
COGNITIVE SCIENCE 16, 355-394 (1992) 
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After many years of neglect, the topic of mental imagery has recently emerged 
as an active area of research and debate in the cognitive science community. This 

article proposes a concept of computational imagery, which has patentlal applica- 
tions to problems whose solutions by humans involve the use of mental imagery. 
Computational imagery can be defined as the ability to represent, retrieve, and 
reason about spatial and visual information not explicitly stored in long-term 

memory. 
The article proposes a knowledge representation scheme for computational 

imagery that incorporates three representations: a long-term memory, descrip- 
tive representatlon and two working-memory representations, corresponding to 

the distinct visual and spatial components of mental imagery. The three repre- 
sentations, and a set of primitive functions, are specified using a formal theory of 
arrays and implemented in the array-based language Nial. Although results of 

studies in mental imagery provide initial motivation for the representations and 
functionality of the scheme, our ultimate concerns are expressive power, In- 
ferential adequacy, and efficiency. 

Numerous psychological studies have been carried out and several, often 
conflicting, models of mental imagery have been proposed. This article does 
not present another computational model for mental imagery, but instead 
treats imagery as a problem-solving paradigm in artificial intelligence (AI). 
We propose a concept of computational imagery, which has potential appli- 
cations to problems whose solutions by humans involve the use of mental 
imagery. As a basis for computational imagery, we define a knowledge 
representation scheme that brings to the foreground the most important 
visual and spatial properties of an image. Although psychological theories 
are used as a guide to these properties, we do not adhere to a strict cognitive 
model: Whenever possible, we attempt to overcome the limitations of the 
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human information-processing system. Thus, our primary concerns are ef- 
ficiency, expressive power, and inferential adequacy. 

Computational imagery involves tools and techniques for visual-spatial 
reasoning, where images are generated or recalled from long-term memory 
and then manipulated, transformed, scanned, associated with similar forms 
(constructing spatial analogies), pattern matched, increased or reduced in 
size, distorted, and so on. In particular, we are concerned with the recon- 
struction of image representations to facilitate the retrieval of visual and 
spatial information that was not explicitly stored in long-term memory. The 
images generated to retrieve this information may correspond to representa- 
tions of real physical scenes or to abstract concepts that are manipulated in 
ways similar to visual forms. 

The knowledge representation scheme for computational imagery sepa- 
rates visual from spatial reasoning and defines independent representations 
for the two modes. Whereas visual thinking is concerned with what an image 
looks like, spatial reasoning depends more on where an object is located 
relative to other objects in a scene (complex image). Each of these represen- 
tations is constructed, as needed, from a descriptive representation stored in 
long-term memory. Thus, our scheme includes three representations, each 
appropriate for a different kind of processing: 
l An image is stored in long-term memory as a hierarchically organized, 

descriptive, deep representation that contains all the relevant informa- 
tion about the image. 

l The spatial representation of an image denotes the image components 
symbolically and preserves relevant spatial properties. 

l The visual representation depicts the space occupied by an image as an 
occupancy array. It can be used to retrieve information such as shape, 
relative distance, and relative size. 

While the deep representation is used as a permanent store for information, 
the spatial and visual representations act as working (short-term) memory 
stores for images. 

A formal theory of arrays provides a meta-language for specifying the 
representations for computational imagery. Array theory is the mathematics 
of nested, rectangularly arranged data objects (More, 1981). Several primi- 
tive functions, which are used to retrieve, construct, and transform repre- 
sentations of images, have been specified in the theory and mapped into the 
functional programming language, NiaI (Jenkins, Glasgow, & McCrosky, 
1986). 

The knowledge representation scheme for computational imagery pro- 
vides a basis for implementing programs that involve reconstructing and 
reasoning with image representations. One such system, currently under in- 
vestigation, is a knowledge-based system for molecular scene analysis. 
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Some of the concepts presented in this article will be illustrated with ex- 
amples from that application area. 

Research in computational imagery has three primary goals: a cognitive 
science goal, an AI goal, and an applications goal. The cognitive science 
goal addresses the need for computational models for theories of cognition. 
We describe a precise, explicit language for specifying, implementing, and 
testing alternative, and possibly conflicting, theories of cognition. The AI 
goal involves the development of a knowledge representation scheme for 
visual and spatial reasoning with images. Finally, the applications goal in- 
volves incorporating the knowledge representation scheme for computa- 
tional imagery into the development of programs for solving real-world 
problems. 

The article begins with an overview of previous research in mental imagery, 
which serves as a motivation for the representations and processes for com- 
putational imagery. This is followed by a detailed description of the deep, 
visual, and spatial representations for imagery, and the primitive functions 
that can be applied to them. It concludes with a summary of the major con- 
tributions of computational imagery to the fields of cognitive science, AI, 
and knowledge-based systems development, and a discussion of the rela- 
tionship between our scheme and previous research in the area. 

