

Building Recognizers for
Digital Ink and Gestures

Digital Ink

 Natural medium for pen-based computing
 Pen inputs strokes
 Strokes recorded as lists of X,Y coordinates
 E.g., in Java:

 Point[] aStroke;

 Can be used as data -- handwritten content
 ... or as commands -- gestures to be processed

2

Distinguishing Content from
Commands

 Depends on the set of input devices, but
 generally modal
 Meaning that you’re either in content mode or you’re in command

mode

 Often a button or other model selector to
indicate command mode
 Example: Wacom tablet pen has a mode button

on the barrel
 Temporary switch--only changes mode while

held down, rather than a toggle.

3

Other Options

 Use a special character that disambiguates from content input and
command input
 E.g., graffiti on PalmOS
 “Command stroke” says that

what comes after is meant to
be interpreted as a command.

 Can also have special
“alphabet” of symbols that are unique to commands

 Can also use another interactor (e.g., the keyboard)
 but requires that you put down the pen to enter commands

4

Still More Options

 “Contextually aware” commands
 Interpretation of whether something is a command or not depends

on where it is drawn
 E.g., Igarashi’s Pegasus drawing beautification program

 a scribble in free space is content
 a scribble that multi-crosses another line is interpreted as an erase gesture

5

“Sketch-based” user interfaces

 User interfaces aimed at creating,
refining, and reusing hand-drawn
input

 Typically:
 Few “normal” GUI controls
 Strokes contextually interpreted, and

intermingled with content

 Examples:
 Drawing beautification (Igarashi: Pegasus)
 UI creation (Landay: SILK)
 Turn UML, diagrams, etc., into machine representations (Saund)
 3D modeling (Igarashi: Teddy)

6

Why Use Ink as Commands?

 Avoids having to use another interactor as the “command interactor”
 Example: don’t want to have to put down the pen and pick up the

keyboard

 What’s the challenge this with, though?
 The command gestures have to be interpreted by the system
 Needs to be reliable, or undoable/correctable
 In contrast to content:

 For some applications, uninterpreted content ink may be just fine

7

Content Recognizers

 Feature-based recognizers:
 Canonical example: Dean Rubine, The Automatic Recognition of

Gestures, Ph.D. dissertation, CMU 1990.
 “Feature based” recognizer, computes range of metrics such as length,

distance between first and last points, cosine of initial angle, etc
 Compute a feature vector that describes the stroke
 Compare to feature vector derived from training data to determine

match (multidimensional distance function)
 To work well, requires that values of each feature should be normally

distributed within a gesture, and between gestures the values of each
feature should vary greatly

8

Content Recognizers [2]

 “Unistrokes” (a la PalmOS Graffiti)
 Use a custom alphabet with high-disambiguation potential
 Decompose entered strokes into constituent strokes and compare

against template
 E.g., unistrokes uses 5 different strokes written in four different

orientations (0, 45, 90, and 135 degrees)

 Little customizability, but good recognition
results and high data entry speed

 Canonical reference:
 D. Goldberg and C. Richardson, Touch-Typing

with a Stylus. Proceedings of CHI 1993.

9

Content Recognizers [3]

 Waaaaay more complex types of recognizers that are out of the
scope of this class
 E.g., neural net-based, etc.

10

This Lecture

 Focus on recognition techniques suitable for command gestures
 While we can build these using the same techniques used for

content ink, we can also get away with some significantly easier
methods
 Read: “hacks”

 Building general-purpose recognizers suitable for large alphabets
(such as arbitrary text) is outside the scope of this class

 We’ll look at two simple recognizers:
 9-square
 Siger

11

9-square

 Useful for recognizing “Tivoli-like” commands
 Developed at Xerox PARC for use on the Liveboard system

 Liveboard [1992]: 4 foot X 3 foot display wall with pen input

 Used in “real life” meetings over a period of several years, supported
digital ink and natural ink gestures

12

“9 Square” recognizer

 Basic version of algorithm:
1. Take any stroke

2. Compute its bounding box

3. Divide the bounding box into a 9-square tic-tac-toe grid

4. Mark which squares the stroke passes through

5. Compare this with a template

13

1. Original Stroke

14

2. Compute Bounding Box

15

3. Divide Bounding Box into 9
Squares (3x3 grid)

16

4. Mark Squares Through Which
the Stroke Passes

17

1 2 3

4 5 6

7 8 9

 representation: [X, X, X,
 X, 0, 0,
 X, X, X]

