
Composing
User Interfaces
with Interviews

G raphical user interfaces for
workstation applications are
inherently difficult to build with-

out abstractions that simplify the imple-
mentation process. To help programmers
create such interfaces, we considered the
following questions: What sort of inter-
faces should be supported? What consti-
tutes a good set of programming
abstractions for building such interfaces?
How does a programmer build an inter-
face given these abstractions? Practical
experience has guided our efforts to
develop user interface tools that address
these questions. We make the following
observations:

All user interfaces need nor look alike.
I t is desirable to maintain a consistent
“look and feel” across applications, but
users often have different preferences. For
example, one user may prefer pop-up
menus, while another insists on pull-down
menus. Our tools must therefore allow a
broad range of interface styles and must be
customizable on a per-user basis.

User interfaces need not be purely
graphical. Many application designers pre-
fer iconic interfaces because they believe

Mark A. Linton, John M. Vlissides, and Paul R
Stanford University

The Interviews toolkit
offers a rich set of

composition
mechanisms and a

variety of predefined
objects, allowing easy

implementation of
complex user

interfaces.

novices understand pictures more readily
than text. However, recent work’ suggests
that excessive use of icons can confuse the
user with unfamiliar symbolism. A textual
interface might be more appropriate in a
given context. The choice of graphical or

.. Calder

textual representation should favor the
clearest alternative.

User interface code should be objecr-
oriented. Objec ts a r e na tu ra l fo r
representing the elements of a user inter-
face and supporting their direct manipu-
lation. Objects provide a good abstraction
mechanism, encapsulating state and oper-
ations, and inheritance makes extension
easy. Our experience shows that, com-
pared with a procedural implementation,
user interfaces written in an object-
oriented language are significantly easier
to develop and maintain.

Inleractive and absrract objects should
beseparare. Separating user interface and
application code makes i t possible to
change the interface without modifying
the underlying functionality, and vice
versa. This separation also facilitates cus-
tomization by allowing several interfaces
to thesameapplication. I t is important to
distinguish between interactive objects,
which implement the interface, and
abstract objects, which implement opera-
tions o n the data underlying the interface.

An effective way to support these prin-
ciples is to equip programmers with a

COMPUTER 8 001 8-9 162/89/0200-0008$01 .OO 1989 IEEE

toolkit of primitive user interface objects
that use a common protocol to define their
behavior. The protocol allows uniform
treatment of user interface objects, ena-
bling in turn the introduction of objects
that compose primitives into complete
interfaces. Different classes of composi-
tion objects can provide different sorts of
composition. For example, one class of
composition object might arrange its com-
ponents in abutting or tiled layouts, while
another allows them to overlap in
prescribed ways. A rich set of primitive
and composition objects promotes flexi-
bility, while composition itself represents
a powerful way to specify sophisticated
and diverse interfaces.

Composition mechanisms are central to
the design of Interviews, a graphical user
interface toolkit we have developed at
Stanford. Interviews is a library of
C+ + ’ classes that define common inter-
active objects and composition strategies.
Figure 1 depicts how objects from the
Interviews library are incorporated into
an application, and Figure 2 shows the
relationship between the various layers of
software that support the application.
Primitive and composition objects from
the library are linked into application
code. The window system is entirely
abstracted from the application; the appli-
cation’s user interface is defined in terms
of Interviews objects, which communicate
with the window and operating systems.

Interviews supports composition of
three object categories. Each category is
implemented as a hierarchy of object
classes derived from a common base class.
Composition subclasses within each class
hierarchy allow hierarchical composition
of object instances.

(1) Interactive objects such as buttons
and menus are derived from the interactor
base class. lnteractors are composed by
scenes; scene subclasses define specific
composition semantics such as tiling or
overlapping.

(2) Structured graphics objects such as
circles and polygons are derived from the
graphic base class. Graphic objects are
composed by pictures, which provide a
common coordinate system and graphical
context for their components.

(3) Structured text objects such as
words and whitespace are derived from the
text base class. Text objects are composed
by clauses; clause subclasses define com-
mon strategies for arranging components
to fill available space.

The base classes define the communica-
tion protocol for all objects in the hierar-

February 1989

I

Object code a
0 Executable

Figure 1. Incorporating Interviews objects into an application.

Apprication 1
I
1

I

IntwViews I
4

wndow system

t

Figure 2. Layers of software underlying an application.

chy. The composition classes define the
additional protocol needed by the elements
in a composition, such as operations for
inserting and removing elements and for
propagating information through the
composition (see the sidebar entitled
“Primitive and composition protocols”).

Hierarchical composition gives the pro-
grammer considerable flexibility. Com-

plex behavior can be specified by building
composi t ions that combine simple
behavior. The composition protocol facili-
tates the tasks of both the designer of a
user interface toolkit and the implementor
of a particular user interface. The toolkit
designer can concentrate on implementing
the behavior of a specific component in
isolation; the interface designer is free to

9

combine components in any way that suits
the application.

In this article we focus on using Inter-
Views to build user interfaces. We present
several simple applications and show how
Interviews objects can implement their
interfaces. We also illustrate the benefits
of separating interactive behavior and
abstract data in several different contexts.
Finally, we discuss Interviews support for
end-user customization as well as the sta-
tus of the current implementation.

Interactor composition
An interactor manages some area of

potential input and output on a worksta-
tion display. A scene composes a collection
of one or more interactors. Because a scene
is itself an interactor, it must distribute its
input and output area among its compo-
nents. In this section, we discuss the vari-
ous Interviews scene subclasses that
provide tiling, overlapping, stacking, and
encapsulation of components. We concen-

trate on how these scenes are used rather
than giving their precise definitions.

Boxes and glue. Consider the simple dia-
log box shown in Figure 3. It consists of a
string of text, a button containing text, and
a white rectangular background sur-
rounded by a black outline. Pushing the
button will cause the dialog box to disap-
pear. The dialog box will maintain a
reasonable appearance when a window
manager resizes it. I f parts of the dialog

Primitive and composition protocols
We can think of the set of operations defined on an object

as a communication protocol that the object understands.
Since objects cannot access the internal state of other
objects, interobject dependencies are limited by the seman-
tics of the protocol. Objects are thus isolated from one
another, promoting modularity and reusability. Furthermore,
objects derived from a common base class (thus obeying a
common protocol) can be used without knowledge of their
specific class; operations redefined by the subclass are auto-
matically invoked on the objects instead of the corresponding
base class operations (a form of dynamic binding). A common
protocol allows composition objects to treat their compo-
nents uniformly. Dynamic binding lets composition objects
take advantage of subclass-specific behavior without modifi-
cation. Together, these attributes make composition possible.

