
CS 2316
Individual Homework 10 – XML Processing
Due: Wednesday April 23rd, before 11:55 PM
Out of 100 points

Files to submit: 1. HW10.py

This is an INDIVIDUAL assignment!
Collaboration at a reasonable level will not result in substantially similar code. Students may only
collaborate with fellow students currently taking CS 2316, the TA's and the lecturer. Collaboration
means talking through problems, assisting with debugging, explaining a concept, etc. You should not
exchange code or write code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Don’t forget to include the required comments and collaboration statement (as

outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into problems.

Background:
Summer's on the way, and that means baseball season. It's America's favorite pastime, and a
statistician's dream. You've been inspired by Jonah Hill's character in Moneyball and have decided you
want to put your 2316 skills to the test crunching baseball numbers. We've given you actual data on
every MLB game played so far this season (freely available via gameday on mlb.com. You can check
out gd2.mlb.com/components/game/mlb to take a look at the data used yourself. The important data is
contained in game_events.xml under each game for a given year, month and day). Your task in this
assignment will be to parse the given .xml file which contains detailed information of every game
down to the pitches in each at-bat, and then process that data to focus mainly on pitching. Your goal
will be to output an xml file containing Pitchers as the main element instead of games. The children of
each Pitcher will be a number of PitchData elements, each with a type attribute representing the type of
pitch, and three children, NumPitched, AvgSpeed and StrikeToBallRatio which all have just text
elements corresponding to their stats.

Format of Output:

Note: Pitchers should be saved to the XML file in alphabetical order!

Structure of games data:
You don't need to be familiar with all the rules of baseball to complete this homework. The games xml
tree contains a lot of noisy (interesting) data, but we only really care about pitchers at the moment. The
important element in the tree for our uses is the atbat element. There are a number of these elements
which are children of the top and bottom of each inning. Fortunately, each atbat element contains a
pitcher attribute which you will use to keep track of which pitcher pitched that atbat. Since we are
grouping by a Pitcher's pitches, we need to use the pitch elements inside each at bat to keep track of
how many of a certain type of pitch that pitcher has thrown and the speeds at which he throws it. You
will also want to keep track of the number of strikes and balls thrown for each pitch. IMPORTANT:
The pitch_type attribute corresponds to the type of pitch that you will need to group a pitcher's pitches.
The type element corresponds to whether or not the pitch is a ball or strike.

The ratio is calculated as #S / #B if #B > 0. If #B == 0, the ratio is #S/1. In other words, when
calculating the strike to ball ratio, if there are zero balls, pretend there was one. For example, if you
have 6 strikes to 0 balls, the correct ratio would be a 6.0. HINT: It is highly recommended that you use
dictionaries to do your logic in this stage. Remember that a pitcher can pitch in more than one game so
you will have to be able to update his pitch stats accordingly. Don't focus on the games, but rather the
at-bats.

Bad Data:

Due to the large scope of the data collected in the full xml file we've given you, there are some
problems with the data. Some at-bats will not have values for some pitch speeds. You will need to
handle these occurrences by ignoring them. If you cannot convert the pitch speed for a pitch into a
float, you should IGNORE that pitch along with the ball or strike data associated with it.

GUI:

Your GUI should contain a Choose File button which will open up a file dialog for the user to choose
the file containing the game data. After the user selects an input xml file, your program should attempt
to parse the file given. If there is an error while parsing the file, a warning dialog should display to the
user. If successful, the following message box should display to the user:

Pressing the OK button will display a confirmation dialog which will look like the following.

If the user presses 'Yes,' a file save dialog should display allowing the user to choose where to save the
output file. If the user presses 'No,' the GUI should return to the original window with just the Choose
File button. The user should be able to enter the name of a file (such as “filteredIBM.xml”) and your
program will save the results as an XML file. After the save is successful, you should update the GUI to
say “File successfully saved!”.

Suggested Functions:
You may use any combination of class/functions you wish to use to do this homework. The following is
a suggested outline for your program:

__init__: set up the GUI along with any instance variables you might be using. You will want to use a
dictionary to store data on each specific pitcher.

clicked: Ask user for their file. Ensure proper error handling. Call parseGames to parse the tree and
then writePitchers to write to an output file.

parseGames: Loop through all the atbat elements and pass each one into parseAtbat. After all the
elements have been processed successfully, you should display the specified Data Processing
Succeeded dialog to the user.

parseAtbat: Takes in an atbat argument which should be an xml.etree.ElementTree.Element and
create/update the entry for the corresponding pitcher in your dictionary of pitchers. You will want to
consider all the pitches in the atbat and whether or not they are balls and strikes. Should be able to
ignore invalid pitch speeds. HINT: You should not be attempting to calculate the average speed of
pitches yet since that can only be done after all atbats are processed.

writePitchers: Use the pitchers dictionary, which should contain a list (OR dictionary) of pitches for
each pitcher, to write an output xml file (see format given in introduction). Use the processPitches
method to process this list of pitchers for a pitcher and return a dictionary of key pitchType and value
being a tuple (# of this type of pitch thrown, avg speed, strikes:balls ratio) which you will use to make
your PitchData elements.. Before you write the output file, you should display an askyesno dialog to
the user asking whether he wants to save the file as XML. If the user answers yes, display a dialog
asking where to save the file. If the user answers no, end the function.

processPitches: Takes in a list of pitches (e.g. (pitchType, pitchSpeed, ballOrStrike)) and populates a
dictionary keyed by pitchType. At the end of the function, you should return a dictionary in which the
values are (# of pitch thrown, avg speed, strikes:balls ratio) but you may want to use the dictionary as
an intermediate step before you try to calculate those numbers. Keep in mind that you first need to
separate the pitches out into groups of one pitchType before you can calculate stats on that pitchType.
You will probably want to use a slightly different processPitch method if you had already put pitches
into a dictionary during the parseAtbat method. Remember to handle the case when there have been 0
balls thrown on a pitch. The strike to ball ratio should treat this case as the same as if there had been 1
ball thrown. Note as well that the type attribute for a pitch element in the games xml tree can be “S”,
“B”, or “X” corresponding to a strike, a ball, or a hit in play. For our purposes, we will ignore the “X”
when calculating the strike to ball ratio.

Grading:
You will earn points as follows for each piece of functionality in your code:

GUI: 15
-Allows specification of destination file location 5
-Shows all warning messages correctly and 10
 provides success message to user when done

Reading data source: 10
-Allows user to select input file 5
-Proper error handling 5

Data parsing: 30
-Atbats are found and pitcher identified for each 10
-Separates Pitch elements by pitch_type 10
-Records pitch speed and type (ball or strike) for each 5
 pitch
-Ignores invalid pitch speeds 5

Data analysis: 25
-Computes average speed of pitch correctly 10
-Computes strike to ball ratio correctly 10
-Computes number of times pitched correctly 5

Data output: 20
-Data outputted in correct format 15
-Pitchers written in alphabetical order 5

Total possible: 100

