
CS 2316 Individual Homework 2 – Conditionals & Loops
Due: Wednesday, September 4th, before 11:55pm
Out of 100 points

File to submit: HW2.py

Students may only collaborate with fellow students currently taking CS
2316, the TA's, and the lecturer. Collaboration means talking through
problems, assisting with debugging, explaining a concept, etc.

For Help:
• TA Helpdesk – Schedule posted on class website.
• Email TA’s or use Piazza

Notes:
• Don’t forget to include the required comments and

collaboration statement (as outlined on the course
syllabus).

• Do not wait until the last minute to do this assignment in
case you run into problems

• Read the entire specifications document before starting
this assignment.

Simple Functions
You will write a few python functions for practice with the language. In
your HW2.py file, include a comment at the top with your name,
section, GTId/Email, and your collaboration statement. Also, include
each of the following functions below. For purpose of this homework,
you may assume that all inputs will be valid.

1. lettersToNumbers
2. gradeReplacement
3. discountShopping
4. numDiamond
5. horseRace
6. suitcasePacker
7. nextRow
8. turtleBattery

1. lettersToNumbers(10pts)

Description:
Write a function that takes in one parameter: a string. This string
that is passed into your function will have certain letters
“converted” to their number representation. The letters that will
change and their conversion are as follows: “l” (lower case L) and
“I” (upper case i) → “1”, “E” → “3”, “s” and “S” → “5”, “G” → “6”,
“T” → “7”, “g” → “9”, “o” and “O” → “0”, and “R” → “12”. Note
with caution which uppercase letters and which lowercase
numbers should be converted! The case is very important for this
function and uppercase and lowercase letters are different! Your
function should find all the occurrences of convertible letters and
convert them accordingly. In other words, every time that the
convertible letter occurs, replace that letter with its number
counterpart. Note that the number counterparts are string
representations of said letters.

Parameters:
-aString (String): A string

Return Value:
(String) The new string with all the correct letters replaced

Test Cases:
1. lettersToNumbers(“so it goes”) returns “50 it 90e5”
2. lettersToNumbers(“I like coding”) returns “1 1ike c0din9”
3. lettersToNumbers(“CS 2316 IS GREAT”) returns “C5 2316 15

6123A7”

2. gradeReplacement (10pts)

Description:
Write a function that takes in a list of exam grades and returns the

average after performing a grade replacement policy. The grade
replacement policy takes the lowest grade from the list and replaces it
with the second lowest grade in the list. There will be at least 2
numbers in the list, but there is no upper bound for the length of the
list.

Parameters:
-gradeList (List): A list of exam grades as integers

Return:
(Float) The average of all the exam grades after replacement

Test Cases:
1. gradeReplacement([100,90,80,70]) returns 87.5
2. gradeReplacement([100,100,100,100]) returns 100.0
3. gradeReplacement([90, 80, 80, 90, 85]) returns 85.0
4. gradeReplacement([30, 80, 44, 90, 85]) returns 68.6

3. discountShopping (10pts)

Description:
Write a function that takes in a list of raw prices for products that
you are buying and returns the total amount of money needed to
buy all the items. After having bought 2 items, there is a 5% off
discount on the remaining items. After having bought 4 items,
there is a 10% off discount on the remaining items. After having
bought 8 items, there is a 20% off discount off the remaining
items. Note that the discounts do not stack. For example when
there are 7 products, the first 2 items are full price, the next 2
items are 5% off, and the final 3 items are 10% off.
Return your floating point answer with no more than 2 digits after
the decimal point (it is a dollars & cents answer).

Parameters:
productList (List): A list of product prices

Return Value:
(Float): The total amount needed to be paid

Test Cases:
1. discountShopping([35,20]) returns 55.0
2. discountShopping([10,10,10]) returns 29.5
3. discountShopping([65,28,27,83,67]) returns 257.8
4. discountShopping([1,2,3,4,5,6,7,8]) returns 33.05
5. discountShopping([13,25,42,35,88,76,7,48, 100]) returns

388.25

4. numDiamond (10pts)

Description:
Write a function that takes in the widest row of the diamond as a
parameter. The function will then draw a symmetric diamond on
screen using the print function. See screenshots below in the test
cases for clarification. DO NOT HARD CODE THE PRINTOUTS.

