
Composing 
User Interfaces 
with Interviews 

G raphical user interfaces for 
workstation applications are 
inherently difficult to build with- 

out abstractions that simplify the imple- 
mentation process. To help programmers 
create such interfaces, we considered the 
following questions: What sort of inter- 
faces should be supported? What consti- 
tutes a good set of programming 
abstractions for building such interfaces? 
How does a programmer build an inter- 
face given these abstractions? Practical 
experience has guided our efforts to 
develop user interface tools that address 
these questions. We make the following 
observations: 

All user interfaces need nor look alike. 
I t  is desirable to  maintain a consistent 
“look and  feel” across applications, but 
users often have different preferences. For 
example, one user may prefer pop-up 
menus, while another insists on pull-down 
menus. Our tools must therefore allow a 
broad range of interface styles and must be 
customizable on a per-user basis. 

User interfaces need not be purely 
graphical. Many application designers pre- 
fer iconic interfaces because they believe 
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The Interviews toolkit 
offers a rich set of 

composition 
mechanisms and a 

variety of predefined 
objects, allowing easy 

implementation of 
complex user 

interfaces. 

novices understand pictures more readily 
than text. However, recent work’ suggests 
that excessive use of icons can confuse the 
user with unfamiliar symbolism. A textual 
interface might be more appropriate in a 
given context. The choice of graphical or 
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textual representation should favor the 
clearest alternative. 

User interface code should be objecr- 
oriented. Objec ts  a r e  na tu ra l  fo r  
representing the elements of a user inter- 
face and supporting their direct manipu- 
lation. Objects provide a good abstraction 
mechanism, encapsulating state and oper- 
ations, and inheritance makes extension 
easy. Our experience shows that, com- 
pared with a procedural implementation, 
user interfaces written in an  object- 
oriented language are significantly easier 
to develop and maintain. 

Inleractive and absrract objects should 
beseparare. Separating user interface and 
application code makes i t  possible to 
change the interface without modifying 
the underlying functionality, and vice 
versa. This separation also facilitates cus- 
tomization by allowing several interfaces 
to thesameapplication. I t  is important to  
distinguish between interactive objects, 
which implement the interface, and 
abstract objects, which implement opera- 
tions o n  the data underlying the interface. 

An effective way to support these prin- 
ciples is to  equip programmers with a 
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toolkit of primitive user interface objects 
that use a common protocol to define their 
behavior. The protocol allows uniform 
treatment of user interface objects, ena- 
bling in turn the introduction of objects 
that compose primitives into complete 
interfaces. Different classes of composi- 
tion objects can provide different sorts of  
composition. For example, one class of 
composition object might arrange its com- 
ponents in abutting or tiled layouts, while 
another allows them to  overlap in 
prescribed ways. A rich set of primitive 
and composition objects promotes flexi- 
bility, while composition itself represents 
a powerful way to specify sophisticated 
and diverse interfaces. 

Composition mechanisms are central to 
the design of Interviews, a graphical user 
interface toolkit we have developed at 
Stanford. Interviews is a library of 
C+ + ’ classes that define common inter- 
active objects and composition strategies. 
Figure 1 depicts how objects from the 
Interviews library are incorporated into 
an application, and Figure 2 shows the 
relationship between the various layers of 
software that support the application. 
Primitive and composition objects from 
the library are linked into application 
code. The window system is entirely 
abstracted from the application; the appli- 
cation’s user interface is defined in terms 
of Interviews objects, which communicate 
with the window and operating systems. 

Interviews supports composition of 
three object categories. Each category is 
implemented as a hierarchy of object 
classes derived from a common base class. 
Composition subclasses within each class 
hierarchy allow hierarchical composition 
of object instances. 

( 1 )  Interactive objects such as buttons 
and menus are derived from the interactor 
base class. lnteractors are composed by 
scenes; scene subclasses define specific 
composition semantics such as tiling or 
overlapping. 

(2) Structured graphics objects such as 
circles and polygons are derived from the 
graphic base class. Graphic objects are 
composed by pictures, which provide a 
common coordinate system and graphical 
context for their components. 

(3) Structured text objects such as 
words and whitespace are derived from the 
text base class. Text objects are composed 
by clauses; clause subclasses define com- 
mon strategies for  arranging components 
to fill available space. 

The base classes define the communica- 
tion protocol for all objects in the hierar- 
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Figure 1. Incorporating Interviews objects into an application. 
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Figure 2. Layers of software underlying an application. 

chy. The composition classes define the 
additional protocol needed by the elements 
in a composition, such as operations for 
inserting and removing elements and for 
propagating information through the 
composition (see the sidebar entitled 
“Primitive and composition protocols”). 

Hierarchical composition gives the pro- 
grammer considerable flexibility. Com- 

plex behavior can be specified by building 
composi t ions that  combine simple 
behavior. The composition protocol facili- 
tates the tasks of both the designer of a 
user interface toolkit and the implementor 
of a particular user interface. The toolkit 
designer can concentrate on implementing 
the behavior of a specific component in 
isolation; the interface designer is free to 
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combine components in any way that suits 
the application. 

In this article we focus on using Inter- 
Views to build user interfaces. We present 
several simple applications and show how 
Interviews objects can implement their 
interfaces. We also illustrate the benefits 
of separating interactive behavior and 
abstract data in several different contexts. 
Finally, we discuss Interviews support for 
end-user customization as well as the sta- 
tus of the current implementation. 

Interactor composition 
An interactor manages some area of 

potential input and output on a worksta- 
tion display. A scene composes a collection 
of one or more interactors. Because a scene 
is itself an interactor, it must distribute its 
input and output area among its compo- 
nents. In this section, we discuss the vari- 
ous Interviews scene subclasses that 
provide tiling, overlapping, stacking, and 
encapsulation of components. We concen- 

trate on how these scenes are used rather 
than giving their precise definitions. 

