

Using MVC with Swing
Components

Jumping Ahead a Bit...
 We’re going to cover a specific architectural approach to building UI

components
 Model-View-Controller
 Classic architecture from Smalltalk 80

 Model: data structures that represent the component’s state
 View: object responsible for drawing the component
 Controller: object responsible for responding to user input

 Why talk about it now?
 Swing optionally allows a modified version of MVC as a way for

building components
 I’d like you to use this approach for Homework #2

2

Some Swing History
 Remember from earlier in class:

 To create a new component, subclass JComponent
 Implement paintComponent() to do all of the drawing for your

component

 Nice, easy way to create components
 Still works fine
 But, makes some things very hard:

 How would you implement a new look-and-feel?
 Components’ drawing code is hard coded into them.
 Even if you had a big switch statement and implemented several look

and feels, still doesn’t help you if a new look and feel comes along.

3

Some Swing History (cont’d)
 Swing has a pluggable look and feel architecture (PLAF)
 Supports Windows, Mac, GTK, plus several Java-only LAFs
 To make these easier to use, many Swing components have factored

their implementations in a slightly different way
 Separation of the underlying component data from its look and behavior

 Allows you to create just a new look-and-feel for a component and
easily plug it in to work with the core component data



4

Component Internal Architecture

5

JComponent

Model UI

Component class is what applications typically
interact with directly.

Model and UI classes are typically
“hidden” by the component, and used
internally by it.

Swing MVC Overview
 Model: custom class that contains all of the internal state of a

component
 UI: custom class that handles user input events, and painting the

component
 Subsumes both the View and Controller from the classic MVC architecture

 These two classes are loosely-coupled
 They communicate with each other through events
 E.g., when something in the model updates, it sends a ChangeEvent to

whatever UI is associated with it.
 UI then calls repaint() to tell the RepaintManager to schedule it for

redrawing.

6

Swing MVC Overview
 Application programmers typically never see the UI or the Model

classes
 Used purely as an internal implementation feature of the component

 Requires a bit of structure and boilerplate code to make things work
right.

 Resources:
 Short overview article: MVC Meets Swing, linked off class website
 Book: last chapter covers creating new Swing components using this

architecture

7

Step 1: Create Your Model Class
 Model: responsible for storing the state of your component
 Reuse an existing model if one is suitable; create your own if not
 1. Create an interface for your model and an implementation class, if you’re defining a new

one
 Decide on the data structures you’ll need to track, and create getter/setter functions

 Called Properties if they match the standard Java-style standards

 2. Send PropertyChangeEvents (or just ChangeEvents) when data in the model change
 This means you’ll need to keep a list of PropertyChangeListeners (or just

ChangeListeners), and provide methods for adding and removing listeners
 EventListenerList can help with this

 Be careful: the model should only contain core data structures, not data that’s only about the
visual presentation of that data
 Example: a Scrollbar

 Minimum, maximum, and current values are model properties (they have to do with actual data
values, not display

 Whether tick marks are shown, labels, etc., are visual properties, and don’t belong in the model
(they’re only about display, not the actual data)

8

Step 2: Create an Abstract UI
Class
 This is an abstract superclass to be shared by all LaFs for your new

component
 Will be the superclass of all UIs that are “compatible” with your new

component (for this phase of the project, there will be only one class
that subclasses it)

 Always follows the same basic format:

import javax.swing.plaf.ComponentUI;

public abstract class NotepageUI extends ComponentUI {

 public static final String UI_CLASS_ID = “NotepageUI”;
}

9

Step 3: Create the Actual UI
Class
 1. Extend your abstract UI class
 2. Implement public void paint(Graphics g, JComponent c)

 Your component will automatically delegate its drawing to your UI’s paint() method

 3. Implement any interfaces you need in order to respond to input events
 Example: if your component must respond to the mouse, have your UI class

implement MouseListener. You’ll tell the component to send any mouse events to
your UI to be handled there.

 4. Draw yourself correctly given your current size
 Recall that your parent component may resize you! In your painting code, use the

current size (getWidth()/getHeight()) and draw in the space alloted to you.

 5. Implement a bit of boilerplate code for UI management
 public static ComponentUI createUI(JComponent c);

 Create and return an instance of your UI class

 public void installUI(JComponent c);
 Register ‘this’ UI instance as the listener for the component’s input events

 public void uninstallUI(JComponent c);

 Unregister ‘this’ UI instance as the listener for the component’s input events
10

Step 4: Create the Component
Itself

 1. Design the component’s external API
 These are the methods that application programmers see and use

 Many will just forward to the underlying model or the UI

 2. Make your component a listener for the Model’s ChangeEvents or PropertyChangeEvents
 Generally need to call repaint() whenever the model is updated

 3. Send PropertyChangeEvents if the component’s internal state changes
 Other components might be listening to you--send PropertyChangeEvents if anything component-

specific changes

 4. Implement some boilerplate methods to register models and UIs
 public void setUI();

 public void updateUI();

 Used to set the UI, and change it on the fly

 public String getUIClassID();

 Should return whatever the UI_CLASS_ID string is for “compatible” UIs for this component

 public void setModel();

 public Model getModel();

 Used to set and return the model. When the your model is set, your component should
register itself as a listener for the model’s change events.

