
Page Mode – DRAM

 -To access a byte one needs to access the whole page.

 -High Price paid initially in terms of time taken to get the first byte , but the successive ones are

pretty quick.

Memory Interleaving – Used to compensate for the slow speed of DRAM

– Memory Bandwidth for commodity DRAM is around 6400 MB / s.

Pipelined Design is used in building router hardware .

– Every cycle of execution (just like in a architecture pipeline) we complete a stage . In essence

we are completing 1 task every cycle. (Ignore the stalls due to memory access)

– when such operations are being formed for the task , we make use of Wide Word Parallelism .

For example , a 64 bit processor allows one to do 64 bit wise operations in 1 cycle .

– Always try to take advantage of the full length of the processor.

IP Prefix Lookups and Exact Match Look up (chp 10 from book)

An example of a switch in which there is a table of addresses . When a packet / frame comes along we

need to decide which output port should we forward this frame to .

IP addresses is an example application where Prefix Look ups are needed as opposed to MAC

addresses where a complete / Exact Match is needed .

Solutions proposed for the above :

1) Hash Table (software solution)

1. When we have a very good hash functions , the number of collisions are few and we can still

attain an O(1) lookup on average , but even then with a large number of IP addresses the collision can

increase and we end up chaining them on a single bucket , thus increasing latency.

2. Need another solution.

2) Perfect Hashing

1. Given a STATIC set of keys to be hashed into the hashtable , we can attain perfect hashing.

Perfect hashing lets us attain the latency of O(1) .

2. The keys here is analogous to MAC addresses.

3. The important thing to notice here is the the key set is static , meaning the set of addresses is

constant over a long period of time and does not change.

4. The first step towards hashing function is to find a good hash function that hashes only one key

into each bucket. For this , suppose we have a family H of hash functions (not enumerated) we pick

up a bunch of hash functions and test if the condition is met. If yes , we have found a perfect hash

function for our constant set of keys , else we repeat this process . So eventually one ends up sampling

the H space for the best hash function.

We propose such kind of a solution since Look ups are the most frequent operations as opposed to

add() or delete() which happen probably once / day or once / week .

 3) CAM – Content Addressable Memory.