Boxes and glue. Consider the simple dia- 
log box shown in Figure 3. It consists of a 
string of text, a button containing text, and 
a white rectangular background sur- 
rounded by a black outline. Pushing the 
button will cause the dialog box to disap- 
pear. The dialog box will maintain a 
reasonable appearance when a window 
manager resizes it. I f  parts of the dialog 

Primitive and composition protocols 
We can think of the set of operations defined on an object 

as a communication protocol that the object understands. 
Since objects cannot access the internal state of other 
objects, interobject dependencies are limited by the seman- 
tics of the protocol. Objects are thus isolated from one 
another, promoting modularity and reusability. Furthermore, 
objects derived from a common base class (thus obeying a 
common protocol) can be used without knowledge of their 
specific class; operations redefined by the subclass are auto- 
matically invoked on the objects instead of the corresponding 
base class operations (a form of dynamic binding). A common 
protocol allows composition objects to treat their compo- 
nents uniformly. Dynamic binding lets composition objects 
take advantage of subclass-specific behavior without modifi- 
cation. Together, these attributes make composition possible. 

Interactor protocol. The protocol for interactors includes 

void Draw( ); 
void Redraw(Coord left, Coord bottom, Coord right, Coord 

void Resize( ); 
void Update( ); 
void Handle(Event&); 
void Read(Event&); 

The Draw operation defines the interactor’s appearance. A 
call to Draw causes the interactor to draw itself in its entirety. 
Redraw is  called whenever a part of an interactor needs to be 
redrawn (for example, when it had been obscured but is now 
visible). A call to Resize notifies the interactor that the screen 
space it occupies has changed size. The interactor can then 
take whatever action is appropriate. Draw, Redraw, and Resize 
are automatically called by Interviews library code in 
response to window system requests. The Update operation 
indicates that some state on which the interactor depends 
may have changed; the interactor will usually Draw itself in 
response to an Update call. Typically, when a subject changes 
it will call Update on its views. 

lnteractors handle input events with the Handle operation. 
Each event is targeted to a particular interactor. Any interactor 
can Read the next event from the global event queue. Handle 
and Read can be used to create event-driven input handling, in 
which only one interactor is responsible for reading events 
and forwarding them to their target. 

the following operations: 

top); 

Scene protocol. Scenes add several operations for compo- 

void Insert(lnteractor*); 
void Insert(lnteractor*, Coord x, Coord y, Alignment); 
void Remove(1nteractor *); 
void Raise(lnteractor*); 
void Move(lnteractor*, Coord x, Coord y, Alignment); 
void Change(lnteractor*); 
void Propagate(boo1ean); 

Insert and Remove specify a scene’s components. Raise 
modifies the front-to-back ordering of components within a 
scene to bring the specified component to the top. Move sug- 
gests a change in the position of a component within the 
scene. Not all scenes implement all these operations. For 
instance, it does not make sense to call Raise on a 
monoscene, since i t  can have only one component. 

The Change operation tells a scene that one of its compo- 
nents has changed. A scene can do one of two things in 
response to a Change: It can propagate the change by calling 
Change on its parent, or it can simply reallocate its compo- 
nents’ screen space. The Propagate operation specifies which 
behavior is required for a particular instance. 

nent management to the basic interactor protocol: 

Graphic protocol. The graphic base class defines the pro- 
tocol for drawing objects, manipulating graphics state, and hit 
detection. Operations include: 

void Draw(Canvas*); 
void DrawClipped(Canvas *, Coord, Coord, Coord, Coord); 
void Erase(Canvas *); 
void EraseClipped(Canvas e, Coord, Coord, Coord, Coord); 

void SetColors(PColor* f, PColor. b); 
void SetPattern(PPattern *); 
void SetBrush(PBrush 0 ) ;  

void SetFont(PFont*); 

void Translate(f1oat dx, float dy); 
void Scale(float sx, float sy, float ctrx =O.O, float ctry 

void Rotate(f1oat angle, float ctrx =O.O, float ctry =O.O); 
void SefTransformer(Transformer 0 ) ;  

= 0.0); 

void GetBounds(float&, float&, float&, float&); 
boolean Contains(PointObj&); 
boolean Intersects(BoxObj&); 
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box previously covered by other windows 
are exposed, then the newly exposed 
regions will be redrawn. 

Interviews provides abstractions that 
closely model the elements, semantics, and 
behavior of the dialog box. A user inter- 
face programmer can express the imple- 
mentation of the interface in the same 
terms as its specification. The Interviews 
library contains a variety of predefined 
interface components. In the dialog box, 
we will use message, push button, box, 

glue, and frame. (See the sidebar entitled 
“Glossary” for definitions of these terms.) 

We use boxes and glue to compose the 
other elements of the dialog box. The com- 
position model is a simplified version of 
the TeX3 boxes and glue model. This 
model makes it unnecessary to specify the 
exact placement of elements in the inter- 
face, and it eliminates the need to imple- 
ment resize behavior explicitly. 

Two types of box are used: An hbox tiles 
its components horizontally, while a vbox 

hello uorld I goodbye wrld 

Figure 3. A simple dialog box. 

In addition to the operations for setting graphics state 
attributes and coordinate transformations, there are com- 
plementary operations for obtaining the current values of 
these parameters. The Contains and Intersects operations 
determine whether a user clicked on a graphic. PointObj and 
BoxObj specify a point and a rectangular region, respectively. 
Contains can detect an exact hit on a graphic; Intersects can 
detect a hit within a certain tolerance. 

Picture protocol. Each picture maintains a list of compo- 
nent graphics. A picture draws itself by drawing each compo- 
nent with a graphics state formed by concatenating the 
component’s state with its own. Pictures define default 
semantics for concatenation; subclasses of picture can rede- 
fine the semantics or rely on their components to do the con- 
catenation. 

Contains, Intersects, and bounding box operations defined 
in the graphic base class are redefined in the picture class to 
consider all the components relative to the picture’s coor- 
dinate system. The picture class defines operations for edit- 
ing and traversing its list of components. Pictures also define 
operations for selecting graphics they compose based on 
position: 

G rap h ic * First G rap h ic Con t ai n i ng (Poi n t 0 bj &); 
Graphic FirstGraphiclntersecting(BoxObj&); 
Graphic FirstGraphicWithin(BoxObj&); 

Graphic * LastGraphicContaining(PointObj&); 
Graphic * LastGraphiclntersecting(BoxObj&); 
Graphic * Last GraphicW i t hin( Box0 bj&); 

int GraphicsContaining(PintObj&, Graphic. *&); 
int Graphicslntersecting(BoxObj&, Graphic. 4); 
int GraphicsWithin(BoxObj&, Graphic**&); 

The. . .Containing operations return the graphics contain- 
ing a point;. . .Intersecting operations return the graphics 
intersecting a rectangle; . . .Within operations return the 
graphics falling completely within a rectangle. 

