Queueing in Packet Switches

hapter 9 introduces the performance and architectural issues in the design

of packet switches. We are now familiar with the concept of a cell

switch and the placement of the queues relative to the switch fabric.
Specifically, we have discussed the input-queueing (IQ), output-queueing (OQ),
and combined input-output-queueing (CIOQ) options for packet queue placement
in cell switches. This chapter first analyses the switching capacity and delay
performance of IQ, OQ and CIOQ switches assuming that the queues are all FIFO.
We then consider alternatives to FIFO scheduling and discuss the emulation of an
0Q switch by an IQ switch and an appropriate switch scheduler.
© Much of this chapter assumes cell switches. Recall that a cell switching
fabric operates in a time-slotted manner, where the slot duration is equal to the
cell transmission time. In our analysis, we assume that cell arrivals occur at the
beginning of a slot and that cell departures are completed at the end of the slot.
Thus, an arrival in a slot will be available for transmission in the same slot. Also,
in this chapter, we consider only nonblocking switches and do not worry about
how such a switch may be constructed.

0.1 FIFO Queueing at Output and Input

et us first recollect what we discuss in Chapters 1 and 9: In a slot, if k active inputs
ave cells for the same output—say, output port j—and if there are to be no queue
t the inputs and no cells are to be dropped at the inputs, the switch should be
apable of switching all the k cells to output . Of the k cells that reach the output, -
nly one may be transmitted on the output link, and the other k — 1 must be put
na queue at the output port. It could be that at the output there are packets that
re waiting from the previous slots, in which case all the k must be buffered. To
andle the worst case situation, the switch should be capable of switching up to
I cells to their respective outputs in one slot time if cells are not to be dropped
t the input (i.e., the switch should operate at N times the line rate). Observe
hat the cells destined for different outputs do not interfere with each other at the
nputs and are not delayed at the input. Thus the switch is work-conserving in the
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Now consider the IQ switch with one FIFO queue at each input. The switch
ne packet from an input, and at most one packet to an

output in a slot. If, at the beginning of a slot, more than one head-of-line (HOL)
cells from the input queues have the same destination, then only one of them
is switched and transmitted on the output link in the slot. The other HOL cells
continue to be queued at their inputs. If any of these inputs contains a non-HOL
packet whose destination is free, it is not switched, because the queue is FIFO and
the packet at the head of the queue is blocked. Thus, packets in an I1Q switch can
experience head-of-line blocking, in which a blocked HOL cell blocks the cells
behind it in the input FIFO queue even though the destination ports of these other
cells are free and are idling. Thus the IQ switch with FIFO discipline is non-work-
conserving, in the sense that there may be cells queued in the switch that are to be
transmitted on an output port but cannot be, and the output port idles. Because
the 1Q switch is non-work-conserving, its capacity is less than one cell per port

can transfer at most O

per slot.
Given that the OQ switch has greater capacity than the 1Q switch, why

should we be interested in the IQ switch? To answer this, consider the construction
complexity of both architectures. Because the queues are maintained at the inputs
and because only one cell need be transmitted in the event of a destination conflict,
the switch can operate at the same rate as the input and output links. This means
that in an IQ switch each input should be capable of sending at most one cell
in a slot, and each output should be capable of receiving at most one cell in a
slot. Furthermore, the maximum transfer rates from memory (the rate in bits
per second at which data can be read from or written to) used for the input
queue should be twice that of the link rate. This is because, in a slot, at most
one write operation (corresponding to an arriving cell) and one read operation
(corresponding to reading the packet from the input queue and switching it to the
output) are performed. However, in the case of the OQ switch, to handle the worst
case situation the switch should operate at N times the line rate; that is, it should
be capable of transferring up to N cells from the inputs to an output. Furthermore,
it should allow a cell to be transmitted on the output link. This means that the
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memory used for the output queue should be capable of a memory transfer rate

of N + 1 times the line rate for the OQ switch.

Exercise 10.1

header of 32 bits per cell.

guess the cost of memory.

c. Repeat for 16- and 32-bit cells.

a. What is the memory transfer rate required for an N x N 1Q and OQ
switch for N =16, 32, and 64? Assume 64-bit cells and 10-Gbps line
rates. Also assume that the internal organization of the switch uses a

b. Find out about available memory technologies and their access times.
Obtain information about the cost of, say, 1 MB of SRAM memory,
and plot the access time versus cost function for this. Extrapolate and

Although the switch speedup of N times the line rate may not be
technologically infeasible, clearly the memory transfer rates required make it
infeasible at high line rates. Thus, in terms of construction complexity, the IQ
switch is probably the only technologically feasible option in the core of the
Internet, where the number of ports required on the switches and the line rates
are both very high. However, as we remarked earlier, the non-work-conserving
property of the IQ switch means that its capacity is less than 100%. The question
then is, how much less than 100% is the maximum achievable throughput of an

IQ switch? We answer this question next.