MENTAL IMAGERY 

In vision research, an image is typically described as a projection of a visual 
scene of the back of the retina. However, in theories of mental imagery, the 
term “image” refers to an internal representation used by the human 
information-processing system to retrieve information from memory. 

Although no one seems to deny the existence of the phenomenon called 
“imagery,” there has been a continuing debate about the structure and the 
function of imagery in human cognition. The imagery debate is concerned 
with whether images are represented as descriptions or depictions. It has 
been suggested that descriptive representations contain symbolic, inter- 
preted information, whereas depictive representations contain geometric, 
uninterpreted information (Finke, Pinker, & Farah, 1989). Others debate 
whether or not images play any causal role in the brain’s information pro- 
cessing (Block, 1981). According to Farah (1988a), in depictive theories the 
recall of visual objects consists of the top-down activation of perceptual’ 
representation, but in descriptive theories visual recall is carried out using 
representations that are distinct from those in vision, even when it is accom- 
panied by the phenomenology of “seeing with the mind’s eye.” Further dis- 
cussions on the imagery debate can be found in various sources (e.g., 
Anderson, 1978; Block, 1981; Kosslyn & Pomerantz, 1977). 
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This article does not attempt to debate the issues involved in mental im- 
agery, but to describe effective computational techniques for storing and 
manipulating image representations. To accomplish this, however, requires 
an understanding of the broad properties of representations and processes 
involved in mental imagery. 

Research F’indings in Mental Imagery 
Many psychological and physiological studies have been carried out in an 
attempt to demystify the nature of mental imagery. Of particular interest to 
our research are studies that support the existence of multiple image repre- 
sentations and describe the functionality of mental imagery processes. In 
this section we overview relevant results from such studies, and based on 
these results, propose some important properties of mental imagery, which 
we use to motivate our representation scheme for computational imagery. 

Several experiments provide support for the existence of a visual memory, 
distinct from verbal memory, in which recognition of verbal material is in- 
ferior. Paivio’s (1975) dual-code theory suggests that there is a distinction 
between verbal and imagery processing. This theory leaves the exact nature 
of mental images unspecified, but postulates two interconnected memory 
systems-verbal and imaginal-operating in parallel. The two systems can 
be independently accessed by relevant stimuli but they are interconnected in 
the sense that nonverbal information can be transformed into verbal and 
vice versa. Furthermore, it has been indicated that visual memory may be 
superior in recall (Standing, 1973). 

The issue of visual memory is an important one for computational 
imagery. What it implies to us is the need for separate descriptive and depic- 
tive representations. This is reinforced by the experiments carried out by 
Kosslyn (1980) and his colleagues, who concluded that images preserve the 
spatial relationships, relative sizes, and relative distances of real physical 
objects. Pinker (1988) suggested that image scanning can be performed in 
two- and three-dimensional space, providing support for Kosslyn’s pro- 
posal that mental images capture the spatial characteristics of an actual 
display. Pinker also indicated that images can be accessed using either an 
object-centered or a world-centered coordinate system. 

A series of experiments suggest that mental images are not only visual 
and spatial in nature, but also structurally organized in patterns, that is, 
they have a hierarchical organization in which subimages can occur as 
elements in more complex images (Reed, 1974). Some researchers propose 
that under certain conditions images can be reinterpreted: They can be re- 
constructed in ways that were not initially anticipated (Finke et al., 1989). 
Experiments also support the claim that creative synthesis is performed by 
composing mental images to make creative discoveries (Finke 8c Slayton, 
1988 (Finke & Slayton, 1988). 
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The relationship between imagery and perception was considered by 
Brooks (1968), who demonstrated that spatial visualization can interfere 
with perception. Farah (1988a) also suggested that mental images are visual 
representations in the sense that they share similar representations to those 
used in vision, but noticed that this conclusion does not imply that image 
representations are depictive because both imagery and perception might be 
descriptive. Farah argued, from different evidence, however, that they are 
in fact spatial. 

Findings, provided by the study of patients with visual impairments, 
point toward distinct visual and spatial components of mental imagery. 
Mishkin, Ungerleider, and Macko (1983) showed that there are two distinct 
cortical visual systems. Their research indicated that the temporal cortex is 
involved in recognizing what objects are, whereas the parietal cortex deter- 
mines where they are located. Further studies have verified that there exists 
a class of patients who often have trouble localizing an object in the visual 
field, although their ability to recognize the object is unimpaired (De Renzi, 
1982). Other patients show the opposite patterns of visual abilities: They 
cannot recognize visually presented objects, although they can localize them 
in space (Bauer & Rubens, 1985). Such patients are able to recognize objects 
by touch or by characteristic sounds. It has also been suggested that the pre- 
served and impaired aspects of vision in these patients are similarly preserved 
or impaired in imagery (D. Levine, Warach, & Farah, 1985). In experimen- 
tal studies, subjects with object identification problems were unable to draw 
or describe familiar objects despite being able to draw and describe in detail 
the locations of cities on a map, furniture in a house, and landmarks in a 
city. Patients with localization problems were unable to describe relative 
locations, such as cities on a map, although they could describe from 
memory the appearance of a variety of objects. Such findings have been 
interpreted by some researchers (e.g., Kosslyn, 1987) as suggesting two dis- 
tinct components of mental imagery, the spatial and the visual, where the 
spatial component preserves information about the relative positions of the 
meaningful parts of a scene and the visual component preserves informa- 
tion about how (e.g., shape, size) a meaningful part of a scene looks. 