Pictures draw their components starting from the first com. 
ponent in the list. The Last. . . operations can select the “top- 
most” graphic in the picture, while First.. . operations select 
the “bottommost.” 

Text protocol. The text object protocol includes the follow- 
ing operations: 

void Draw(Layout*); 
void Locate(Coord &xl, Coord &yl, Coord &x2, Coord &y2); 
void Reshape( ); 

Draw defines the appearance of an object in a given layout. 
A Layout object defines the area of the screen into which a 
hierarchy of text objects will be composed. Locate is used for 
hit detection on text objects. Reshape calculates geometric 
information about an object for use in implementing composi- 
tion strategies. 

Clause protocol. Clauses add operations for stepping 
through components and for modifying the list of com- 
ponents: 

Text First( ); 
Text Succ(Text *); 
Text Pred(Text *); 
boolean Follows(Text *, Text *); 

void Append(Text *); 
void Prepend(Text *); 
void InsertAfter(Text old, Text *); 
void InsertBefore(Text old, Text *); 
void Replace(Text old, Text *); 
void Remove(Text *); 

First returns the leftmost or topmost component. Succ and 
Pred return the successor or predecessor cf a component. 
Follows can determine if one component comes before or 
after another. 

To probe further. We have only considered the basic ele. 
ments of the various protocols in this discussion. A more 
detailed look at these protocols and the implementations 
behind them can be found elsewhere.’.* 
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Glossary 
box, hbox, vbox Scenes that support tiled composition of 
interactors. 

button The button base class defines the interface to 
generic button interfaces. Push buttons provide a momentary 
contact interface. Radio buttons allow the user to select one 
of several mutually exclusive choices. 

button state A subject that maintains state associated with 
one or more buttons. 

clause The base class for structured text composition 
objects. 

deck A scene that stacks interactors. 

display A clause that defines an indented text layout. 

frames Monoscenes that embellish their component. 
Frames add a simple border, shadow frames add a drop 
shadow, and title frames add a banner. 

glue, hglue, vglue 
components of a scene. 

lnteractors that act as spacers between 

graphic Base class for structured graphics objects. 

graphic block An interactor that displays a structured 
graphics object. 

immediate-mode graphics A graphics model in which indi- 
vidual geometric shapes are drawn by routines that simply 
modify pixels on the screen as they are called. 

interactor The base class for interactive objects such as 
menus and buttons. 

message An interactor that displays a string of characters. 

mover An interactor that scrolls another interactor by some 
increment. 

phrase A clause that places its components end-to-end on 
a single line. 

picture The base class for structured graphics composition 
objects. 

rectangle A graphic that represents and draws a rectangle. 

scene The base class for objects that compose interactors; 
monoscenes are scenes that contain only one component. 

sentence A clause that places as many of its components 
as possible on the same line and begins a new line if 
necessary. 

slider A two-dimensional scroll bar. 

structured graphics A graphics model that supports hierar- 
chical composition of graphical elements; support is usually 
provided for coordinate transformations, hit detection, and 
automatic screen update. 

structured text A graphics model that allows hierarchical 
composition of textual elements, emphasizing the arrange- 
ment of elements to make use of available space. 

subject An object that maintains state and operations that 
underlie a user interface; a subject maintains a list of views 
to be notified when the subject's state changes. 

text The base class for structured text objects. 

text block An interactor that displays a structured text 
object. 

text list A clause that arranges its components either 
horizontally or vertically depending on available space. 

tray A scene that maintains constraints on the placement 
of potentially overlapping components. 

view An object that provides the user interface to a subject. 

viewport A monoscene that can scroll and zoom its com- 
ponent. 

painter An object providing immediatemode graphics opera- 
tions and operations for setting graphics state parameters. whitespace A text object used to introduce space between 

other text objects in a clause. 
panner An interactor that supports continuous two- 
dimensional scrolling and incremental scrolling and zooming. word A text object that represents and draws a string of 

characters. 
perspective A subject that maintains scrolling and zooming 
information, including the total size of a view and how much zoomer An interactor that magnifies or reduces another 
is currently visible. interactor. 

tiles them vertically. Glue between inter- 
actors in a box provides space between 
components. We use hglue in hboxes and 
vglue in vboxes. 

Each interactor defines a preferred or 
naturalsize and the amount i t  can stretch 

or shrink to fill available space. We can use 
glue of various natural sizes, shrinkabili- 
ties, and stretchabilities to describe a wide 
variety of interface layouts and resize 
behaviors. 

Figure 4 depicts schematically how the 

elements of the dialog box are composed 
using boxes and glue. The corresponding 
object structure is shown in Figure 5 ,  and 
the C+ + code that implements the dialog 
box appears in Figure 6. The message and  
button interactors are each placed in an 
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hbox with hglue on either side of them. 
The hglue to the left of the message has a 
natural size of %-inch and cannot stretch, 
while the glue on  the right has a natural size 
of zero and can stretch infinitely (as speci- 
fied by the constant hfil). If the dialog box 
is resized as in Figure 7, the margin to the 
left of the message will not exceed %-inch, 
while the space to the right can grow 
arbitrarily. Similarly, the button has 
infinitely stretchable hglue to its left and 
fixed-size hglue to  its right, so that the 
margin to  the right of the button will not 
exceed %-inch. 

The hboxes are composed vertically 
within a vbox, separated by pieces of 
vglue. The pieces of vglue above the mes- 
sage and below the button have a natural 
size of %-inch, while the vglue between the 
message and the button has a natural siLe 
of &inch. The inner vglue can stretch 
twice as much as the outer two pieces of 
vglue. When resized, therefore, the mes- 
sage and button interactors will remain 
twice as far apart from each other as they 
are from the edge of the dialog box. 

