
CS 2316 Fall 2011

Timed Lab 1 – String Stats

This is a practice Timed Lab; this Timed Lab is worth 20 Attendance & Participation points.

For this Timed Lab, you may use

• Course notes

• Homeworks

• Recitation assignments

• Other course material

• Any material you may find on the Internet that

don't involve communicating "live" with other
people.

However, you may not

• Communicate with other people/students in

real-time via any means. This means no
Facebook, email, Piazza, IM, IRC, cell phones,
Google Talk, smoke signals, etc.

• Share code with other students.

• Look at other students work.

The TAs will be available to answer clarifying questions about the problem, but they are not permitted to give
assistance with debugging code, program logic, etc. You will have an entire recitation period to work on this
assignment; this time begins exactly when your recitation begins and ends exactly when your recitation ends: No
extra time will be given if you arrive late, except in highly extenuating circumstances that must be approved by Dr.
Summet.

T-Square will not permit any late submissions; ensure that you submit your code to T-Square several times to
prevent earning a zero due to you being unable to submit. Your TAs will give a verbal warning 10 and 5 minutes
before the end of the recitation period; you should submit at these times.

In your collaboration statement, if you use code from somewhere that is not a class resource (i.e. not listed on the
course calendar), please list where this code came from. Ensure that you fill out the header at the top of the file.

Problem Description:

You have been tasked with writing part of a module that will output statistics about a given string. Your first task is
to write a function that will return the number of times a particular character appears. Then, you will be asked to
find the character(s) that appears the most number of times in the given string and return this character(s) along with
the number of times these character(s) appear.

If you wish, you may write helper functions in addition to the two functions that are required; however, you are not
required to do so. Below are the descriptions of the functions you should write.

Required Functions:

countChar - This function should take in two parameters: the first is the string you wish to look through, and the
second is the character which you are finding the number of in the given string. Note that case does not matter; an
uppercase character is the same as a lowercase character. You may assume that the input for the second parameter is
always exactly one character. You may have to count white space (tabs/newlines/spaces) or punctuation (commas,
periods, etc...), but they do not have an "upper" and "lower" version. The str.lower() function may be useful to you
to ignore case.

CS 2316 Fall 2011

Test Cases:

countChar(“This is a test”, “t”)  3

countChar(“This is a test”, “T”)  3

countChar(“This is a test”, “x”)  0

countChar(“This is a test”, “i”)  2

countChar(“”, “b”)  0

maxChars - This function should take in one parameter, the string which you wish to find the
maximum-occurring characters in. Your function should return different things depending on
the string you are given. If the string you are given is empty, you should return None. If the
string you are given only has one character with the maximum count, ("aaabc") you should
return a tuple where the first element in the tuple is the character with the maximum count, and
the second is the number of times that character occurs. ("a",3)

If the string you are given has more than one character with the maximum count, ("aabb")
you should return a tuple which contains two elements. The first element is a tuple that contains
all of the characters that occur the most times, and the second element is the number of times that
one of the characters with the maximum count occurs. (('a','b'), 2)

As with the countChar function, the case of a character does not matter; for the purposes
of this function, and upper and a lower case character are the same character.

Test Cases:

maxChars(“”)  None

maxChars(“Testing123”)  ('t', 2)

maxChars(“This is a test”)  (('t', ' '), 3)

maxChars(“aaabbbcccdddeeef”)  (('a', 'b', 'c', 'd', 'e'), 3)

Grading:

countChar 6
Function header correct 1
Returns count of character in string 1
Ignores case of characters 2
Gets correct count of character in string 2

maxChars 14
Function header correct 1
Returns None if argument is empty string 1
Correctly finds max character if only one max 3
Correct tuple returned if only one max 2
Considers possibility of multiple max chars 1
Correctly finds all max characters if more than one 4
Correct tuple returned if more than one max 2