Interactor protocol. The protocol for interactors includes

void Draw();
void Redraw(Coord left, Coord bottom, Coord right, Coord

void Resize();
void Update();
void Handle(Event&);
void Read(Event&);

The Draw operation defines the interactor’s appearance. A
call to Draw causes the interactor to draw itself in its entirety.
Redraw is called whenever a part of an interactor needs to be
redrawn (for example, when it had been obscured but is now
visible). A call to Resize notifies the interactor that the screen
space it occupies has changed size. The interactor can then
take whatever action is appropriate. Draw, Redraw, and Resize
are automatically called by Interviews library code in
response to window system requests. The Update operation
indicates that some state on which the interactor depends
may have changed; the interactor will usually Draw itself in
response to an Update call. Typically, when a subject changes
it will call Update on its views.

lnteractors handle input events with the Handle operation.
Each event is targeted to a particular interactor. Any interactor
can Read the next event from the global event queue. Handle
and Read can be used to create event-driven input handling, in
which only one interactor is responsible for reading events
and forwarding them to their target.

the following operations:

top);

Scene protocol. Scenes add several operations for compo-

void Insert(lnteractor*);
void Insert(lnteractor*, Coord x, Coord y, Alignment);
void Remove(1nteractor *);
void Raise(lnteractor*);
void Move(lnteractor*, Coord x, Coord y, Alignment);
void Change(lnteractor*);
void Propagate(boo1ean);

Insert and Remove specify a scene’s components. Raise
modifies the front-to-back ordering of components within a
scene to bring the specified component to the top. Move sug-
gests a change in the position of a component within the
scene. Not all scenes implement all these operations. For
instance, it does not make sense to call Raise on a
monoscene, since i t can have only one component.

The Change operation tells a scene that one of its compo-
nents has changed. A scene can do one of two things in
response to a Change: It can propagate the change by calling
Change on its parent, or it can simply reallocate its compo-
nents’ screen space. The Propagate operation specifies which
behavior is required for a particular instance.

nent management to the basic interactor protocol:

Graphic protocol. The graphic base class defines the pro-
tocol for drawing objects, manipulating graphics state, and hit
detection. Operations include:

void Draw(Canvas*);
void DrawClipped(Canvas *, Coord, Coord, Coord, Coord);
void Erase(Canvas *);
void EraseClipped(Canvas e, Coord, Coord, Coord, Coord);

void SetColors(PColor* f, PColor. b);
void SetPattern(PPattern *);
void SetBrush(PBrush 0) ;

void SetFont(PFont*);

void Translate(f1oat dx, float dy);
void Scale(float sx, float sy, float ctrx =O.O, float ctry

void Rotate(f1oat angle, float ctrx =O.O, float ctry =O.O);
void SefTransformer(Transformer 0) ;

= 0.0);

void GetBounds(float&, float&, float&, float&);
boolean Contains(PointObj&);
boolean Intersects(BoxObj&);

10 COMPUTER

box previously covered by other windows
are exposed, then the newly exposed
regions will be redrawn.

Interviews provides abstractions that
closely model the elements, semantics, and
behavior of the dialog box. A user inter-
face programmer can express the imple-
mentation of the interface in the same
terms as its specification. The Interviews
library contains a variety of predefined
interface components. In the dialog box,
we will use message, push button, box,

glue, and frame. (See the sidebar entitled
“Glossary” for definitions of these terms.)

We use boxes and glue to compose the
other elements of the dialog box. The com-
position model is a simplified version of
the TeX3 boxes and glue model. This
model makes it unnecessary to specify the
exact placement of elements in the inter-
face, and it eliminates the need to imple-
ment resize behavior explicitly.

Two types of box are used: An hbox tiles
its components horizontally, while a vbox

hello uorld I goodbye wrld

Figure 3. A simple dialog box.

In addition to the operations for setting graphics state
attributes and coordinate transformations, there are com-
plementary operations for obtaining the current values of
these parameters. The Contains and Intersects operations
determine whether a user clicked on a graphic. PointObj and
BoxObj specify a point and a rectangular region, respectively.
Contains can detect an exact hit on a graphic; Intersects can
detect a hit within a certain tolerance.

Picture protocol. Each picture maintains a list of compo-
nent graphics. A picture draws itself by drawing each compo-
nent with a graphics state formed by concatenating the
component’s state with its own. Pictures define default
semantics for concatenation; subclasses of picture can rede-
fine the semantics or rely on their components to do the con-
catenation.

Contains, Intersects, and bounding box operations defined
in the graphic base class are redefined in the picture class to
consider all the components relative to the picture’s coor-
dinate system. The picture class defines operations for edit-
ing and traversing its list of components. Pictures also define
operations for selecting graphics they compose based on
position:

G rap h ic * First G rap h ic Con t ai n i ng (Poi n t 0 bj &);
Graphic FirstGraphiclntersecting(BoxObj&);
Graphic FirstGraphicWithin(BoxObj&);

Graphic * LastGraphicContaining(PointObj&);
Graphic * LastGraphiclntersecting(BoxObj&);
Graphic * Last GraphicW i t hin(Box0 bj&);

int GraphicsContaining(PintObj&, Graphic. *&);
int Graphicslntersecting(BoxObj&, Graphic. 4);
int GraphicsWithin(BoxObj&, Graphic**&);

The. . .Containing operations return the graphics contain-
ing a point;. . .Intersecting operations return the graphics
intersecting a rectangle; . . .Within operations return the
graphics falling completely within a rectangle.

Pictures draw their components starting from the first com.
ponent in the list. The Last. . . operations can select the “top-
most” graphic in the picture, while First.. . operations select
the “bottommost.”