Tray. Suppose we want a dialog box 
centered atop another interactor, perhaps 
to  notify the user of an  error condition. 
Furthermore, we want the dialog box to 
remain centered if the interactor is resized 
or repositioned. Boxes and glue are inap- 
propriate for this type of nontiled compo- 
sition. 

The fray scene subclass provides a nat- 
ural way to describe layouts in which com- 
ponents "float" in front of a background. 
A tray typically contains a background 
interactor and several other components 
whose positions are determined by a set of 
alignments. For example, the background 
interactor might display the text in a docu- 
ment; other components could include 
various messages, buttons, and menus. 

Each alignment of a tray component is 
to some other target interactor, which can 
be another component of the tray or the 
tray itself. The alignment specifies a point 
on  the target, a point on the component, 
and the characteristics of the glue that con- 
nects the alignment points. An alignment 
point can be a corner of the interactor, the 
midpoint of a side, or the center. The tray 
will arrange the components to satisfy all 
alignments as far as possible. I f  necessary, 
the components and the connecting glue 
will stretch or shrink to satisfy the 
alignments. 

Figure 8 shows a simple application in 
which a tray composes a textual interface 
and a dialog box. The interactor contain- 

".'.'.', 
hglue $ vglue 0 hbox f f vbox 

i......i 

Figure 4. Schematic of dialog box composition using boxes and glue. 

Figure 5 .  Object structure of dialog box composition. 

const int space = round( .25 *inches); 
Buttonstate* status; 

Frame* frame = new Frame( 
new VBox( 

new VGlue(space, vfil), 
new H Box( 

/ *  (natural size, stretchability) */ 

new HGlue(space, 0), 
new Message("hel1o world"), 
new HGlue(0, hfil) 

), 
new VGlue(Z*space, 2*vfil), 
new HBox( 

new HGlue(0, hfil), 
new PushButton("goodbye world", status, false), 
new HGlue(space, 0) 

) ?  

new VGlue(space, vfil) 
) 

\. 
I! 

Figure 6. C++ code for composing the dialog box interface. 
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hello world 

goodbye world 

Figure 7. The dialog box after resizing. 

total 357 
drwxrwxr-x 
drwxrwxr-x 
drwxrwxr-x 
drwxrwxr-x 

drwxrwxr-x File is write-protected. 
drwxrwxr-x 
drwxrwxr-x 
drwxrwxr-x 
drwxrwxr-x 
drwxrwxr-x 
-r--r--r-- 
-r--r--r-- 
-rw-r--r-- 

drwxrwxr-x I I““‘ 
2 linton 
2 linton 
2 linton 1536 Oct 27 15:18 RCS/ 
r -  

1024 Oct 16 00:48 HIPSEL/ 
512 Oct 16 00:49 HIPSEL.X11/ 

- I 

1 linton 22810 Sep 20 09:43 X10-9raphics.c iiiiiji 
1 linton 25010 Sep 2 00:15 X10-wind0ws.c !:3: 
1 linton 23018 Oct 16 00:37 XU-9raphics.c jjzi 
1 linton 29412 Oct 17 12:56 X11-wind0ws.c ;!;i:: 

Figure 8.  An interface using a tray. 

background 
interactor 7 

tray component 
(dialog box) 

e tray alignments (using glue) 
Figure 9. Schematic of tray interface. 
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ing text and a scroll bar are composed with 
an hbox and placed into the tray as its 
background. When the dialog box is 
required, it is inserted into the tray with its 
upper left and lower right corners aligned 
to the corresponding corners of the tray. 
Figure 9 shows the arrangement of com- 
ponents, and Figure logives the code that 
implements the interface. The alignments 
interpose stretchable but nonshrinkable 
glue with a natural size of X-inch to main- 
tain a minimum spacing between the edges 
of the tray and the dialog box. These align- 
ments guarantee that the dialog box will 
remain centered atop the background 
interactor after resizing (see Figure 11).  
Note how the tray shrank the dialog box 
to satisfy the alignment constraints once 
the glue reached its minimum size. 

Deck. Another common interface 
allows the user to  flip (rather than scroll) 
through “pages” of text or graphics as 
through a book. We can build such an 
interface in Interviews by composing 
interactors with a deck. The interactors in 
a deck are conceptually stacked on top of  
each other so that only the topmost inter- 
actor is visible (see Figure 12). The deck’s 
natural size is determined by the natural 
size of its largest component. A set of oper- 
ations allow “shuffling” the deck to bring 
the desired component to the top. 

Decks can be used in other contexts as 
well. A set of color or pattern options in 
a dialog box could be composed with a 
deck, allowing the user to flip through 
them until reaching the desired choice. 
Alternate menu entries could be stored in 
a deck and inserted into a menu to allow 
changes in the menu’s appearance without 
rebuilding it each time. 

Single component scenes. Boxes, trays, 
and decks have arbitrary numbers of com- 
ponents. Interviews also provides several 
scenes that can have only one component. 
Such scenes are  derived from the 
monoscene scene subclass and serve two 
purposes. 

Some monoscenes serve as containers 
that surround another interactor. The 
frame used to place a border around the 
dialog box in the subsection “Boxes and 
glue” is one example. Other examples 
include shadow frame, which adds a drop 
shadow to its component, and title frame, 
which adds a banner. A viewport is a 
monoscene that scrolls an interactor larger 
than the available space. Viewports are 
useful for providing a scrolling interface 
to nonscrolling interactors. 
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Other monoscenes provide abstraction; 
they hide the internal structure of an inter- 
actor implemented as a composition. For 
example, the menu class is derived from 
monoscene. A menu is implemented as a 
box containing the interactors that repre- 
sent the menu items. However, the box 
composition should not be visible to a pro- 
grammer who wants to use the menu in a 
user interface. The monoscene hides the 
implementation of menus, making them 
easier to understand and allowing their 
structure to change without affecting other 
interface code. 

Graphic composition 
Direct manipulation editors allow the 

user to manipulate graphical representa- 
tions of familiar objects directly. A draw- 
ing editor lets an artist draw a circle and 
drag it to a new location. A music editor 
lets a composer write music by arranging 
notes on staves. A schematic editor lets an 
engineer “wire up” graphical representa- 
tions of circuits. 