5. Compare with Template

18

1 2 3

4 5 6

7 8 9

stroke: [X, X, X,
 X, 0, 0,
 X, X, X]

1 2 3

4 5 6

7 8 9

?

template: [X, X, X,
 X, 0, 0,
 X, X, X]=

Implementing 9-square

 Create set of templates that represent the intersection squares for
the gestures you want to recognize

 Bound the gesture, 9-square it, and create a vector of intersection
squares

 Compare the vector with each template vector to see if a match
occurs

19

Gotchas [1]

 What about long, narrow gestures (like a vertical line?)
 Unpredictable slicing

 A perfectly straight vertical line has a width of 1, impossible to subdivide
 More likely, a narrow but slightly uneven line will cross into and out of

the left and right columns

 Solution: pad the bounding box before subdividing
 Can just pad by a fixed amount, or
 Pad separately in each dimension

 Long vertical shapes may need more padding in the
horizontal dimension

 Long horizontal shapes may need more padding in the
vertical dimension

 Compute a pad factor for each dimension based on
the other

20

Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0, [0, X, 0,
 0, X, 0, or.... X, 0, X,
 X, 0, X] X, 0, X]

 ... or other similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?

21

Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0, [0, X, 0,
 0, X, 0, or.... X, X, X,
 X, 0, X] X, 0, X]

 ... or other, similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?
 Represent that ambiguity
 Introduce a “don’t care” symbol into the template

22

Don’t Cares

 Use 0 to represent no intersection
 Use X to represent intersection
 Use * to represent don’t cares

 Example: [0, X, 0, [0, X, 0,
 *, *, *, or... *, X, *,
 X, 0, X] X, 0, X]

 Now need custom matching process (simple equivalence testing is
not “smart enough”)

 if stroke[i] == template[i] || template[i] == “*”

23

An Enhancement

 What if we want direction to matter?
 Example:

24

Versus

Directional Nine-Squares

 Use an alternative stroke/template representation that preserves
ordering across the subsquares

 Example:
 top-to-bottom: {3, 2, 1, 4, 7, 8, 9}
 bottom-to-top: {9, 8, 7, 4, 1, 2, 3}

 Can be extended to don’t cares also
 (Treat don’t cares as wild cards in the

matching process)

25

1 2 3

4 5 6

7 8 9

Sample 9-square Gestures

26

... with directional variants of each

Another Simple Recognizer

 9-square is great at recognizing a small set of regular gestures
 ... but other potentially useful gestures are more difficult

 Example: “pigtail” gesture common in
proofreaders’ marks

 Do we need to go to a more complicated
“real” recognizer in order to process these?

 No!

27

The SiGeR Recognizer

 SiGeR: Simple Gesture Recognizer
 Developed by Microsoft Research as a way for users to create

custom gestures for Tablet PCs
 Resources:

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dntablet/html/tbconCuGesRec.asp

 http://sourceforge.net/projects/siger/ (C# implementation)

 Big idea:
 What if you could turn gesture recognition problem into a regular

expression pattern matching problem?
 Reuse existing regexp machinery and turn it into a gesture recognizer!

28

Basic Algorithm

1. Processes successive points in the stroke

2. Compute a direction for each stroke relative to the previous one,
and output a vector of symbols representing the directions

3. Define a pattern string that represents the basic shape of the gesture
you want to match against

4. Compare the direction vector to the pattern expression; can even
use standard regular expression matching

29

Only One Tricky Part...

 Getting the representations right to make our job easier when it
comes time to match.

 We’ll use 8 ordinal directions representing compass points

30

SW

NW

SE

NE

W E

S

N

1. Process Successive Points in
the Stroke

31

2. Compute a direction vector
based on each point

32

N, N, N, NE, NE, E, E, E, SE, SE, S, S, S,
SW, SW, SW, SW, W, S, S, S, S, S

2.a. To make our job easier,
rename the directions so we can
put them in one big string

33

N, N, N, NE, NE, E, E, E, SE, SE, S, S, S,
SW, SW, SW, SW, W, S, S, S, S, S

SW

NW

SE

NE

W E

S

N

D

A

C

B

W E

S

N

NNNBBEEECCSSSDDDDDSSSSS

3. Define a pattern string that
represents the overall shape of
the gesture

34

Question mark is:
•generally up
•then generally right
•then generally down
•then generally left
•then generally down
(defines basic shape of the stroke)

NNNBBEEECCSSSDDDDDSSSSS

3.a. How to define the template?