Text protocol. The text object protocol includes the follow-
ing operations:

void Draw(Layout*);
void Locate(Coord &xl, Coord &yl, Coord &x2, Coord &y2);
void Reshape();

Draw defines the appearance of an object in a given layout.
A Layout object defines the area of the screen into which a
hierarchy of text objects will be composed. Locate is used for
hit detection on text objects. Reshape calculates geometric
information about an object for use in implementing composi-
tion strategies.

Clause protocol. Clauses add operations for stepping
through components and for modifying the list of com-
ponents:

Text First();
Text Succ(Text *);
Text Pred(Text *);
boolean Follows(Text *, Text *);

void Append(Text *);
void Prepend(Text *);
void InsertAfter(Text old, Text *);
void InsertBefore(Text old, Text *);
void Replace(Text old, Text *);
void Remove(Text *);

First returns the leftmost or topmost component. Succ and
Pred return the successor or predecessor cf a component.
Follows can determine if one component comes before or
after another.

To probe further. We have only considered the basic ele.
ments of the various protocols in this discussion. A more
detailed look at these protocols and the implementations
behind them can be found elsewhere.’.*

References
1. M.A. Linton, P.R. Calder, and J.M. Vlissides, InterViews: A C+ +

Graphical Interface Toolkit, Tech. Report CSLTR-88-358, Stanford
Univ., Stanford, Calif., July 1988.

2. J.M. Vlissides and M.A. Linton, “Applying Object-Oriented Design to
Structured Graphics,” Proc. 1988 USENlX C+ + Cont., Oct. 1988, pp.
81-94; also available as Tech. Report CSLTR-88-364, Stanford Univ.,
Stanford, Calif., Aug. 1988.

February 1989 11

Glossary
box, hbox, vbox Scenes that support tiled composition of
interactors.

button The button base class defines the interface to
generic button interfaces. Push buttons provide a momentary
contact interface. Radio buttons allow the user to select one
of several mutually exclusive choices.

button state A subject that maintains state associated with
one or more buttons.

clause The base class for structured text composition
objects.

deck A scene that stacks interactors.

display A clause that defines an indented text layout.

frames Monoscenes that embellish their component.
Frames add a simple border, shadow frames add a drop
shadow, and title frames add a banner.

glue, hglue, vglue
components of a scene.

lnteractors that act as spacers between

graphic Base class for structured graphics objects.

graphic block An interactor that displays a structured
graphics object.

immediate-mode graphics A graphics model in which indi-
vidual geometric shapes are drawn by routines that simply
modify pixels on the screen as they are called.

interactor The base class for interactive objects such as
menus and buttons.

message An interactor that displays a string of characters.

mover An interactor that scrolls another interactor by some
increment.

phrase A clause that places its components end-to-end on
a single line.

picture The base class for structured graphics composition
objects.

rectangle A graphic that represents and draws a rectangle.

scene The base class for objects that compose interactors;
monoscenes are scenes that contain only one component.

sentence A clause that places as many of its components
as possible on the same line and begins a new line if
necessary.

slider A two-dimensional scroll bar.

structured graphics A graphics model that supports hierar-
chical composition of graphical elements; support is usually
provided for coordinate transformations, hit detection, and
automatic screen update.

structured text A graphics model that allows hierarchical
composition of textual elements, emphasizing the arrange-
ment of elements to make use of available space.

subject An object that maintains state and operations that
underlie a user interface; a subject maintains a list of views
to be notified when the subject's state changes.

text The base class for structured text objects.

text block An interactor that displays a structured text
object.

text list A clause that arranges its components either
horizontally or vertically depending on available space.

tray A scene that maintains constraints on the placement
of potentially overlapping components.

view An object that provides the user interface to a subject.

viewport A monoscene that can scroll and zoom its com-
ponent.

painter An object providing immediatemode graphics opera-
tions and operations for setting graphics state parameters. whitespace A text object used to introduce space between

other text objects in a clause.
panner An interactor that supports continuous two-
dimensional scrolling and incremental scrolling and zooming. word A text object that represents and draws a string of

characters.
perspective A subject that maintains scrolling and zooming
information, including the total size of a view and how much zoomer An interactor that magnifies or reduces another
is currently visible. interactor.

tiles them vertically. Glue between inter-
actors in a box provides space between
components. We use hglue in hboxes and
vglue in vboxes.

Each interactor defines a preferred or
naturalsize and the amount i t can stretch

or shrink to fill available space. We can use
glue of various natural sizes, shrinkabili-
ties, and stretchabilities to describe a wide
variety of interface layouts and resize
behaviors.

Figure 4 depicts schematically how the

elements of the dialog box are composed
using boxes and glue. The corresponding
object structure is shown in Figure 5 , and
the C+ + code that implements the dialog
box appears in Figure 6. The message and
button interactors are each placed in an

12 COMPUTER

hbox with hglue on either side of them.
The hglue to the left of the message has a
natural size of %-inch and cannot stretch,
while the glue on the right has a natural size
of zero and can stretch infinitely (as speci-
fied by the constant hfil). If the dialog box
is resized as in Figure 7, the margin to the
left of the message will not exceed %-inch,
while the space to the right can grow
arbitrarily. Similarly, the button has
infinitely stretchable hglue to its left and
fixed-size hglue to its right, so that the
margin to the right of the button will not
exceed %-inch.

The hboxes are composed vertically
within a vbox, separated by pieces of
vglue. The pieces of vglue above the mes-
sage and below the button have a natural
size of %-inch, while the vglue between the
message and the button has a natural siLe
of &inch. The inner vglue can stretch
twice as much as the outer two pieces of
vglue. When resized, therefore, the mes-
sage and button interactors will remain
twice as far apart from each other as they
are from the edge of the dialog box.

Tray. Suppose we want a dialog box
centered atop another interactor, perhaps
to notify the user of an error condition.
Furthermore, we want the dialog box to
remain centered if the interactor is resized
or repositioned. Boxes and glue are inap-
propriate for this type of nontiled compo-
sition.

The fray scene subclass provides a nat-
ural way to describe layouts in which com-
ponents "float" in front of a background.
A tray typically contains a background
interactor and several other components
whose positions are determined by a set of
alignments. For example, the background
interactor might display the text in a docu-
ment; other components could include
various messages, buttons, and menus.