The programmer of such systems must 
provide underlying representations for the 
graphical objects and define the opera- 
tions they perform. Interviews provides a 
collection of structured graphics objects 
that simplifies the programmer’s task. 

A simple drawing editor. Figure 13 
depicts a drawing editor application in 
which the user can draw, move, and rotate 
rectangles and scroll and zoom the draw- 

const int space = round(. 125 *inches); 
TGlue* g l  = new TGlue(space, space, 0, hfil, 0, vfil); 
TGlue* g2 = new TGlue(space, space, 0, hfil, 0, vfil); 

/ *  (width, height, hshrink, hstretch, vshrink, vstretch) */ 

Tray* tray = new Tray( 

view, 
new VBorder( l) ,  
new VScroller(view) 

new HBox( 

) 
); 

tray - > Insert(dia1og); 
tray - >Align(TopLeft, dialog, gl); 
tray - >Align(BottomRight, dialog, g2); 

Figure 10. C++ code for composing the tray interface. 

total 357 
drwxrwxr-x 2 linton 
drwxrwxr-x 2 linton 
drwxrwxr-x 2 linton 

top component 
interactor 

.......................................................... ................................ 
deck / ..... I / /  

......................................................................................... ......... 
...... .................. 

r: .............._... .......................................................................... ....... 

Figure 12. Composition using a deck. 
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Figure 13. A simple drawing editor application. 

ing area.  To draw a rectangle, the user 
presses the “rect” button and drags out a 
rectangle in the drawing area. An existing 
rectangle can be moved or rotated by 
pressing the appropriate button and drag- 
ging the rectangle. 

In each of theseoperations, the drawing 
editor provides animated feedback as the 
user creates and manipulates rectangles. 
Animation reinforces the user’s belief that 
he or she is manipulating real objects. As 
a rectangle is moved, for instance, its out- 
line follows the mouse; during rotation, 
the outline revolves about the rectangle’s 
center. Such dynamic feedback is charac- 
teristic of a direct manipulation editor. 

Implementing the drawing editor. A 
programmer can compose the elements of 
the user interface using Interviews inter- 
actor and graphic subclasses as shown in 
Figure 14. The buttons are instances of 
radio burton, a predefined subclass of the 
button class. The interface to scrolling and 
zooming is provided by apanner ,  the two- 
dimensional scroller in the lower right of 
the interface. The drawing area in which 
the rectangles appear is agraphic block, an 
interactor that displays structured graphics 
objects. These elements are composed 
using boxes and glue. The editor’s pop-up 
command menu, appearing in the center- 
right of  Figure 13, is an  instance of  the 

menu class. 
Each rectangle in the drawing is an 

instance of the rectangle class, a subclass 
of  graphic. The rectangles are composed 
in a picture, and the picture is placed in the 
graphic block. The graphic block trans- 
lates and scales the picture to implement 
scrolling and zooming. Rectangles are 
moved and rotated by calling transforma- 
tion operations on the rectangle objects. 
The picture performs hit detection by 
returning the component that corresponds 
to a coordinate pair. 

Semantics of graphic composition. The 
drawing editor demonstrates simple com- 
position of graphics. In this example, the 
hierarchy of graphical objects is only one 
level deep; all the rectangles are children 
of a single parent picture. Of course, more 
complex hierarchies are common in a prac- 
tical drawing editor. However, even the 
simple one-level hierarchy demonstrates 
the semantics o f  graphic composition. For 
example, when the graphic block applies 
a transformation to the picture to scroll or 
zoom it, the transformation affects all the 
rectangles in the picture. Furthermore, 
altering any o f  the picture’s graphics state 
attributes affects its children as well. For 
example, changing the picture’s brush 
width attribute also changes the brush 
widths of its children. 

The composition mechanism defines 
how the picture’s graphics state informa- 
tion affects its components. A picture 
draws itself by drawing each component 
recursively with a graphics state formed by 
concatenating the component’s state with 
its own. The default semantics for concate- 
nation are that the attributes defined by a 
graphic’s parent override the graphic’s 
own attributes. If a parent does not define 
a particular attribute, then the child 
graphic’s attribute is used. Coordinate 
transformations are concatenated so that 
the child’s transformation precedes the 
parent’s. 

These semantics represent a kind of 
reverse inheritance of graphics attributes, 
since parents can override their children. 
This mechanism is useful in editors where 
operations performed on interior nodes of 
the graphic hierarchy affect the leaf 
graphics uniformly. Classes derived from 
the graphic class can redefine the seman- 
tics of concatenation if the default seman- 
tics are inappropriate. 

Immediate-mode graphics. We nor- 
mally d o  not use structured graphics 
objects t o  draw scroll bars, menus, or 
other user interface components that are 
simple to draw procedurally. lnteractors 
use painter objects for this purpose. 
Painters provide immediate-mode draw- 
ing operations (including operations for 
drawing lines, filled and open shapes, and 
text) and operations for setting the current 
f i l l  pattern, font, and other graphics state. 
The results of a painter drawing operation 
appear on the display immediately after 
the operation is performed. The difference 
between painter-generated graphics and 
structured graphics is that painters d o  not 
maintain state or structure that reflects 
what has been drawn, so there is no way to 
access and manipulate the graphics. In 
contrast, structured graphics objects 
maintain geometric and graphical state 
and can be manipulated before and after 
they are drawn. 

Structured graphics is most appropriate 
where an indefinite number and variety of 
graphical objects are manipulated directly. 
I t  is a powerful tool for constructing 
graphics editors that provide an  object- 
oriented editing metaphor because struc- 
tured graphics objects embody the same 
metaphor. These objects typically repre- 
sent the data managed by the editor. 
Painters should be used to draw simple, 
unchanging elements of  the interface that 
d o  not justify the storage overhead of 
graphics objects. 
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Figure 14. Drawing editor object structure. 

Text composition 
Direct-manipulation textual interfaces 

require special support to handle problems 
in the presentation of text, such as line and 
page breaking and arranging text to reflect 
the logical structure of a document. Inter- 
Views structured text objects simplify the 
implementation of direct-manipulation 
textual interfaces. 