11

Step 5: Register your UI with
Swing’s UIManager
 Need to tell the UIManager about the specific UI you want to use
 Typically do this early in the application’s main() routine:

public static void main(String[] args) {
 UIManager.put(PhotoUI.UI_CLASS_ID, “BasicNotepageUI”);

 // ... other stuff here ...

}

12

This string serves as the
unique token identifying all
different UIs that work as
NotepageUIs

This string names the class
that implements the specific
look-and-feel UI you want to use
in this application

Component Internal Architecture

13

JComponent implements ChangeListener

Model

Com
po

ne
nt

ha
s r

efe
ren

ce
 to

 m
od

el
Mod

el
se

nd
s C

ha
ng

eE
ve

nts

to
Com

po
ne

nt

In setModel() method of Component:
- Component registers itself as a ChangeListener for
 the model.

Whenever ChangeEvent is received from model:
- Component calls repaint() to cause itself to be
 redrawn.

Component Internal Architecture

14

JComponent

UI implements
MouseListener,

etc.

In paint() method:
- Component is passed in to paint()
- Ask component for data that needs
 to be drawn

UI does not have a reference to the
model, but accesses it indirectly
through the Component

Component has reference to UI

MouseEvents, etc.

In installUI() method:
- UI sets itself up as mouse/keyboard/etc.
 listener for the component.
- When user events come in, UI updates
 the model by calling out to the component.

UI does not have a reference to the model,
but accesses it indirectly through the
Component.

Step 3 (example)
public class BasicNotepageUI extends NotepageUI implements MouseListener {

 public static ComponentUI createUI(JComponent c) {

 return new BasicNotepageUI();

 }

 public void installUI(JComponent c) {

 ((NotepageComponent) c).addMouseListener(this); // we’ll handle mouse events for the Notepage component

 }

 public void uninstallUI(JComponent c) {

 ((NotepageComponent) c).removeMouseListener(this);

 }

 public void paint(Graphics g, JComponent c) {

 // do painting for the component here!

 }

 // implement the various MouseListener methods...

}

15

Step 4 (Example)
public class NotepageComponent extends JComponent implements ChangeListener {

 NotepageModel model;

 public NotepageComponent() {

 setModel(new NotepageModel());

 updateUI();

 }

 public setModel(NotepageModel m) {

 if (model != null)

 model.removeChangeListener(this);

 model = m;

 model.addChangeListener(this);

 }

 public NotepageModel getModel() {

 return model;

 }

 public void setUI(NotepageUI ui) { super.setUI(ui); }

 public void updateUI() {

 setUI((NotepageUI) UIManager.getUI(this));

 invalidate();

 }

 public String getUIClassID() { return NotepageUI.UI_CLASS_ID; }

}
16

Common Problems
 Exceptions at startup time

 Make sure the UIManager registration is done before you use the
component

 Components aren’t being repainted all the time
 Make sure you’re registered for change events, and are calling repaint()

whenever anything changes

 Components come up at weird sizes
 Your component should provide a miminumSize and preferredSize when

it is requested. If you don’t do this, your parent may set your size to 0

17

How everything fits together...
 Let’s look at the complete cycle, from a mouse event to draw a line to how that line gets drawn on the screen:

18

Model UI

1. MouseEvent delivered to
component

2. UI is registered as listener
for MouseEvents, so
event is forwarded to the UI

3. UIʼs mousePressed method is
called. Needs to tell component
that a new stroke is in progress,
so calls addStroke on the
component.

4. The addStroke method
in the componentʼs public
API is implemented by
delegating to the model.
Thus, the component
calls addStroke on the
modelʼs API.

5. addStroke updates
the modelʼs data
structures,
and fires change
events

6. The component is a listener
for the modelʼs change events,
and calls repaint() when the
event is received. The Repaint
Manager adds the damaged
area to the repaint queue.

7. The Repaint Manager calls
paintComponent on the
Component. This gets forwarded
to the UIʼs paint() method

8. The UIʼs paint() method
redraws the component. In
order to do this it needs the
strokes (and text) so calls
getStrokes() on the component

9. getStrokes in the componentʼs
public API is forwarded to getStrokes()
in the modelʼs API. Strokes are returned
to the UI, allowing it to draw itself.