Each alignment of a tray component is
to some other target interactor, which can
be another component of the tray or the
tray itself. The alignment specifies a point
on the target, a point on the component,
and the characteristics of the glue that con-
nects the alignment points. An alignment
point can be a corner of the interactor, the
midpoint of a side, or the center. The tray
will arrange the components to satisfy all
alignments as far as possible. I f necessary,
the components and the connecting glue
will stretch or shrink to satisfy the
alignments.

Figure 8 shows a simple application in
which a tray composes a textual interface
and a dialog box. The interactor contain-

".'.'.',
hglue $ vglue 0 hbox f f vbox

i......i

Figure 4. Schematic of dialog box composition using boxes and glue.

Figure 5 . Object structure of dialog box composition.

const int space = round(.25 *inches);
Buttonstate* status;

Frame* frame = new Frame(
new VBox(

new VGlue(space, vfil),
new H Box(

/ * (natural size, stretchability) */

new HGlue(space, 0),
new Message("hel1o world"),
new HGlue(0, hfil)

),
new VGlue(Z*space, 2*vfil),
new HBox(

new HGlue(0, hfil),
new PushButton("goodbye world", status, false),
new HGlue(space, 0)

) ?

new VGlue(space, vfil)
)

\.
I!

Figure 6. C++ code for composing the dialog box interface.

February 1989 13

hello world

goodbye world

Figure 7. The dialog box after resizing.

total 357
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x

drwxrwxr-x File is write-protected.
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
-r--r--r--
-r--r--r--
-rw-r--r--

drwxrwxr-x I I““‘
2 linton
2 linton
2 linton 1536 Oct 27 15:18 RCS/
r -

1024 Oct 16 00:48 HIPSEL/
512 Oct 16 00:49 HIPSEL.X11/

- I

1 linton 22810 Sep 20 09:43 X10-9raphics.c iiiiiji
1 linton 25010 Sep 2 00:15 X10-wind0ws.c !:3:
1 linton 23018 Oct 16 00:37 XU-9raphics.c jjzi
1 linton 29412 Oct 17 12:56 X11-wind0ws.c ;!;i::

Figure 8. An interface using a tray.

background
interactor 7

tray component
(dialog box)

e tray alignments (using glue)
Figure 9. Schematic of tray interface.

14

ing text and a scroll bar are composed with
an hbox and placed into the tray as its
background. When the dialog box is
required, it is inserted into the tray with its
upper left and lower right corners aligned
to the corresponding corners of the tray.
Figure 9 shows the arrangement of com-
ponents, and Figure logives the code that
implements the interface. The alignments
interpose stretchable but nonshrinkable
glue with a natural size of X-inch to main-
tain a minimum spacing between the edges
of the tray and the dialog box. These align-
ments guarantee that the dialog box will
remain centered atop the background
interactor after resizing (see Figure 11).
Note how the tray shrank the dialog box
to satisfy the alignment constraints once
the glue reached its minimum size.

Deck. Another common interface
allows the user to flip (rather than scroll)
through “pages” of text or graphics as
through a book. We can build such an
interface in Interviews by composing
interactors with a deck. The interactors in
a deck are conceptually stacked on top of
each other so that only the topmost inter-
actor is visible (see Figure 12). The deck’s
natural size is determined by the natural
size of its largest component. A set of oper-
ations allow “shuffling” the deck to bring
the desired component to the top.

Decks can be used in other contexts as
well. A set of color or pattern options in
a dialog box could be composed with a
deck, allowing the user to flip through
them until reaching the desired choice.
Alternate menu entries could be stored in
a deck and inserted into a menu to allow
changes in the menu’s appearance without
rebuilding it each time.

Single component scenes. Boxes, trays,
and decks have arbitrary numbers of com-
ponents. Interviews also provides several
scenes that can have only one component.
Such scenes are derived from the
monoscene scene subclass and serve two
purposes.

Some monoscenes serve as containers
that surround another interactor. The
frame used to place a border around the
dialog box in the subsection “Boxes and
glue” is one example. Other examples
include shadow frame, which adds a drop
shadow to its component, and title frame,
which adds a banner. A viewport is a
monoscene that scrolls an interactor larger
than the available space. Viewports are
useful for providing a scrolling interface
to nonscrolling interactors.

COMPUTER

Other monoscenes provide abstraction;
they hide the internal structure of an inter-
actor implemented as a composition. For
example, the menu class is derived from
monoscene. A menu is implemented as a
box containing the interactors that repre-
sent the menu items. However, the box
composition should not be visible to a pro-
grammer who wants to use the menu in a
user interface. The monoscene hides the
implementation of menus, making them
easier to understand and allowing their
structure to change without affecting other
interface code.

Graphic composition
Direct manipulation editors allow the

user to manipulate graphical representa-
tions of familiar objects directly. A draw-
ing editor lets an artist draw a circle and
drag it to a new location. A music editor
lets a composer write music by arranging
notes on staves. A schematic editor lets an
engineer “wire up” graphical representa-
tions of circuits.

The programmer of such systems must
provide underlying representations for the
graphical objects and define the opera-
tions they perform. Interviews provides a
collection of structured graphics objects
that simplifies the programmer’s task.

A simple drawing editor. Figure 13
depicts a drawing editor application in
which the user can draw, move, and rotate
rectangles and scroll and zoom the draw-

const int space = round(. 125 *inches);
TGlue* g l = new TGlue(space, space, 0, hfil, 0, vfil);
TGlue* g2 = new TGlue(space, space, 0, hfil, 0, vfil);

/ * (width, height, hshrink, hstretch, vshrink, vstretch) */

Tray* tray = new Tray(

view,
new VBorder(l) ,
new VScroller(view)

new HBox(

)
);

tray - > Insert(dia1og);
tray - >Align(TopLeft, dialog, gl);
tray - >Align(BottomRight, dialog, g2);

Figure 10. C++ code for composing the tray interface.

total 357
drwxrwxr-x 2 linton
drwxrwxr-x 2 linton
drwxrwxr-x 2 linton

top component
interactor

..
deck / I / /

...
......

r:_...

Figure 12. Composition using a deck.