We first consider an IQ switch with saturated inputs. Input saturation means

hence the capacity of the IQ switch.

that the input is always active and has a cell to transmit to an output in every slot;
in other words, there is always a cell behind the HOL cell to take its place when
the HOL cell departs from the input queue. If all the inputs are saturated, the rate
at which cells depart from the switch is called the saturation throughput of the
switch. There are two reasons for considering saturation throughput. First, the
analysis is comparatively easy. Second, the results of this analysis give us insight
into the capacity of the IQ switch. In fact, for a special case, we show that the
saturation throughput is a lower bound for the capacity by showing that if the
arrival rate is less than the saturation throughput, the input queues are stable. We
then present an approximation argument to derive the saturation throughput and
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10.1.1 Saturation Throughput and Capacity (*)

Consider a saturated N x N cell switch with uniform routing (i.e., the destination
of each cell is independently and randomly chosen from among the N outputs).
Assume that the input queues are FIFO and that only the packets at the head of
the queues at the beginning of a slot can be switched to the output in the slot.
Now consider the HOL cells destined for a tagged output (defined soon)—say,
output O;. Conceptually, we can view these cells as being in a queue to get to O;.
Of course there is no such physical queue. Call this the HOL queue for output j,
denoted by HOL; for j = 1,...,N. Let Q}H)(t) be the number of cells in HOL;

at the beginning of slot ¢. If the inputs are saturated, 0 < Q/(H)(t) < N and

Y 0 m =N.

An example of the evolution of the HOL queues for a 2 x 2 switch is shown
in Figure 10.1. In this example, if the inputs are saturated, we can say that cell a
“came back” to HOL; as cell b at the beginning of slot 2. Similarly, cell ¢ “went”
as cell f to HOL; at the beginning of slot 3. We can say that in the HOL queue
after a cell finishes service, it goes into any of the N HOL queues, with probability
equal to that of a cell having that queue as its destination. This is exactly like
a closed queueing network: a network of queues in which the total number of
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Figure 10.1 Evolution of the HOL queues in a 2 x 2 switch over four consecutive slots.
The bottom panel shows occupancy of the HOL queues at the beginning of the slots.
Letters are used to name a cell, and numbers indicate their destinations.
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Figure 10.2 The closed queueing network representation of the HOL queues.

customers remains constant. In such a network, customers finishing service at
one queue join another queue. There are no departures from the network nor
external arrivals to it. Thus, for saturated inputs we can represent the set of HOL
queues as a closed queueing network, shown in Figure 10.2. This means that the
problem of finding the saturation throughput of the switch is the same as that of
finding the throughput from any of the queues of such a closed queueing network.
The closed queueing network is synchronous, and an exact analysis is intractable
except for small N. We use this closed queueing network model in our analysis of
the saturated IQ switch.

First, let us see what happens when an increasing number of inputs are
saturated in an N x N switch. Consider input I;, with # of the inputs (including
I) being saturated. Define y® () as the throughput from input I; when »n inputs
are saturated and when the other (N — ») inputs do not have any cell arrivals. In
the closed queueing network, this corresponds to having 7 cells and N queues.
We show that as # increases toward N, the throughput from input I; decreases
monotonically.

ns.

’ts. Lemma 10.1

For1<n<N,y®Pm =yDn+1).




552 10 Queueing in Packet Switches

Proof: Consider a closed queueing network with 7 cells and N queues (like that
shown in Figure 10.2) and cell C; from input I;. The throughput from I; is the
number of times C; is switched to its desired output per unit time. (This in turn
is the reciprocal of the average time for C; to be switched once to its output.)
The total throughput is ny ¥ (#). Now add one more cell, but give it the lowest
priority. Clearly, the addition of this new cell does not affect the throughput of the
w cells that are already in the system, and their throughput is still y @ (). Because
the cells are indistinguishable from each other in their routing behavior, the total
throughput with (7 + 1) cells is (n+ 1)y @ (n + 1), and this is higher than that with
2 cells. The increase in the throughput is caused by the contribution of the new
cell, and because its priority is the lowest, its throughput is less than or equal to
that of the others. That is,

n+ Dy P+ 1) =y ) <y

n+DyPn+1) <+ DyPm
|

We remark here that the preceding argument is based on random selection of
the cells from the HOL queues. If the HOL queue contains only the low-priority
cell, that cell is selected. If there are others cells, any one of the others is randomly
selected. Because the cells are indistinguishable, the total throughput is the sum of
the throughputs of all the cells.

Lemma 10.1 suggests that an arrival rate less than y®(N) should be a
sufficient condition for the stability of the input queue at I; and defines the per-port
capacity of the IQ switch when all the inputs have the same packet arrival rate and
when each packet chooses its destination independently and randomly. Before we
show that this is indeed the case, we present a few definitions.

Definition 10.1
In a slotted service system of N queues, let Q;(?) be the number of cells in queue i
at the beginning of slot z. Let Q(?) := [01(),. .., On(t)] denote the queue-length
vector at the beginning of slot z. The queueing system is considered stable if the
distribution of Q(¢) as ¢ — oo exists and is proper:

lim Pr(Q(?) <m) = Qm and lim Qm =1
t— 00 m— 00
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Here m is an N-dimensional vector and Qm is the limiting distribution.
Furthermore, Q(2) is said to be substable if the following is true:

lim liminf Pr(Q#) <m) =1

m—0o0 [—>00 ]

If {Q()} is substable, it means that Q(#) is finite with probability 1; that
is, there is no “escape of probability mass to infinity as  — c0.” However, the
probabilities need not converge to a single probability distribution. A substable,
aperiodic, irreducible, discrete time Markov chain is stable.

