: x = “python”
 x[2:] = “thon”

aVariable [: stop]
Slice everything before stop
Ex: x = “python”
 x[:4] = “pyth”

aVariable [start : stop]
Slice from start (included) to stop
Ex: x = “python”
 x[1:5] = “ytho”

aVariable [start : stop : step]
Slice from start to stop with common difference step
Ex: x = “python”

 x[1:5:2] = “yh”

aVariable [: : step]
Slice everything with common difference step
Ex: x = “python”
 x[::-1] = “nohtyp”
 x[::2] = “pto”

* All the starts are included and stops are excluded.

Alias and clone:

Nested list:

*Operations on nested lists:
index: Use extra bracket to obtain nested list element

ex: aList = [1,2,3, [4,5, [6,7] ,8] ,9]
aList[3] = [4,5,[6,7],8]
aList[3][2] = [6,7]
aList[3][2][0] = 6

3. Function

• Define a Function

- Parameters are optional
- return is not required. Default return value in Python is None.
Once return is executed, the function stops.
* Know the difference between return and print.

• Print statement:
In Python 3, print is a function that will “print” something in the
command shell.
Example of correct syntax:

print(“phone”)  phone

• Global Variable and Local Variable
- Local variable can be accessed only in the function while

global variable can always be accessed.
- If not declared, all the variables used in function definition are

local variables.
- We can use the key word global to make an in-function

variable global variable.
global aVariable

- Example:
def foo():

global aNum
x = aNum*3
print(x)

*in here, x is a local variable that cannot be accessed
outside of the function. aNum, on the other side, is a
global variable that is being used inside of the function by
calling it with the keyword global.

• Some Useful Functions
input (aString)

Get something from the user. Always returns a string.

def functionName (parameter1, parameter2, …):
block
return result

range (start, stop, step)
Return a list of numbers that begins at start (included) and
ends at stop (excluded) with common difference step
* start, stop, and step here must be integers. start defaults
to 0. step defaults to 1.

len (aCompoundDataType)
Return the length of a compound data type.

min (aList)
Return the minimum value in the list.

max (aList)
Return the maximum value in the list.

4. File I/O

• Reading
myFile= open (filename, "r")

Open the file for reading purpose.
myFile.readline()

Return the next line of the file.
myFile.readlines()

Return all the lines in the file as a list of strings.
myFile.read()

Return all of the contents of the file as a single string.

*Default mode of file I/O is “r”

• Writing
myFile = open (filename, "w")

Open the file for writing purpose.
myFile.write (aString)

Write a string to the file.

*If a file already exists with the same filename, the old file will
be erased and substituted with the newly opened one.

• Appending
myFile = open (filename, “a”)

Open the file for appending purpose.

• Closing
myFile.close()
 Close the file. You must do this every time!

C. Robot

0. Import Myro Package and Initialize the robot

• from Myro import *
Import the Myro package

• init()
Initialize the robot.

• setName (name)
Set the name of the robot.

1. Robot Sensor

• getName()
Return the name of the robot.

• getBattery()
Return the voltage of the battery

• getLight (pos)
Read the light sensor. Return an integer which ranges from 0
to 5000, the higher the darker.
pos can be “left”(0), “middle” / ”center”(1), ”right”(2), defaults to
all (returns a list).

• getIR (pos)
Read the IR sensor(s). Return either 0 (there is something in
close proximity) or 1 (there is nothing in close proximity).
pos can be “left”(0), ”right”(1), defaults to all (returns a list).
*In the back of the robot.

• getObstacle (pos)
Read the obstacle sensor(s). Return an integer which ranges
from 0 to 7000, the higher the closer.
pos can be “left”(0), “middle” / ”center”(1), ”right”(2), defaults to
all (returns a list).
*In the fluke (front of the robot)

• takePicture()
This function asks the camera takes a picture. Return a picture
object.
*In the fluke (front of the robot)

2. Robot Motion

• Beep

beep (duration, frequency1, frequency2)
* frequency2 is optional

• Movement
stop()

Stop the movement of the robot.

forward (speed, seconds)
backward (speed, seconds)
turnLeft (speed, seconds)
turnRight (speed, seconds)

* speed ranges from 0.0 (stop) to 1.0 (full speed).
* seconds are optional in these functions, default to infinite. If
seconds is not entered, stop() should be used to stop the robot
(usually after timer for loop).

translate (amount)
rotate (amount)
move (translate, rotate)
motors (left, right)

* amount ranges from -1.0 to 1.0.
* Must be used with stop().