February 1989 15

t I 1

Figure 13. A simple drawing editor application.

ing area. To draw a rectangle, the user
presses the “rect” button and drags out a
rectangle in the drawing area. An existing
rectangle can be moved or rotated by
pressing the appropriate button and drag-
ging the rectangle.

In each of theseoperations, the drawing
editor provides animated feedback as the
user creates and manipulates rectangles.
Animation reinforces the user’s belief that
he or she is manipulating real objects. As
a rectangle is moved, for instance, its out-
line follows the mouse; during rotation,
the outline revolves about the rectangle’s
center. Such dynamic feedback is charac-
teristic of a direct manipulation editor.

Implementing the drawing editor. A
programmer can compose the elements of
the user interface using Interviews inter-
actor and graphic subclasses as shown in
Figure 14. The buttons are instances of
radio burton, a predefined subclass of the
button class. The interface to scrolling and
zooming is provided by apanner , the two-
dimensional scroller in the lower right of
the interface. The drawing area in which
the rectangles appear is agraphic block, an
interactor that displays structured graphics
objects. These elements are composed
using boxes and glue. The editor’s pop-up
command menu, appearing in the center-
right of Figure 13, is an instance of the

menu class.
Each rectangle in the drawing is an

instance of the rectangle class, a subclass
of graphic. The rectangles are composed
in a picture, and the picture is placed in the
graphic block. The graphic block trans-
lates and scales the picture to implement
scrolling and zooming. Rectangles are
moved and rotated by calling transforma-
tion operations on the rectangle objects.
The picture performs hit detection by
returning the component that corresponds
to a coordinate pair.

Semantics of graphic composition. The
drawing editor demonstrates simple com-
position of graphics. In this example, the
hierarchy of graphical objects is only one
level deep; all the rectangles are children
of a single parent picture. Of course, more
complex hierarchies are common in a prac-
tical drawing editor. However, even the
simple one-level hierarchy demonstrates
the semantics o f graphic composition. For
example, when the graphic block applies
a transformation to the picture to scroll or
zoom it, the transformation affects all the
rectangles in the picture. Furthermore,
altering any o f the picture’s graphics state
attributes affects its children as well. For
example, changing the picture’s brush
width attribute also changes the brush
widths of its children.

The composition mechanism defines
how the picture’s graphics state informa-
tion affects its components. A picture
draws itself by drawing each component
recursively with a graphics state formed by
concatenating the component’s state with
its own. The default semantics for concate-
nation are that the attributes defined by a
graphic’s parent override the graphic’s
own attributes. If a parent does not define
a particular attribute, then the child
graphic’s attribute is used. Coordinate
transformations are concatenated so that
the child’s transformation precedes the
parent’s.

These semantics represent a kind of
reverse inheritance of graphics attributes,
since parents can override their children.
This mechanism is useful in editors where
operations performed on interior nodes of
the graphic hierarchy affect the leaf
graphics uniformly. Classes derived from
the graphic class can redefine the seman-
tics of concatenation if the default seman-
tics are inappropriate.

Immediate-mode graphics. We nor-
mally d o not use structured graphics
objects t o draw scroll bars, menus, or
other user interface components that are
simple to draw procedurally. lnteractors
use painter objects for this purpose.
Painters provide immediate-mode draw-
ing operations (including operations for
drawing lines, filled and open shapes, and
text) and operations for setting the current
f i l l pattern, font, and other graphics state.
The results of a painter drawing operation
appear on the display immediately after
the operation is performed. The difference
between painter-generated graphics and
structured graphics is that painters d o not
maintain state or structure that reflects
what has been drawn, so there is no way to
access and manipulate the graphics. In
contrast, structured graphics objects
maintain geometric and graphical state
and can be manipulated before and after
they are drawn.

Structured graphics is most appropriate
where an indefinite number and variety of
graphical objects are manipulated directly.
I t is a powerful tool for constructing
graphics editors that provide an object-
oriented editing metaphor because struc-
tured graphics objects embody the same
metaphor. These objects typically repre-
sent the data managed by the editor.
Painters should be used to draw simple,
unchanging elements of the interface that
d o not justify the storage overhead of
graphics objects.

16 COMPUTER

Figure 14. Drawing editor object structure.

Text composition
Direct-manipulation textual interfaces

require special support to handle problems
in the presentation of text, such as line and
page breaking and arranging text to reflect
the logical structure of a document. Inter-
Views structured text objects simplify the
implementation of direct-manipulation
textual interfaces.

A simple class browser. Figure 15 shows
the interface to a class browser, a simple
application for perusing C+ + class decla-
rations. The browser displays a class decla-
ration with the class name underlined and
member functions in bold. Clicking on the
class name opens a window showing
documentation for the class, and clicking
on a member function opens a window
showing the function's definition. Text
composition objects maintain the arrange-
ment of the text. As Figure 16 shows, resiz-
ing the window reformats the text to use

/* Base class for interactive objects. */

class Interactor I
public:

Interactor(

):
'Interctor():
w i d Listm(Sensor*) :
w i d IcmifyO:
w i d M(Evcntb):
virtual void k i n d) :
virtual void &ad):
virtual void Rebar(

):
virtual void Hadle(Eventb):

Coord left, Coord bottom, Coord right, Coord top

...
>:

available space.
Figure 15. A simple class browser application.

Implementing the class browser. Text
and clause subclasses compose the text dis-
played in the browser. Objects of the word available space in an appropriate manner. Semantics of text composition. Sub-
(a string of characters) and whifespace The entire composition is placed in a text classes of clause specify the way their com-
(blank space of a given size) classes are block (an interactor that displays struc- ponents will bearranged. Different clauses
assembled using various composition tured text objects), and the text block is use different strategies for using available
objects so that the lines of code will fill inserted into a frame. space:

February 1989 17

I* Base class for interactive objects. */

:lass Interactor C
~blic:

1:
-I*ctoro:
wid Listen(Sensor*):
wid IanifyO:
w i d Read(Eventb):
virtual void k i a e 0 :
virtual void bad):
virtual void R e h a d

Coord left,
Cowd bottom,
Coord right,
Coord top

):
virtual void Hadle(Euentb): ...

k

Figure 16. The class browser after resizing.