Parameter:
X (Integer): An integer that specifies the widest row of the

diamond. You may assume the number is an integer between 2-9.

Return Values:
None

Test Cases:
You have X number of rows, but note that there are three 2s, five
3s, seven 4s, nine 5s, etc.

5. horseRace(15pts)

Description:
Write a function that will take in a list of length 4 and a float. The
list's indexes will each represent a horse with index 0 representing
the first horse, index 1 representing the second horse, etc. The
number each index can take will be an integer from 1 to 4
inclusive. This integer will represent the user's prediction of a
horse's finishing place in a simulated race. For example the list
[4,3,2,1] would represent the event that the first horse came in 4th

place, the second horse in 3rd place, etc. Note that there can be
no repeated integers, and each integer must be used once. The
float parameter will represent the amount the user bets that their
prediction comes true. The function will simulate a horse race by
randomly ordering the list [1,2,3,4]. If the user guesses all four
horse's placements correctly then they win double their original
bet. (The user can not get 3 correct guesses, because if they do,
the 4th one is automatically correct as well!) If the user guesses 2
out of 4 correctly, they win their money back, plus a quarter of
the original bet. If the user guesses 1 out of the 4 correctly, they
win their money back. If the user guesses none of the places
correctly they win no money. The function will return a string
stating how many of the horse's placements the user guessed
correctly and the award amount from the bet. HINT: Use the
random module's shuffle method to randomly order lists!

Parameters:
aList (List): A list representing the user's prediction of the place
each horse will come in where each index represents a respective
horse's place.
aFloat (float): A number representing the users bet (in dollars).

Return Value:
The string “You guessed X position(s) correctly and won $Y!”
OR
The string “You incorrectly guessed every horse's position and lost
all of your money.”

Test Cases:
1. 0 correct guesses returns “You incorrectly guessed every horse's position and

lost all of your money!”
2. 1 correct guess with a $100.00 bet returns “You guessed 1 position(s) correctly

and won $100.0!”
3. 2 correct guesses with a $45.37 bet returns “You guessed 2 position(s) correctly

and won $56.71!”
5.4 correct guesses with a $5.55 bet returns “You guessed 4 position(s) correctly

and won $11.10!”

6. suitcasePacker (20pts)

Description:
Write a function that takes in a list of volumes of individual items
and a list representing the size (in volume) of two compartments
of a suitcase. The method in which you pack this suitcase is as
follows: the biggest items are packed first into the bigger
compartment followed by the next biggest until you can't fit the
next item, then the smallest of the remaining remaining items are
packed into the smaller compartment followed by the next
smallest, until you can't fit any more items. For example, if you
have six items of volumes 1, 3, 9, 4, 2, and 1 respectively and you
have a suitcase with compartment volumes of 4 and 15, you will
first pack the 9 unit volume item into the 15 unit volume
compartment. After, said compartment has 6 units of volume left,
so then you pack the 4 unit volume item. Since the 3 unit volume
item can't fit into this compartment, we now consider the other
compartment and pack the smallest item first, the 1 unit volume
item. This is followed by the 1 unit volume item, then the next 1
unit volume item, followed by the 2 unit volume item. Because
the 3 unit volume item does not fit in either compartment, it does
not get packed. Once your suitcase is packed, generate and
return a string: “You have packed X item(s) for a total volume of Y
units . The volume of empty space in your suitcase is Z units.”
Where X is the number of items you packed, Y is the volume of
the items you packed in arbitrary units, and Z is the unused
volume in your suitcase. If you have packed every item in your
suitcase, the string should be “You have packed every item in
your suitcase!” If you can't pack any items in your suitcase then
the string should be “You could not pack any items in your
suitcase!”

Parameters:
itemList (List): A list of volumes of individual items
suitcaseList (List): A list of volumes of the compartments in your

suitcase. This list will always have a length of 2.
Return Value:
A string that describes given condition properly.