*Timer function (Calico):
Use to make the robot move for a certain amount of

seconds. Needs to be used in a for loop.
Example of correct syntax:

for aVariable in timer(seconds):
do something

3. Myro Graphics

• Take, Load, Make, Save, Show Picture

takePicture()
Use the robot camara to take a picture.
*Picture size depends on fluke:

fluke1 = 256 *192.
loadPicture (aFileName)

Load a picture file.
makePicture (width, height, color)

Make a new picture object.
savePicture (aPicture / aListOfPictures , aFileName)

Save a picture or a list of pictures (must be saved as .gif
file as animation) as a file.

show (aPicture)
Show a picture.

*Remember that, in order to open a picture, the picture must be
in your designated python folder (directory). Can use getcwd()
and chdir() from the os module to see/change the
directory(folder).

• Edit Picture

Pixel and RGB Color Model
Pixel: Smallest addressable element of a picture.
RGB: The RGB color model is an additive color model in
which red, green, and blue light are added together in
various ways to reproduce a broad array of colors.

Myro Pixel Functions
getPixel (aPicture, x, y)

Return a pixel with location (x,y) in a picture.
getPixels (aPicture)

Returns an iterator (or generator) that allows you to

iterate through all the pixels using a for loop.

getHeight (aPicture)
getWidth (aPicture)

Return the height / width of the picture.

getX (pixel)
getY (pixel)

Return the X / Y position of the pixel.

Myro Color Functions
getRed (pixel)
getGreen (pixel)
getBlue (pixel)
getRGB (pixel)

Return the red / green / blue value of the pixel. Range
from 0 to 255.

setRed (pixel, value)
getGreen (pixel, value)
getBlue (pixel, value)
setRGB (pixel, (rValue, gValue, bValue))

Set the red / green / blue value of a pixel.

makeColor (red, green, blue)
Return a color.

• Myro Graphics Objects (Paint)
Calico users: http://calicoproject.org/Calico_Graphics

*Main difference: need to import Graphics module
 from Graphics import *

See reference:
http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/myr
o_graphics_reference.pdf

D. Other Stuff You Should Know Before Test
1. Your Name, GT User Name, GTID, Instructor, Section, TA
2. CS History

http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/short_history_c
omputing.ppt

3. limited Object-Oriented Programming
4. HTML and CSS
5. Excel, PowerPoint

http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/short_history_computing.ppt
http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/short_history_computing.ppt
http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/myro_graphics_reference.pdf
http://www.cc.gatech.edu/classes/AY2011/cs1301_fall/presentations/myro_graphics_reference.pdf
http://calicoproject.org/Calico_Graphics

E. Vocabulary

algorithm: A general process for solving a category of problems.

aliases: Multiple variables that contain references to the same object.

block: A group of consecutive statements with the same indentation.

boolean expression: An expression that is either true or false.

clone: To create a new object that has the same value as an existing object. Copying
a reference to an object creates an alias but doesn’t clone the object.

compound data type: A data type in which the values are made up of components, or
elements, that are themselves values.

conditional statement: A statement that controls the flow of execution depending on
some condition. In Python the keywords if, elif, and else are used for conditional
statements.

decrement: Decrease by 1.

dictionary: A collection of key-value pairs that maps from keys to values. The keys
can be any immutable type, and the values can be any type.

element: One of the values in a list (or other sequence). The bracket operator selects
elements of a list.

encapsulate: To divide a large complex program into components (like functions) and
isolate the components from each other (by using local variables, for example).

evaluate: To simplify an expression by performing the operations in order to yield a
single value.

exception: Another name for a runtime error.

file: A named entity, usually stored on a hard drive, floppy disk, or CD-ROM, that
contains a stream of characters.

float: A Python data type which stores floating-point numbers. Floating-point numbers
are stored internally in two parts: a base and an exponent. When printed in the
standard format, they look like decimal numbers. Beware of rounding errors when
you use floats, and remember that they are only approximate values.

flow of execution: The order in which statements are executed during a program run.

format operator: The % operator takes a format string and a tuple of values and
generates a string by inserting the data values into the format string at the
appropriate locations.

function: A named sequence of statements that performs some useful operation.
Functions may or may not take parameters and may or may not produce a result.

global variables: Can be seen through a program module, even inside of functions.

high-level language: A programming language like Python that is designed to be
easy for humans to read and write.

immutable type: A data type in which the elements cannot be modified. Assignments
to elements or slices of immutable types cause a runtime error.

increment: Both as a noun and as a verb, increment means to increase by 1.

int: A Python data type that holds positive and negative whole numbers.

integer division: An operation that divides one integer by another and yields an
integer. Integer division yields only the whole number of times that the numerator is
divisible by the denominator and discards any remainder.