Interactor(display

Figure 17. Object structure of the text composition for the Interactor constructor.

lnteractor(Sens0r * in = stdsensor, Painter * out = stdpaint);

Interactor(
Sensor* in = stdsensor, Painter* out = stdpaint

\.

Interact or (
Sensor * in = stdsensor,
Painter * out = stdpaint

);

Figure 18. Possible layouts of the Interactor constructor.

18

A phrase formats its components
without regard to space. The components
are simply placed end-to-end on a single
line.

A text list can arrange its components
either horizontally or vertically. If the
whole list will not fit in a horizontal for-
mat, then the list will place each compo-
nent on a separate line. Text lists are used
in the browser for composing the member
function parameter lists.

A disphy defines an indented layout.
If the display will not fit on the current
line, then it is placed on the following line
with a specified indentation. The browser
composes class and member function
declarations using displays.

A sentence will place as many compo-
nents as possible on the current line and
will begin a new line if necessary. The
browser uses sentences for comments.

To illustrate how we can use text com-
position, consider the composition of the
Interactor constructor in the browser (see
Figure 17). The declaration is composed as
a phrase with three components: the first
component is a word representing the
string Interactor(, the second is a display
that contains a text list of the formal
parameters, and the third is a word
representing the string); .

Figure 18 shows that the constructor
declaration will appear in one of several
layouts depending on the available space.
In the top example, all the text can fit on
a single line. In the middle example, the
available space has been reduced so that
there is not enough room for the display
containing the parameter list; the display
is placed on a separate, indented line. In
the bottom example, the available space
has been reduced further, causing the text
list to display vertically instead of
horizontally.

Text composition is most useful when
the interface requires direct manipulation
of text, when the text should reflect the
structural characteristics of the document,
or when the text layout should automati-
cally make good use of available space.
Painters are more appropriate for embel-
lishing interfaces with simple, noninterac-
tive text.

Subjects and views
In Interviews we distinguish between

interactive objects, which implement a
user interface, and abstract objects, which
encapsulate the underlying data. We refer
to interactive and abstract objects as views
and subjects, respectively. This separation

COMPUTER

Making user interface development easier
We can divide software systems that facilitate construction

of graphical user interfaces into two broad categories: toolkits
and user-interface management systems.

Toolkits. A user interface toolkit provides programming
abstractions for building user interfaces. Interviews, the X
Toolkit, and the Andrew Toolkit’ are good examples. The X
Toolkit defines widget and composite classes analogous to
interactors and scenes in Interviews. Tiling composites
include box and vpaned, and the form composite allows its
components to overlap. Composite objects maintain a pointer
to a geometry manager function that is responsible for the
proper layout of components. The geometry manager can be
replaced at runtime to change the layout strategy.

The Andrew Toolkit includes objects that comprise the data
to be edited, such as text, bitmaps, and more sophisticated
objects such as spreadsheets and animation editors. Its com-
position mechanism allows these objects to be embedded in
multimedia documents.

In addition to standard toolkit functionality, Graphical
Object Workbench’ allows the programmer to specify con-
straints between objects. Constraints can enforce dependen-
cies between individual pieces of data. For example, the
programmer can specify that a value stored in one object is a
function of a value in another object. Grow also has graphical
constraints for confining and connecting graphical objects.
Such constraints can guarantee that a graphical object stays
within a prescribed area or that two visually connected
objects stay connected when one or the other is translated.

Smalltalk Model-View-Controller3 and its descendant,
Apple’s MacApp; are among the earliest and best-known
object-oriented toolkits. MacApp differs from newer toolkits in
that it implements the particular “look and feel” of Macintosh
applications. MVC is unique in that it divides interface compo-
nents into model, view, and controller. Models are similar to
subjects in Interviews, controllers are responsible for input
handling, and views are responsible solely for output. In con-
trast, other toolkits that distinguish between interactive and
abstract objects put the functionality of MVC controllers and
views into a single object (corresponding to an Interviews
view) that handles input and output. This consolidation
reflects the tight coupling between input and output in direct-
manipulation interfaces. Placing responsibility for input and
output in the same object reduces the total number of objects
and the communication overhead between them, simplifying
the toolkit and potentially increasing its efficiency.

UIMSs. User-interface management systems are generally

characterized by
(1) complete separation of the code that implements the

user interface to an application from the code for the
application itself, and

(2) support for specifying the user interface at a higher level
of abstraction than general-purpose programming lan-
guages.

UlMSs separate interface and application for some of the
same reasons that many toolkits separate subjects and views,
namely to isolate application code and interface specification
and to allow different interfaces to the same application.
However, UlMSs do not implement any application code,
whereas subjects usually do. Moreover, UlMSs minimize the
interaction between the application and the interface to max-
imize their independence. UlMSs generally concentrate on
abstracting the syntax and semantics of the user interface.
Their main goal is to let interface designers and even end
users design and modify the interface quickly without requir-
ing extensive programming skills or knowledge of the applica-
tion. To avoid conventional programming, UlMSs use
special-purpose languages or other formalisms such as finite-
state transition diagrams to describe the appearance of the
interface and the kinds of interaction it supports. In most
UlMSs the specification is interpreted by a runtime system
incorporated into the application.

A widely known and used UlMS is Apollo’s Domain/Dialog.’
The package consists of a compiler and a runtime library. The
compiler reads a declarative description of the user interface
and how it connects to the underlying application. It then
generates a more compact description that is interpreted by
the runtime library.

The user interface is specified in terms of interaction tech-
niques, which correspond to primitive interface components,
and structuring techniques, which are the composition
mechanisms for the primitives. Domain/Dialog defines struc-
turing techniques for arranging components into rows and
columns and a “oneof” technique that displays only a single
component. These structuring techniques allocate space for
their components in a manner similar to Interviews’ boxes and
glue: they request a minimum, maximum, and optimal size
from their components and distribute the available space
among them.