A simple class browser. Figure 15 shows 
the interface to a class browser, a simple 
application for perusing C+ + class decla- 
rations. The browser displays a class decla- 
ration with the class name underlined and 
member functions in bold. Clicking on the 
class name opens a window showing 
documentation for the class, and clicking 
on a member function opens a window 
showing the function's definition. Text 
composition objects maintain the arrange- 
ment of the text. As Figure 16 shows, resiz- 
ing the window reformats the text to  use 

/* Base class for interactive objects. */ 

class Interactor I 
public: 

Interactor( 

): 
'Interctor( ): 
w i d  Listm(Sensor*) : 
w i d  IcmifyO: 
w i d  M(Evcntb): 
virtual void k i n d ) :  
virtual void &ad): 
virtual void Rebar( 

): 
virtual void Hadle(Eventb): 

Coord left, Coord bottom, Coord right, Coord top 

... 
>: 

available space. 
Figure 15. A simple class browser application. 

Implementing the class browser. Text 
and clause subclasses compose the text dis- 
played in the browser. Objects of the word available space in an appropriate manner. Semantics of text composition. Sub- 
(a string of characters) and whifespace The entire composition is placed in a text classes of clause specify the way their com- 
(blank space of a given size) classes are block (an interactor that displays struc- ponents will bearranged. Different clauses 
assembled using various composition tured text objects), and the text block is use different strategies for using available 
objects so that the lines of code will fill inserted into a frame. space: 
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I* Base class for interactive objects. */ 

:lass Interactor C 
~blic: 

1: 
-I*ctoro: 
wid Listen(Sensor*): 
wid IanifyO: 
w i d  Read(Eventb): 
virtual void k i a e 0 :  
virtual void bad): 
virtual void R e h a d  

Coord left, 
Cowd bottom, 
Coord right, 
Coord top 

): 
virtual void Hadle(Euentb): ... 

k 

Figure 16. The class browser after resizing. 

Interactor( display 

Figure 17. Object structure of the text composition for the Interactor constructor. 

lnteractor(Sens0r * in = stdsensor, Painter * out = stdpaint); 

Interactor( 
Sensor* in = stdsensor, Painter* out = stdpaint 

\. 

Interact or ( 
Sensor * in = stdsensor, 
Painter * out = stdpaint 

); 

Figure 18. Possible layouts of the Interactor constructor. 
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A phrase formats its components 
without regard to space. The components 
are simply placed end-to-end on a single 
line. 

A text list can arrange its components 
either horizontally or vertically. If the 
whole list will not fit in a horizontal for- 
mat, then the list will place each compo- 
nent on a separate line. Text lists are used 
in the browser for composing the member 
function parameter lists. 

A disphy defines an indented layout. 
If the display will not fit on the current 
line, then it is placed on the following line 
with a specified indentation. The browser 
composes class and member function 
declarations using displays. 

A sentence will place as many compo- 
nents as possible on the current line and 
will begin a new line if  necessary. The 
browser uses sentences for comments. 

To illustrate how we can use text com- 
position, consider the composition of the 
Interactor constructor in the browser (see 
Figure 17). The declaration is composed as 
a phrase with three components: the first 
component is a word representing the 
string Interactor( , the second is a display 
that contains a text list of the formal 
parameters, and the third is a word 
representing the string); . 

Figure 18 shows that the constructor 
declaration will appear in one of several 
layouts depending on the available space. 
In the top example, all the text can fit on 
a single line. In the middle example, the 
available space has been reduced so that 
there is not enough room for the display 
containing the parameter list; the display 
is placed on a separate, indented line. In 
the bottom example, the available space 
has been reduced further, causing the text 
list to display vertically instead of 
horizontally. 

Text composition is most useful when 
the interface requires direct manipulation 
of text, when the text should reflect the 
structural characteristics of the document, 
or when the text layout should automati- 
cally make good use of available space. 
Painters are more appropriate for embel- 
lishing interfaces with simple, noninterac- 
tive text. 

Subjects and views 
In Interviews we distinguish between 

interactive objects, which implement a 
user interface, and abstract objects, which 
encapsulate the underlying data. We refer 
to interactive and abstract objects as views 
and subjects, respectively. This separation 
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Making user interface development easier 
We can divide software systems that facilitate construction 

of graphical user interfaces into two broad categories: toolkits 
and user-interface management systems. 

Toolkits. A user interface toolkit provides programming 
abstractions for building user interfaces. Interviews, the X 
Toolkit, and the Andrew Toolkit’ are good examples. The X 
Toolkit defines widget and composite classes analogous to 
interactors and scenes in Interviews. Tiling composites 
include box and vpaned, and the form composite allows its 
components to overlap. Composite objects maintain a pointer 
to a geometry manager function that is responsible for the 
proper layout of components. The geometry manager can be 
replaced at runtime to change the layout strategy. 

The Andrew Toolkit includes objects that comprise the data 
to be edited, such as text, bitmaps, and more sophisticated 
objects such as spreadsheets and animation editors. Its com- 
position mechanism allows these objects to be embedded in 
multimedia documents. 

In addition to standard toolkit functionality, Graphical 
Object Workbench’ allows the programmer to specify con- 
straints between objects. Constraints can enforce dependen- 
cies between individual pieces of data. For example, the 
programmer can specify that a value stored in one object is a 
function of a value in another object. Grow also has graphical 
constraints for confining and connecting graphical objects. 
Such constraints can guarantee that a graphical object stays 
within a prescribed area or that two visually connected 
objects stay connected when one or the other is translated. 

Smalltalk Model-View-Controller3 and its descendant, 
Apple’s MacApp; are among the earliest and best-known 
object-oriented toolkits. MacApp differs from newer toolkits in 
that it implements the particular “look and feel” of Macintosh 
applications. MVC is unique in that it divides interface compo- 
nents into model, view, and controller. Models are similar to 
subjects in Interviews, controllers are responsible for input 
handling, and views are responsible solely for output. In con- 
trast, other toolkits that distinguish between interactive and 
abstract objects put the functionality of MVC controllers and 
views into a single object (corresponding to an Interviews 
view) that handles input and output. This consolidation 
reflects the tight coupling between input and output in direct- 
manipulation interfaces. Placing responsibility for input and 
output in the same object reduces the total number of objects 
and the communication overhead between them, simplifying 
the toolkit and potentially increasing its efficiency. 