Iteration: Repeated execution of a set of programming statements.

keyword: A reserved word that is used by the compiler to parse program; you cannot
use keywords like if, def, and while as variable names.

lambda: A block of code which can be executed as if it were a function but without a
name.

local variable: A variable defined inside a function. A local variable can only be used
inside its function.

low-level language: A programming language that is designed to be easy for a
computer to execute; also called machine language or assembly language.

modulo: % operator, that calculates the remainder of an integer division.

mutable type: A data type in which the elements can be modified. All mutable types
are compound types. Lists and dictionaries are mutable data types; strings and
tuples are not.

nested list: A list that is an element of another list.

None: A special Python value returned by functions that have no return statement, or
a return statement without an argument. None is the only value of the type,
NoneType

operator: A special symbol that represents a simple computation like addition,
multiplication, or string concatenation.

parameter: A name used inside a function to refer to the value passed as an
argument.

pixel: Smallest addressable element of a picture

proprioception: On a robot, internal sensing mechanisms. On a human, a sense of
the relative positions of different parts of ones own body. Example on the robot:
Battery or stall sensors.

recursion: The process of calling the function that is currently executing.

robot: A mechanism guided by automatic controls.

runtime error: An error that does not occur until the program has started to execute
but that prevents the program from continuing.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

sequence: Any of the data types that consist of an ordered set of elements, with
each element identified by an index.

short circuit evaluation: When a boolean expression is evaluated the evaluation
starts at the left hand expression and proceeds to the right, stopping when it is no
longer necessary to evaluate any further to determine the final outcome.

slice: A part of a string (substring) specified by a range of indices. More generally, a
subsequence of any sequence type in Python can be created using the slice
operator (sequence[start:stop])

str: A Python data type that holds a string of characters.

syntax error: An error in a program that makes it impossible to parse — and
therefore impossible to interpret.

traverse: To iterate through the elements of a set, performing a similar operation on
each.

type conversion: An explicit statement that takes a value of one type and computes a
corresponding value of another type.

variable: A name that refers to a value.
写死老娘了！我了个草了个去了个娘了个妈了个逼的！

F. Old Exams
Spring 2012

Exam1
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam1-spring2012.pdf
Exam1 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam1-spring2012-answers.pdf
Exam2
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-spring2012.pdf
Exam2 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-spring2012-answers.pdf
Exam3
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-spring2012.pdf
Exam3 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-spring2012-answers.pdf

Fall 2011
Exam1
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam1-fall2011.pdf
Exam1 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam1-fall2011-answers.pdf
Exam2
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam2-fall2011.pdf
Exam2 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam2-fall2011-answers.pdf
Exam3
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam3-fall2011.pdf
Exam3 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/c
s1301-exam3-fall2011-answers.pdf

Fall 2010
Exam1
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam1-fall2010.pdf
Exam1 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam1-fall2010-answers.pdf

http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam3-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam3-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam3-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam3-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam2-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam2-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam2-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam2-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam1-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam1-fall2011-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam1-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301ab_fall/codesamples/cs1301-exam1-fall2011.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-spring2012-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-spring2012-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-spring2012.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-spring2012.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-spring2012-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-spring2012-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-spring2012.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-spring2012.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-spring2012-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-spring2012-answers.pdf

Exam2
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-fall2010.pdf
Exam2 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-fall2010-answers.pdf
Exam3
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-fall2010.pdf
Exam3 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-fall2010-answers.pdf

Fall 2009
Exam1
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-fall09-exam1.pdf
Exam1 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-fall09-exam1-answers.pdf
Exam2
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-fall2009.pdf
Exam2 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam2-fall2009-answers.pdf
Exam3
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-fall2009.pdf
Exam3 with answers
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/
cs1301-exam3-fall2009-answers.pdf

Important! This is just a review guide which can help
you prepare the final. You are responsible for
understand everything Jay talked about during
lectures this semester. There might be something on
the test that is not in this review guide.

Created by Qiqin Xie, Fall 2010
Modified by Cristina Chu, Fall 2012

http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2009-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2009-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2009-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2009-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam1-fall2009.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2010.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam3-fall2010.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2010-answers.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2010.pdf
http://www.cc.gatech.edu/classes/AY2012/cs1301_spring/codesamples/cs1301-exam2-fall2010.pdf