Domain/Dialog places greater emphasis on composition
than most UIMSs, which center more on how to specify the
input and output behavior of a user interface without conven-
tional programming. Sassafras: a prototype UlMS developed
at the University of Toronto, focuses on supporting concurrent
user input from multiple devices and on efficient communica-

is important in many aspects of user inter-
face design. I t is a kehicle for customiza-
tion, allowing programmers to present
different, independently customizable
interfaces to the same data. I t is a useful
structuring mechanism that separates user
interface code from application code. I t
permits different representations of the

same data to be displayed simultaneou4y
such that datachanges made through one
representation are immediately reflected in
the others. Several other user interface
packages support this separation, includ-
ing the Andrew Toolkit, Smalltalk Model-
View-Controller, Graphical Object Work-
bench, and MacApp (see the sidebar enti-

tled “Making user interface de\elopnient
easier”).

View\ in Interviews are typically iniple-
rnented with compositions of interactors,
graphics, and text objects. Subject5 are
often (but need not be) derived from the
subject class. A subject maintains a list of
its viehs. Views define an Update opera-

February 1989 19

and synchronization between the modules that support
r interaction. Syngraph‘ takes a description of a user inter-
written in a formal grammar and generates Pascal code
implements it. Recent work by Foley et a1.8 uses a knowl-

e base describing the interface to raise the level of
traction beyond detailed assembly of components.
nother class of UlMS lets designers create a user inter-

face by direct manipulation instead of textual specification.
Research systems such as Cardelli’s dialog editor’ and Myers’
Peridot” and commercial systems such as SmethersBarnes’

nferring the proper semantics of
er’s actions. Prototyper provides
building Macintosh applications
rcial direct-manipulation inter-

interfaces. Since UlMSs allow interface
igh level, they necessarily limit the range
an create. This is especially true of direct-
ace editors, which must rely on graphical
specification of the interface’s semantics.

eliance on an interpreted specific
ial-purpose language used by a t
unfamiliar to programmers and i

ral-purpose languages, the debu
nexistent, and runtime overhead

equacy for direct manipulation inte

w-bandwidth connection between the t
Ss do not support interfaces requiring real-

ation of application and interfac

to user input, such as thos
mated effects.

Difficulty in adapting fo change. The time needed to pro-
them in step with the
only gets worse as inter-

duce UlMSs makes it difficult to
latest interface designs. The pro
faces become more complex.

Because Interviews is a toolkit, it avoids the problems
associated with UIMSs. Interviews is distinguished from other
toolkits in its variety of composition mechanisms (tiled, over-
lapped, stacked, constrained, an lated), i ts support
for nonlinear deformation (i tretching and shrink-
ing) of interactors, and its
tured graphics and text. Interviews simplifies the creation of
both the controlling elements of the interface (buttons and
menus) and the data to be manipulated (text and
objects). Interviews thus offers comprehensive s
building user interfaces.

References
1. A.J. Palay et al., “The Andrew Toolkit: An Overview,” froc 1988 Win-

5. A. Schulert et al., “ADM - A Dialog Manager,” Proc. ACM CHI 85,
AW. 1985, pp. m - 1 ~ .

ion, and Synchro-

15.

tion responsible for reconciling the view’s
appearance with the current state of the
subject. Calling Notify on a subject in turn
calls Update on its views, thus enabling the
views to update their appearance in
response to a change in the subject.

In practice i t is inconvenient to force
every user interface concept into the sub-

ject/view model. For example, i t is
unnecessary to associate a subject with
every menu because interfaces seldom
require multiple views of the same menu.
However, many Interviews library com-
ponents d o use the subjects and views par-
adigm. Two examples relate to the
implementation of scrolling and buttons.

Scrolling and perspectives. An interac-
tor that supports scrolling and zooming
maintains aperspective. The perspective is
a subject that defines a range of coor-
dinates representing the total extent of the
interactor’s output space and a subrange
for the currently visible portion of the total
range. For example, in the drawing editor

20 COMPUTER

mentioned above, the total extent of the
graphic block’s perspective is obtained
from the picture’s bounding box; its
subrange is the space the graphic block
occupies on the screen. In a text editor the
vertical range might be the total number of
lines in a file; the subrange would be the
number of lines displayed by the editor on
the screen.

Scrolling and zooming are performed by
modifying the interactor’s perspective. An
interactor can modify its own perspective
(when the text editor adds a line to the file,
for example), or the perspective can be
modified by the user manipulating one of
its views.

The panner in the drawing editor is a
view of the perspective associated with the
editor’s graphic block. The panner is really
a composition of several other perspective
views: a slider, a set of four movers, and
two zoomem. Each of these elements views
the same perspective; the slider scrolls the
drawing along both thexandyaxes , each
mover provides incremental scrolling in
one of four directions, and the zoomers
respectively enlarge and reduce the draw-
ing. The number of views on the same per-
spective is unlimited; a change made
through one view of a perspective will be
reflected in all its views.

The advantage of this organization is
that one view of a perspective need not
know about other views of the same per-
spective. Whenever the perspective is
changed, either by the interactor or by a
view, all the views are notified. Each view
of the perspective is responsible for updat-
ing its appearance appropriately in
response to the change. For example,
when a mover or zoomer is pressed, the
perspective is updated and the slider is
notified automatically. The slider can then
redraw itself to reflect the new perspective.

Figure 19 shows how a graphic block’s
perspective coordinates the scrolling oper-
ation when the user presses one of thepan-
ner’s movers. The graphic block modifies
its perspective on behalf of the mover
because the graphic block might want to
limit the amount of scrolling. In this
instance, the perspective and the interac-
tor are considered together as the subject
to which views such as panners are
attached.

Buttons and button states. The example
dialog box uses a button for dismissal. In
Interviews, a button is a view of a butfon
state subject. When the user presses a but-
ton, the button sets its button state to a
particular value. Several buttons can view

perspective views
/ /c Y

graphicblack movers zoomen slider

V-YY-Y
perspeclive

1. User presses mover.
2. Mover r uesls gra IC block Io c h a w its perspective.
3. Graphic3ock m d i C s its perspeaive.
4. Perspective noafies its views:

Figure 19. How a perspective coordinates scrolling of a graphic block.

a single button state; like any subject, a
button state notifies all its views (buttons)
when i t changes.

To illustrate this, consider how Inter-
Views radio buttons are implemented. A
radio button acts like a tuning button on
a car radio; only one button in a group of
radio buttons can be “on” at a time. Radio
buttons are provided when the user should
select an option from several mutually
exclusive choices. A single button state is
the subject for a group of radio buttons.
Pressing one of the radio buttons sets the
button state to a particular value. The but-
ton stays pressed until the button state is
changed to a different value, usually by
pressing another radio button in the
group.