35

Template = [NORTHS, EASTS, SOUTHS,
WESTS, SOUTHS]
(defines basic shape of the stroke)

Reuse the ordinal direction symbols
N, S, E, W, A, B, C, D

Plus symbols representing more
general directions
NORTHS = N, NE, NW (N, A, B)
EASTS = E, NE, SE (E, B, C)

Defining the Template

 Allows you to specify template at greater or lesser specificity
 Use ordinal symbols when you want a precise match
 General symbols when you want more “slack”

 The template is then matched against the direction vector by seeing
if the template patterns occur

36

4. How to Match?

 Turn the template vector into a regexp
 See if the pattern is matched in the direction string
 Example:

 template = [NORTHS, EASTS, SOUTHS, WESTS, SOUTHS]
 regexp = “[NAB]+[BEC]+[DSC]+[AWD]+[DSC]+”

 Pattern qm = Pattern.compile(regexp)
 if (qm.matcher(directionVector).find()) {

 // it matches!
 }

37

How Robust is This?

 Here’s a gesture that shouldn’t match but may, depending on
implementation

 Why?
 A question mark appears in the

middle of the stroke

 Therefore:
 Important to match the whole stroke, not just part of it!
 Think of the pattern as including ^ and $ (regular expression markers

for beginning of line and end of line) at the first and end

38

How Robust is This?

 But requiring the entire stroke to match the pattern introduces a
new problem

 Can you tell what it is?

39

How Robust is This?

 But requiring the entire stroke to match the pattern introduces a
new problem

 Can you tell what it is?

 Look closely at the question mark
 At the bottom, the stroke jags

off to the left
 Common for the pen to make little

tick marks like this when it comes into
contact with the tablet, or leaves it

40

Solution

 Simply trim the beginning and end points of the vector!
 More generally:

 Ignore small outlier points if the overall shape otherwise conforms to
the shape pattern specified in the template.

41

Implementing SiGeR (one
method)

 Specify some helper constants:
int UP = (1<<0);

int DOWN = (1<<1);

// ... define other constants, as well as unique tokens that represent
// direction classes

int RIGHT_UP = (RIGHT | UP);

int UPS = (UP | RIGHT_UP | LEFT_UP);

 Specify templates in code, using human-readable constants:
int QUESTION_MARK = { UPS, RIGHTS, DOWNS, LEFTS, DOWNS };

42

Implementing SiGeR (continued)

 Create a function buildPatternString() that takes the template and
emits a regexp pattern that will be used to match it

buf.append(“^”); // match the start of input

buf.append(“.{0,2}+”); // consume any character 0-2 times (this gets rid of the noise at the beginning)

for (int i=0 ; i<pattern.length ; i++) {

 switch (pattern[i]) { // emit a unique letter code for each of the 8 directions

 case RIGHT: buf.append(“R+”); break;

 case UP: buf.append(“U+”); break;

 case RIGHT_UP: buf.append(“W+”); break;

 case LEFT_UP: buf.append(“X+”); break;

 // ...

 case UPS: buf.append(“[UWX]+”); break; // combination directions combine letters

 }

}

buf.append(“.{0,2}+);

buf.append(“$”);

43

Implementing SiGeR (Cont’d)

 Write a function buildDirectionVector() that takes an input stroke
and returns a direction vector
 Compare each point to the point previous to it
 Emit a symbol to represent whether the movement is UP, RIGHT, etc.
 (using all of the 8 ordinal directions)

 Use the Java regular expression library to match strokes to patterns!
import java.util.regex.*;

if (questionMarkPattern.matcher(strokeString).find()) {

 // it’s a question mark!

}

44

More on SiGeR

 SiGeR actually does much more than this; we’re just implementing
the most basic parts of it here.

 Example: collects statistical information about strokes that can be
used to disambiguate them
 Percentage of the stroke moving right, distance between the start and

end points, etc.
 Can help disambiguate a ring from a square

 Also computes various other features
 Are shapes open or shut, pen velocity, etc.
 Can tweak patterns by requiring certain features

45