UIMSs. User-interface management systems are generally 

characterized by 
(1) complete separation of the code that implements the 

user interface to an application from the code for the 
application itself, and 

(2) support for specifying the user interface at a higher level 
of abstraction than general-purpose programming lan- 
guages. 

UlMSs separate interface and application for some of the 
same reasons that many toolkits separate subjects and views, 
namely to isolate application code and interface specification 
and to allow different interfaces to the same application. 
However, UlMSs do not implement any application code, 
whereas subjects usually do. Moreover, UlMSs minimize the 
interaction between the application and the interface to max- 
imize their independence. UlMSs generally concentrate on 
abstracting the syntax and semantics of the user interface. 
Their main goal is to let interface designers and even end 
users design and modify the interface quickly without requir- 
ing extensive programming skills or knowledge of the applica- 
tion. To avoid conventional programming, UlMSs use 
special-purpose languages or other formalisms such as finite- 
state transition diagrams to describe the appearance of the 
interface and the kinds of interaction it supports. In most 
UlMSs the specification is interpreted by a runtime system 
incorporated into the application. 

A widely known and used UlMS is Apollo’s Domain/Dialog.’ 
The package consists of a compiler and a runtime library. The 
compiler reads a declarative description of the user interface 
and how it  connects to the underlying application. It then 
generates a more compact description that is interpreted by 
the runtime library. 

The user interface is specified in terms of interaction tech- 
niques, which correspond to primitive interface components, 
and structuring techniques, which are the composition 
mechanisms for the primitives. Domain/Dialog defines struc- 
turing techniques for arranging components into rows and 
columns and a “oneof” technique that displays only a single 
component. These structuring techniques allocate space for 
their components in a manner similar to Interviews’ boxes and 
glue: they request a minimum, maximum, and optimal size 
from their components and distribute the available space 
among them. 

Domain/Dialog places greater emphasis on composition 
than most UIMSs, which center more on how to specify the 
input and output behavior of a user interface without conven- 
tional programming. Sassafras: a prototype UlMS developed 
at the University of Toronto, focuses on supporting concurrent 
user input from multiple devices and on efficient communica- 

is important in many aspects of user inter- 
face design. I t  is a kehicle for customiza- 
tion, allowing programmers to  present 
different, independently customizable 
interfaces to the same data. I t  is a useful 
structuring mechanism that separates user 
interface code from application code. I t  
permits different representations of the 

same data to be displayed simultaneou4y 
such that datachanges made through one 
representation are immediately reflected in 
the others. Several other user interface 
packages support this separation, includ- 
ing the Andrew Toolkit, Smalltalk Model- 
View-Controller, Graphical Object Work- 
bench, and MacApp (see the sidebar enti- 

tled “Making user interface de\elopnient 
easier”). 

View\ in Interviews are typically iniple- 
rnented with compositions of interactors, 
graphics, and text objects. Subject5 are 
often (but need not be) derived from the 
subject class. A subject maintains a list of 
its viehs. Views define an Update opera- 
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and synchronization between the modules that support 
r interaction. Syngraph‘ takes a description of a user inter- 
written in a formal grammar and generates Pascal code 
implements it. Recent work by Foley et a1.8 uses a knowl- 

e base describing the interface to raise the level of 
traction beyond detailed assembly of components. 
nother class of UlMS lets designers create a user inter- 

face by direct manipulation instead of textual specification. 
Research systems such as Cardelli’s dialog editor’ and Myers’ 
Peridot” and commercial systems such as SmethersBarnes’ 

nferring the proper semantics of 
er’s actions. Prototyper provides 
building Macintosh applications 
rcial direct-manipulation inter- 

interfaces. Since UlMSs allow interface 
igh level, they necessarily limit the range 
an create. This is especially true of direct- 
ace editors, which must rely on graphical 
specification of the interface’s semantics. 

eliance on an interpreted specific 
ial-purpose language used by a t 
unfamiliar to programmers and i 

ral-purpose languages, the debu 
nexistent, and runtime overhead 

equacy for direct manipulation inte 

w-bandwidth connection between the t 
Ss do not support interfaces requiring real- 

ation of application and interfac 

to user input, such as thos 
mated effects. 

Difficulty in adapting fo change. The time needed to pro- 
them in step with the 
only gets worse as inter- 

duce UlMSs makes it difficult to 
latest interface designs. The pro 
faces become more complex. 

Because Interviews is a toolkit, it avoids the problems 
associated with UIMSs. Interviews is distinguished from other 
toolkits in its variety of composition mechanisms (tiled, over- 
lapped, stacked, constrained, an lated), i ts  support 
for nonlinear deformation (i tretching and shrink- 
ing) of interactors, and its 
tured graphics and text. Interviews simplifies the creation of 
both the controlling elements of the interface (buttons and 
menus) and the data to be manipulated (text and 
objects). Interviews thus offers comprehensive s 
building user interfaces. 
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tion responsible for reconciling the view’s 
appearance with the current state of the 
subject. Calling Notify on a subject in turn 
calls Update on its views, thus enabling the 
views to update their appearance in 
response to  a change in the subject. 

In practice i t  is inconvenient to force 
every user interface concept into the sub- 

ject/view model. For example, i t  is 
unnecessary to associate a subject with 
every menu because interfaces seldom 
require multiple views of the same menu. 
However, many Interviews library com- 
ponents d o  use the subjects and views par- 
adigm. Two examples relate to  the 
implementation of scrolling and buttons. 

Scrolling and perspectives. An interac- 
tor that supports scrolling and zooming 
maintains aperspective. The perspective is 
a subject that defines a range of coor- 
dinates representing the total extent of the 
interactor’s output space and a subrange 
for the currently visible portion of the total 
range. For example, in the drawing editor 
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mentioned above, the total extent of the 
graphic block’s perspective is obtained 
from the picture’s bounding box; its 
subrange is the space the graphic block 
occupies on the screen. In a text editor the 
vertical range might be the total number of 
lines in a file; the subrange would be the 
number of lines displayed by the editor on 
the screen. 