Customization
Interviews adopts the X Toolki t4

model to support customization of inter-
actors. Users can define a hierarchy of
attribute names and values. An interactor
can retrieve the value of an attribute by
name; it interprets the value to customize
some aspect of its appearance or behavior.
Attribute lookup involves a search
through parts of the attribute hierarchy
that match the interactor’s position in the
object instance hierarchy. Each interactor
can have an instance name; interactors not
explicitly named inherit a class name. The
name given the interactor at the root of the
instance hierarchy is usually the name of
the application.

February 1989 21

For example, suppose the application
containing the example dialog box was
called “hello,” and the push button in the
dialog box had the instance name “bye.”
The full name of the attribute that speci-
fies the font for the button label would
then be

hello.Frame.VBox.HBox. bye. font

Attribute names can include wild-card
specifications so that one attribute can
apply to several interactors. The font of
the push button in the example dialog box
is more likely to be specified by an attrib-
ute named hello *PushButton.font, which
would apply to any push button in the
application, or even *font, which would
apply to any font in any application. The
mechanism for accessing attributes
ensures that the attribute with the most
specific name is the one used to satisfy a
query. The Interviews library automati-
cally handles standard attributes such as
“font” and “color.”

The designer of an application chooses
names for interactors that users can cus-
tomize. Users specify these names to refer
to interactors they want to customize.
Consistency across a range of applications
is achieved by a consistent choice of
instance and attribute names. For exam-
ple, all confirmation buttons in all ‘‘quit’’
dialog boxes will be red if the user lists the
attribute *quit*OK.background:red, if all
quit dialog boxes are given the instance
name “quit ,” and if all confirmation but-
tons are named “OK.”

Mark A. Linton is an assistant professor in the
Computer Systems Laboratory of the Electri-
cal Engineering Dept. at Stanford University.
His current research interests are in program-
ming environments, user interfaces, operating
systems, and workstation architectures.

Linton received the BSE degree from Prince-
ton University in 1978 and the MS and PhD
degrees in computer science from the University
of California at Berkeley in 1981 and 1983,
respectively. He is the author of the Unix debug-
ger “dbx” and the Stanford workstation
benchmarks.

Current status
Interviews currently runs on Micro-

VAX, Sun, Hewlett-Packard, and Apollo
workstations on top of the X Window
System’ versions 10 and 11. The library
comprises roughly 30,000 lines of C + +
source code, of which about 2,000 lines are
X-dependent. Interviews applications do
not call X routines directly and are thus
isolated from the underlying window
system.

We have implemented several applica-
tions on top of the library, including a scal-
able digital clock, a load monitor, a
drawing editor, a reminder service, a win-
dow manager, and a display of incoming
mail. The applications have been used
daily by about 20 researchers for nearly
two years, and the library is being used in
development efforts at Stanford, at other
universities, and in industry. We are cur-
rently using Interviews in the development
of a more general drawing system, a pro-
gram editor, a visual command shell, and
a visual debugger.

ur experience with Interviews
has convinced us of the impor- 0 tance of object-oriented design,

subject/view separation, and composition
in facilitating the implementation of user
interfaces. Composition is particularly
important. Providing one or two ways to
combine interface elements is not enough.
To really help the programmer, a user

interface toolkit must offer a rich set of
composition mechanisms along with a
variety of predefined objects. The pro-
grammer should be able to pick and
choose from among the predefined com-
ponents for the bulk of the interface, and
the toolkit should make it easy to synthe-
size components unique to the application.
The composition mechanisms in Inter-
Views make this possible. 0

Acknowledgments
Several people have contributed to the design

and implementation of Interviews. Craig Dun-
woody and Paul Hegarty participated in the
design of the basic protocols. Paul also devel-
oped the window manager application, and
John Interrante implemented the drawing edi-
tor. We are grateful to the growing Interviews
user community for its encouragement and sup-
port. This work was funded by the Quantum
project through a gift from Digital Equipment
Corporation.

References
1. K. Potosnak, “Do Icons Make User Inter-

faces Easier to Use?”, IEEESoftware, Vol.
5, No. 3, May 1988, pp.97-99.

2. B. Stroustrup, The C++ Programming
Language, Addison-Wesley, Reading,
Mass., 1986.

3. D. Knuth, The TeXbook, Addison-Wesley,
Reading, Mass., 1984.

4. J . McCormack, P. Asente, and R.R. Swick,
X Toolkit Intrinsics-C Language Interface,
Digital Equipment Corp., Mar. 1988.

5 . R.W. Scheifler and J. Gettys, “TheX Win-
dow System,” ACM Trans. Graphics, Vol.
5, No. 2, Apr. 1986, pp. 79-109.

John M. Vlissides is a research assistant in the
Computer Systems Laboratory at Stanford Uni-
versity, where he is pursuing a PhD in electri-
cal engineering. His dissertation work is on a
generalized model for constructing graphical
editing systems. His research interests also
include programming environments, constraint
systems, and simulation.

Vlissides earned a BS degree in electrical
engineering from the University of Virginia,
where he received the Electrical Engineering
Dept.’s Chairperson’s prize, in 1983 and an MS
degree in electrical engineering from Stanford
in 1985. He is a member of Eta Kappa Nu and
Tau Beta Pi, and a student member of the IEEE.

Paul R. Calder is a research assistant in the
Computer Systems Laboratory at Stanford Uni-
versity, where he is pursuing a PhD in electri-
cal engineering. His dissertation work is on
structured program editing. His research
interests also include programming environ-
ments and user interfaces.

Calder received a BE(Elec) in 1978 and a
MEngSc(Biomed) in 1980, both from Mel-
bourne University, Australia. From 1980 to
1987 he served on the faculty of the Electrical
Engineering Dept. at Ballarat College of
Advanced Education, Australia. He is a mem-
ber of the IEEE and the ACM.

Readers may contact Mark Lintonat thecenter for Integrated Systems, Rm. 213, Stanford University, Stanford, CA 94305.

22 COMPUTER

