
  

Building Recognizers for 
Digital Ink and Gestures



  

Digital Ink

 Natural medium for pen-based computing
 Pen inputs strokes
 Strokes recorded as lists of X,Y coordinates
 E.g., in Java:

 Point[] aStroke;

 Can be used as data -- handwritten content
 ... or as commands -- gestures to be processed
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Distinguishing Content from 
Commands

 Depends on the set of input devices, but ....
 generally modal
 Meaning that you’re either in content mode or you’re in command 

mode

 Often a button or other model selector to
indicate command mode
 Example: Wacom tablet pen has a mode button

on the barrel
 Temporary switch--only changes mode while

held down, rather than a toggle.
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Other Options

 Use a special character that disambiguates from content input and 
command input
 E.g., graffiti on PalmOS
 “Command stroke” says that

what comes after is meant to
be interpreted as a command.

 Can also have special
“alphabet” of symbols that are unique to commands

 Can also use another interactor (e.g., the keyboard)
 but requires that you put down the pen to enter commands
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Still More Options

 “Contextually aware” commands
 Interpretation of whether something is a command or not depends 

on where it is drawn
 E.g., Igarashi’s Pegasus drawing beautification program

 a scribble in free space is content
 a scribble that multi-crosses another line is interpreted as an erase gesture
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“Sketch-based” user interfaces

 User interfaces aimed at creating,
refining, and reusing hand-drawn
input

 Typically:
 Few “normal” GUI controls
 Strokes contextually interpreted, and

intermingled with content

 Examples:
 Drawing beautification (Igarashi: Pegasus)
 UI creation (Landay: SILK)
 Turn UML, diagrams, etc., into machine representations (Saund)
 3D modeling (Igarashi: Teddy)
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Why Use Ink as Commands?

 Avoids having to use another interactor as the “command interactor”
 Example: don’t want to have to put down the pen and pick up the 

keyboard

 What’s the challenge this with, though?
 The command gestures have to be interpreted by the system
 Needs to be reliable, or undoable/correctable
 In contrast to content:

 For some applications, uninterpreted content ink may be just fine
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Content Recognizers

 Feature-based recognizers:
 Canonical example: Dean Rubine, The Automatic Recognition of 

Gestures, Ph.D. dissertation, CMU 1990.
 “Feature based” recognizer, computes range of metrics such as length, 

distance between first and last points, cosine of initial angle, etc
 Compute a feature vector that describes the stroke
 Compare to feature vector derived from training data to determine 

match (multidimensional distance function)
 To work well, requires that values of each feature should be normally 

distributed within a gesture, and between gestures the values of each 
feature should vary greatly
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Content Recognizers [2]

 “Unistrokes” (a la PalmOS Graffiti)
 Use a custom alphabet with high-disambiguation potential
 Decompose entered strokes into constituent strokes and compare 

against template
 E.g., unistrokes uses 5 different strokes written in four different 

orientations (0, 45, 90, and 135 degrees)

 Little customizability, but good recognition
results and high data entry speed

 Canonical reference:
 D. Goldberg and C. Richardson, Touch-Typing

with a Stylus. Proceedings of CHI 1993.
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Content Recognizers [3]

 Waaaaay more complex types of recognizers that are out of the 
scope of this class
 E.g., neural net-based, etc.
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This Lecture

 Focus on recognition techniques suitable for command gestures
 While we can build these using the same techniques used for 

content ink, we can also get away with some significantly easier 
methods
 Read: “hacks”

 Building general-purpose recognizers suitable for large alphabets 
(such as arbitrary text) is outside the scope of this class

 We’ll look at two simple recognizers:
 9-square
 Siger
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9-square

 Useful for recognizing “Tivoli-like” commands
 Developed at Xerox PARC for use on the Liveboard system

 Liveboard [1992]:  4 foot X 3 foot display wall with pen input

 Used in “real life” meetings over a period of several years, supported 
digital ink and natural ink gestures
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“9 Square” recognizer

 Basic version of algorithm:
1. Take any stroke

2. Compute its bounding box

3. Divide the bounding box into a 9-square tic-tac-toe grid

4. Mark which squares the stroke passes through

5. Compare this with a template
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1. Original Stroke
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2. Compute Bounding Box
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3. Divide Bounding Box into 9 
Squares (3x3 grid)
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4. Mark Squares Through Which 
the Stroke Passes
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 representation: [X, X, X,
                         X, 0, 0,
                         X, X, X]