Scrolling and zooming are performed by 
modifying the interactor’s perspective. An 
interactor can modify its own perspective 
(when the text editor adds a line to the file, 
for example), or the perspective can be 
modified by the user manipulating one of 
its views. 

The panner in the drawing editor is a 
view of the perspective associated with the 
editor’s graphic block. The panner is really 
a composition of several other perspective 
views: a slider, a set of four movers, and 
two zoomem. Each of these elements views 
the same perspective; the slider scrolls the 
drawing along both thexandyaxes ,  each 
mover provides incremental scrolling in 
one of four directions, and the zoomers 
respectively enlarge and reduce the draw- 
ing. The number of views on the same per- 
spective is unlimited; a change made 
through one view of a perspective will be 
reflected in all its views. 

The advantage of this organization is 
that one view of a perspective need not 
know about other views of the same per- 
spective. Whenever the perspective is 
changed, either by the interactor or by a 
view, all the views are notified. Each view 
of the perspective is responsible for updat- 
ing its appearance appropriately in 
response to the change. For example, 
when a mover or zoomer is pressed, the 
perspective is updated and the slider is 
notified automatically. The slider can then 
redraw itself to reflect the new perspective. 

Figure 19 shows how a graphic block’s 
perspective coordinates the scrolling oper- 
ation when the user presses one of thepan- 
ner’s movers. The graphic block modifies 
its perspective on behalf of the mover 
because the graphic block might want to 
limit the amount of scrolling. In this 
instance, the perspective and the interac- 
tor are considered together as the subject 
to which views such as panners are 
attached. 

Buttons and button states. The example 
dialog box uses a button for dismissal. In  
Interviews, a button is a view of a butfon 
state subject. When the user presses a but- 
ton, the button sets its button state to a 
particular value. Several buttons can view 

perspective views 
/ /c Y 

graphicblack movers zoomen slider 

V-YY-Y 
perspeclive 

1. User presses mover. 
2. Mover r uesls gra IC block Io c h a w  its perspective. 
3. Graphic3ock m d i C s  its perspeaive. 
4. Perspective noafies its views: 

Figure 19. How a perspective coordinates scrolling of a graphic block. 

a single button state; like any subject, a 
button state notifies all its views (buttons) 
when i t  changes. 

To illustrate this, consider how Inter- 
Views radio buttons are implemented. A 
radio button acts like a tuning button on 
a car radio; only one button in a group of 
radio buttons can be “on” at a time. Radio 
buttons are provided when the user should 
select an option from several mutually 
exclusive choices. A single button state is 
the subject for a group of radio buttons. 
Pressing one of the radio buttons sets the 
button state to a particular value. The but- 
ton stays pressed until the button state is 
changed to a different value, usually by 
pressing another radio button in the 
group. 

Customization 
Interviews adopts  the X Toolki t4  

model to support customization of inter- 
actors. Users can define a hierarchy of 
attribute names and values. An interactor 
can retrieve the value of an attribute by 
name; it interprets the value to customize 
some aspect of its appearance or behavior. 
Attribute lookup involves a search 
through parts of the attribute hierarchy 
that match the interactor’s position in the 
object instance hierarchy. Each interactor 
can have an instance name; interactors not 
explicitly named inherit a class name. The 
name given the interactor at the root of the 
instance hierarchy is usually the name of 
the application. 
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For example, suppose the application 
containing the example dialog box was 
called “hello,” and the push button in the 
dialog box had the instance name “bye.” 
The full name of the attribute that speci- 
fies the font for the button label would 
then be 

hello.Frame.VBox.HBox. bye. font 

Attribute names can include wild-card 
specifications so that one attribute can 
apply to  several interactors. The font of 
the push button in the example dialog box 
is more likely to be specified by an attrib- 
ute named hello *PushButton.font, which 
would apply to  any push button in the 
application, or even *font, which would 
apply to  any font in any application. The 
mechanism for accessing attributes 
ensures that the attribute with the most 
specific name is the one used to  satisfy a 
query. The Interviews library automati- 
cally handles standard attributes such as 
“font” and “color.” 

The designer of an application chooses 
names for interactors that users can cus- 
tomize. Users specify these names to  refer 
to  interactors they want to  customize. 
Consistency across a range of applications 
is achieved by a consistent choice of 
instance and attribute names. For exam- 
ple, all confirmation buttons in all ‘‘quit’’ 
dialog boxes will be red if the user lists the 
attribute *quit*OK.background:red, if all 
quit dialog boxes are given the instance 
name “quit ,” and if all confirmation but- 
tons are named “OK.” 
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Current status 
Interviews currently runs on Micro- 

VAX, Sun, Hewlett-Packard, and Apollo 
workstations on top of the X Window 
System’ versions 10 and 11. The library 
comprises roughly 30,000 lines of C + +  
source code, of which about 2,000 lines are 
X-dependent. Interviews applications do 
not call X routines directly and are thus 
isolated from the underlying window 
system. 

We have implemented several applica- 
tions on top of the library, including a scal- 
able digital clock, a load monitor, a 
drawing editor, a reminder service, a win- 
dow manager, and a display of incoming 
mail. The applications have been used 
daily by about 20 researchers for nearly 
two years, and the library is being used in 
development efforts at Stanford, at other 
universities, and in industry. We are cur- 
rently using Interviews in the development 
of a more general drawing system, a pro- 
gram editor, a visual command shell, and 
a visual debugger. 

ur experience with Interviews 
has convinced us of the impor- 0 tance of object-oriented design, 

subject/view separation, and composition 
in facilitating the implementation of user 
interfaces. Composition is particularly 
important. Providing one or two ways to 
combine interface elements is not enough. 
To  really help the programmer, a user 

interface toolkit must offer a rich set of 
composition mechanisms along with a 
variety of predefined objects. The pro- 
grammer should be able to  pick and 
choose from among the predefined com- 
ponents for the bulk of the interface, and 
the toolkit should make it easy to synthe- 
size components unique to the application. 
The composition mechanisms in Inter- 
Views make this possible. 0 
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