Because all inputs have identical statistical behavior, we choose to
concentrate on one input, called the tagged input, and characterize its behavior.
Let input I; be the tagged input of an N x N switch with the other (N — 1) inputs
being saturated. Let the cell arrivals to this tagged input be from a Bernoulli process
of rate 1. Assume that whenever the queue at I; becomes empty, a dummy cell with
a uniformly assigned destination is placed in the queue. If a new cell arrives before
the dummy cell departs, it takes the place of the dummy cell and also adopts its
destination. Thus all the inputs are saturated, and the closed queueing network
model of Figure 10.2 with N queues and N cells can be used. Now consider the
instants, {, m > 1), at which a cell departs from input queue I;. Let O(t) be the
number of cells in input queue I; at instant t,,,. Define Sy, = tim —tm—1, and let A, be
the number of cell arrivals to input queue I; in S,,.. These are shown in Figure 10.3.
The evolution of input queue I;, embedded at these instants, can be written as

Oltmy1) = max{(Qtm) + Amt1 — 1), 0} (10.1)
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Figure 10.3 Queue evolution in the tagged input illustrating {tm}, {Sm}, and {Q(tm)}. The
shaded cell is a dummy cell and the others are real cells. The upward arrows indicate
packet arrivals.
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In Section 5.6.2 we discuss how, for a stationary process {Am}, Q(tm) as defined
here almost surely converges in distribution to a proper random variable if

” (A — 1) — —oo. Thus, intuitively, the input queue is stable if the sequence 4
{A) is stationary and if E(A1) < 1. The latter condition implies that the average
number of cell arrivals between the times that a cell is being serviced by the output
is less than 1.

In fact, it is sufficient to have {A,,} to be asymptotically stationary; that is,
the finite dimensional random vectors (Ajyrtsmy> AJ+rmys- - - s Afrimy) should not
depend on r for arbitrary k, and m1,ma,...,m as | — oo. If the service from the
HOL queues is in random order, then it can be shown that the sequence {A;,} is
indeed asymptotically stationary. We skip that proof here. We are now ready to
derive the stability condition for the tagged input queue and the system of N input
queues of the switch to be stable.

Theorem 10.1
(i) The tagged input queue is stable if A < ¥ (N).
(ii) The system of N queues is stable if A; < y(N) fori=1,2,...,N.

Proof:

(i) For the tagged input queue evolving according to Equation 10.1, the
following are almost surely true:

D Dy
S =2 lim &= =yN)
oo YIS, ey S,

The left expression is the arrival rate of packets to input I;. The right
expression is the definition of the saturation throughput of input I;. This
implies that if A < y(N), then almost surely

lim Zr:].(Ar - 1)

= <0
m—00 Z1=1 Sr

and hence, almost surely S%°,(A, — 1) = —oo. This shows that the
process Q(t) is stable in the sense of Definition 10.1. Because Q(#m)
converges in distribution to a proper random variable and because {A;,} is
a stationary random process with a proper marginal distribution, it follows
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that O(z) is substable if », < y(N). Note that we cannot conclude that
O(t) is stable because we are only upper-bounding it by a stable process.
Let XO(#) be the output port of the HOL cell in input ;. Note that
(0@, XV@),...,XMN@), t > 0}isa multidimensional, irreducible, and
aperiodic discrete time Markov chain. Hence substability implies stability
of O(#), and a sufficient condition for the stability of the tagged input queue
is A < y(N).

Now consider the system of N input queues described by the N-dimensional
vector process {(Q() = (QP®),.. ., OM)(z)), ¢ > 0}. Let A; be the Bernoulli
cell arrival rate to input I;. From part (i), A; < y(N) is sufficient for queue
I; to be stable. When 2; < y(N),

m—>00 t—> 00

lim lim Pr(Q@(t) < m,-) =1, 1<i<N (10.2)
Define m = (my,m3, . ..,my) and we have

; ; @) D=

1zmh_r)nootl_1)rgoPr<Q (t)gm,,t—l,Z,...,N>
N -

>1-%" lim lim Pr(Q(’)(t) > myyi = 1,2,...,N)

m—> 00 t— 00

i=1
=1

The second inequality follows from De Morgan’s theorem, and the union
bound and the last equality follow from Equation 10.2. This means that

lim lim Pr(Q@) <m) =1

m—> 00 t—00

Thus Q(¢) is substable when A; < y(N) for i = 1,2,...,y(N). If XO(@)
is as defined earlier, then {(Q(t),Xm(t),X(z)(t),...,X(N)(‘),t>0)} is an
aperiodic, irreducible Markov chain, and part (ii) of the theorem is
proved. ]

We reiterate that packet arrival rate for which the input queues will remain

stable, as derived earlier, is for Bernoulli arrivals at the inputs with uniform routing

and random order of service from the HOL queues. It is generally believed that