  

5. Compare with Template
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stroke: [X, X, X,
            X, 0, 0,
            X, X, X]
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4 5 6
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?

template: [X, X, X,
               X, 0, 0,
               X, X, X]=



  

Implementing 9-square

 Create set of templates that represent the intersection squares for 
the gestures you want to recognize

 Bound the gesture, 9-square it, and create a vector of intersection 
squares

 Compare the vector with each template vector to see if a match 
occurs
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Gotchas [1]

 What about long, narrow gestures (like a vertical line?)
 Unpredictable slicing

 A perfectly straight vertical line has a width of 1, impossible to subdivide
 More likely, a narrow but slightly uneven line will cross into and out of 

the left and right columns

 Solution: pad the bounding box before subdividing
 Can just pad by a fixed amount, or
 Pad separately in each dimension

 Long vertical shapes may need more padding in the
horizontal dimension

 Long horizontal shapes may need more padding in the
vertical dimension

 Compute a pad factor for each dimension based on
the other
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Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0,                   [0, X, 0,
 0, X, 0,       or....       X, 0, X,
 X, 0, X]                  X, 0, X]

 ... or other similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?
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Gotchas [2]
 Hard to do some useful shapes, e.g., vertical caret
 Is the correct template

[0, X, 0,                   [0, X, 0,
 0, X, 0,       or....       X, X, X,
 X, 0, X]                  X, 0, X]

 ... or other, similar templates?
 Inherent ambiguity in matching the

symbol as it is likely to be drawn to
the 9-square template

 Any good solutions?
 Represent that ambiguity
 Introduce a “don’t care” symbol into the template
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Don’t Cares

 Use 0 to represent no intersection
 Use X to represent intersection
 Use * to represent don’t cares

 Example:  [0, X, 0,                     [0, X, 0,
                *, *, *,           or...        *, X, *,
                X, 0, X]                     X, 0, X]
                

 Now need custom matching process (simple equivalence testing is 
not “smart enough”)

 if stroke[i] == template[i] || template[i] == “*”
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An Enhancement

 What if we want direction to matter?
 Example:
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Directional Nine-Squares

 Use an alternative stroke/template representation that preserves 
ordering across the subsquares

 Example: 
 top-to-bottom: {3, 2, 1, 4, 7, 8, 9}
 bottom-to-top: {9, 8, 7, 4, 1, 2, 3}

 Can be extended to don’t cares also
 (Treat don’t cares as wild cards in the

matching process)
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Sample 9-square Gestures
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... with directional variants of each



  

Another Simple Recognizer

 9-square is great at recognizing a small set of regular gestures
 ... but other potentially useful gestures are more difficult

 Example: “pigtail” gesture common in
proofreaders’ marks

 Do we need to go to a more complicated
“real” recognizer in order to process these?

 No!
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The SiGeR Recognizer

 SiGeR: Simple Gesture Recognizer
 Developed by Microsoft Research as a way for users to create 

custom gestures for Tablet PCs
 Resources:

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dntablet/html/tbconCuGesRec.asp

 http://sourceforge.net/projects/siger/  (C# implementation)

 Big idea:
 What if you could turn gesture recognition problem into a regular 

expression pattern matching problem?
 Reuse existing regexp machinery and turn it into a gesture recognizer!
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Basic Algorithm

1. Processes successive points in the stroke

2. Compute a direction for each stroke relative to the previous one, 
and output a vector of symbols representing the directions

3. Define a pattern string that represents the basic shape of the gesture 
you want to match against

4. Compare the direction vector to the pattern expression; can even 
use standard regular expression matching
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Only One Tricky Part...

 Getting the representations right to make our job easier when it 
comes time to match.