Test Cases:
1. suitcasePacker([7,3,1],[7,1]) returns: 'You have packed 2 item(s) for a

total volume of 8 units. The volume of empty space in your suitcase is 0
units'

2. suitcasePacker([4,8,3,10,5,5],[19,9]) returns: 'You have packed 4 item(s)
for a total volume of 25 units. The volume of empty space in your suitcase
is 3 units.'

3. suitcasePacker([13,33,9,1,1,4,19,21,24,13],[60,40]) returns: “You have
packed 7 item(s) for a total volume of 85 units. The volume of empty
space in your suitcase is 15 units.”

4. suitcasePacker([1,2,3,4,5],[6,10]) returns: 'You packed every item in your
suitcase!'

5. suitcasePacker([14,19,9,20],[15,8]) returns: 'You could not fit any items in
your suitcase!'

7. nextRow (10pts)

Description:
This is the beginning of pascals triangle:
 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1

You can calculate any row of Pascal's triangle after the first two
from the previous row. Create a new row that starts with a 1,
filling in the inner values such that each number is the sum of
the two values to the upper left and upper right above t in the
previous row, and then adding a 1 to the end.

For example, the 3rd row of Pascal's triangle is [1,3,3,1]. So the
4th row would be calculated as [1, 1+3, 3+3, 3+1,1] =
[1,4,6,4,1].

Write a function called nextRow that takes in one parameter, a
list of numbers representing a row in a Pascal's triangle (of at
least 2 numbers) and return a list representing the next row.

Parameters:
aRow – A row of integer numbers.

Return Values:
A list of numbers representing the NEXT row of the triangle.

Examples:
nextRow([1,1]) returns [1,2,1]
nextRow([1,2,1]) returns [1,3,3,1]

8. turtleBattery (15pts)

Description:
Write a function that uses the turtle module to draw a battery
with a given length and percentage of the battery filled/”left”.
The height of the battery should always be 50. The end “cap” of
the battery should always have dimensions 5 length by 30 high.
The “cap” of the battery will NOT be filled in, even if the battery
is 100% full. See the example pictures below for clarification.

Parameters:
length (Integer): An integer representing the length
(in pixels) of your battery body (not including the cap)
percentage (Integer): An integer between 0 and 100
representing the percentage of the battery body your turtle
will fill.

Return Values:
None

Examples:
turtleBattery(150,75) turtleBattery(70,22)

Grading Rubric
lettersToNumbers(10pts)
- Finds all letters in the string that need to be converted. 8pts
- Returns the correct string with the replaced letters.

2pts

gradeReplacement(10pts)
− Correctly replaces the lowest value with the

second lowest value 5pts
- Returns correct average 5pts

discountShopping(10pts)
- Correctly applies discounts to appropriate items 5pts
- Returns correct total amount 5pts

numDiamond(10pts)
- Correct number of rows and correct number in rows 5pts
- Correct shape (-5 if hard coded) 5pts

horseRace(15pts)
- Takes in correctly formatted parameters 1pts
− Imports random and simulates the race 4pts
− Returns proper “You incorrectly guessed every horse's
position and lost all of your money!” 3pts
− Returns proper “You guessed X positions correctly

and won $Y!” 6pts

suitcasePacker(20pts)
- Takes in two correctly formatted parameters

1pt
- Returns “You have packed X item(s) for a total volume

of Y units .” for standard case 5pts
− Returns “The volume of empty space in your suitcase is

Z units.“ for standard case 4pts
− Returns “You could not pack any items in your suitcase!” I

f no items are packed 5pts
− Returns “You have packed every item in your suitcase!”

if all items are packed 5pts

nextRow(10pts)
− Returns correct nextRow for all possible input rows 10pts

turtleBattery(15pts)
- Takes in two parameters 1pt
- Apparent battery shape 3pts

- Correct amount of battery filled 5pts
- Battery length coordinates with length parameter 3pts
- Percentage of battery filled coordinates with pct parameter 3pts