 We’ll use 8 ordinal directions representing compass points
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1. Process Successive Points in 
the Stroke
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2. Compute a direction vector 
based on each point
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N, N, N, NE, NE, E, E, E, SE, SE, S, S, S,
SW, SW, SW, SW, W, S, S, S, S, S



  

2.a. To make our job easier, 
rename the directions so we can 
put them in one big string
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3. Define a pattern string that 
represents the overall shape of 
the gesture
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Question mark is: 
•generally up
•then generally right
•then generally down
•then generally left
•then generally down
(defines basic shape of the stroke)
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3.a. How to define the template?
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Template = [NORTHS, EASTS, SOUTHS, 
WESTS, SOUTHS]
(defines basic shape of the stroke)

Reuse the ordinal direction symbols
N, S, E, W, A, B, C, D

Plus symbols representing more 
general directions
NORTHS = N, NE, NW (N, A, B)
EASTS = E, NE, SE (E, B, C)



  

Defining the Template

 Allows you to specify template at greater or lesser specificity
 Use ordinal symbols when you want a precise match
 General symbols when you want more “slack”

 The template is then matched against the direction vector by seeing 
if the template patterns occur
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4. How to Match?

 Turn the template vector into a regexp
 See if the pattern is matched in the direction string
 Example:

 template = [NORTHS, EASTS, SOUTHS, WESTS, SOUTHS]
 regexp = “[NAB]+[BEC]+[DSC]+[AWD]+[DSC]+”

 Pattern qm = Pattern.compile(regexp)
 if (qm.matcher(directionVector).find()) {

 // it matches!
 }
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How Robust is This?

 Here’s a gesture that shouldn’t match but may, depending on 
implementation

 Why?
 A question mark appears in the

middle of the stroke

 Therefore:
 Important to match the whole stroke, not just part of it!
 Think of the pattern as including ^ and $ (regular expression markers 

for beginning of line and end of line) at the first and end
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How Robust is This?

 But requiring the entire stroke to match the pattern introduces a 
new problem

 Can you tell what it is?
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How Robust is This?

 But requiring the entire stroke to match the pattern introduces a 
new problem

 Can you tell what it is?

 Look closely at the question mark
 At the bottom, the stroke jags

off to the left
 Common for the pen to make little

tick marks like this when it comes into
contact with the tablet, or leaves it
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Solution

 Simply trim the beginning and end points of the vector!
 More generally:

 Ignore small outlier points if the overall shape otherwise conforms to 
the shape pattern specified in the template.
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Implementing SiGeR (one 
method)

 Specify some helper constants:
int UP = (1<<0);

int DOWN = (1<<1);

// ... define other constants, as well as unique tokens that represent
// direction classes

int RIGHT_UP = (RIGHT | UP);

int UPS = (UP | RIGHT_UP | LEFT_UP);

 Specify templates in code, using human-readable constants:
int QUESTION_MARK = { UPS, RIGHTS, DOWNS, LEFTS, DOWNS };
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Implementing SiGeR (continued)

 Create a function buildPatternString() that takes the template and 
emits a regexp pattern that will be used to match it

buf.append(“^”);                // match the start of input

buf.append(“.{0,2}+”);        // consume any character 0-2 times (this gets rid of the noise at the beginning)

for (int i=0 ; i<pattern.length ; i++) {

    switch (pattern[i]) {      // emit a unique letter code for each of the 8 directions

        case RIGHT: buf.append(“R+”); break;

        case UP: buf.append(“U+”); break;

        case RIGHT_UP: buf.append(“W+”); break;

        case LEFT_UP: buf.append(“X+”); break;

        // ...

        case UPS: buf.append(“[UWX]+”); break;    // combination directions combine letters

    }

}

buf.append(“.{0,2}+);

buf.append(“$”);
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Implementing SiGeR (Cont’d)

 Write a function buildDirectionVector() that takes an input stroke 
and returns a direction vector
 Compare each point to the point previous to it
 Emit a symbol to represent whether the movement is UP, RIGHT, etc. 
 (using all of the 8 ordinal directions)

 Use the Java regular expression library to match strokes to patterns!
import java.util.regex.*;

if (questionMarkPattern.matcher(strokeString).find()) {

    // it’s a question mark!

}

44



  

More on SiGeR

 SiGeR actually does much more than this; we’re just implementing 
the most basic parts of it here.

 Example: collects statistical information about strokes that can be 
used to disambiguate them
 Percentage of the stroke moving right, distance between the start and 

end points, etc.
 Can help disambiguate a ring from a square

 Also computes various other features
 Are shapes open or shut, pen velocity, etc.
 Can tweak patterns by requiring certain features
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