Although there are varying strategies for retrieving spatial information and 
solving problems concerning spatial relations, research has suggested that 
humans typically use mental imagery for spatial reasoning (Farah, 1988b). 
Experimental results also support an isomorphism between physical and 
imaged transformations (Shepard & Cooper, 1982). A premise of Kritchevsky 
(1988) is that behavior can be divided into spatial and nonspatial compo- 
nents. For example, determining the color of an object is a nonspatial behav- 
ior, whereas determining relative positions of objects is a spatial behavior. 
Kritchevsky assumed that the spatial component of behavior is understood 
in terms of elementary spatial functions. Furthermore, these functions are 
independent of any particular sensory modality (Ratcliff, 1982). 
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Although individually the results described previously do not imply a 
particular approach to computational imagery, collectively they infer several 
properties that we wish to capture in our approach. Most importantly, an 
image may be depicted and reasoned with visually or spatially, where a 
visual representation encodes what the image looks like and the spatial 
representation encodes relative location of objects within an image. As well, 
images are inherently three-dimensional and hierarchically organized. This 
implies that computational routines must be developed that can decompose, 
reconstruct, and reinterpret image representations. Results from studies 
comparing imagery and vision imply that the representations and processes 
of imagery may be related to those of high-level vision. Thus, we should 
also consider the representations and functionality of object recognition 
when defining computational imagery. Finally, we must be able to consider 
an image from either an object-centered or a viewer-centered perspective. 

The numerous experiments that have been carried out in mental imagery 
not only suggest properties for the representation scheme, but also support 
the premise that mental imagery is used extensively to reason about real- 
world problems. Thus, computational imagery is an important topic to in- 
vestigate in relation to AI problem solving. 

The subjective nature of mental imagery has made it a difficult topic to 
study experimentally. Qualities like clarity, blurring, and vividness of images 
are not directly observable and may differ from one person to another. Fur- 
thermore, it has been argued by some researchers that it is impossible to 
resolve the imagery debate experimentally because depictive and descriptive 
representations do not have distinct properties from which behavioral con- 
sequences can be predicted (Anderson, 1978). As a result, several alternative 
accounts have been proposed to explain the findings mentioned previously. 
The most important of these are tacit knowledge, experimenter bias, eye 
movements, and task-induced characteristics (Intons-Peterson, 1983). 
These difficulties involved in experimental studies emphasize the need for 
computer models for mental imagery. Although the knowledge representa- 
tion scheme for computational imagery is not meant to model a particular 
theory of imagery, it does provide the tools for specifying, testing, and for- 
mally analyzing a variety of theories, and thus can contribute to resolving 
the imagery debate. 

Theories and Principles of Mental Imagery 
Pylyshyn (1981), a forceful proponent of the descriptive view, argued that 
mental imagery simply consists of the use of general thought processes to 
simulate perceptual events, based on tacit knowledge of how these events 
happened. Pylyshyn disputed the idea that mental images are stored in a 
raw uninterpreted form resembling mental photographs, and argued for an 
abstract format of representation called propositional code. Kosslyn’s (1980) 
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model of mental imagery is based on a depictive theory, which claims that 
images are quasi-pictorial, that is, they resemble pictures in several ways but 
lack some of their properties. According to Kosslyn’s model, mental images 
are working memory, visual representations generated from long-term 
memory, deep representations. A set of procedures, which is referred to as 
the “mind’s eye,” serves as an interface between the visual representations 
and the underlying data structures, which may be decidedly nonpictorial in 
form. Hinton (1979) disputed the picture metaphor for imagery and claimed 
that images are more like generated constructions. In this approach, as in 
Max-r and Nishihara’s (1978) 3D model, complex images can be represented 
as a hierarchy of parts. 

Finke (1989) took a different approach to the imagery debate. Instead 
of proposing a model, Finke defined five “unifying principles” of mental 
imagery: 

l The principle of implicit encoding states that imagery is particularly useful 
for retrieving information about physical properties of objects and relations 
among objects whenever this information was not previously, explicitly 
encoded. 

l The principle of perceptual equivalence states that similar mechanisms in 
the visual system are activated when objects or events are imagined, as 
when the same objects or events are actually perceived. 

l The principle of spatial equivalence states that the spatial relations between 
objects are preserved, although sometimes distorted, in mental images. 

l The principle of structural equivalence states that the structure of images 
corresponds to that of perceived objects, in the sense that the structure is 
coherent, well organized, and can be reinterpreted. 

l The principle of transformational equivalence states that imagined and 
physical transformations exhibit similar dynamic characteristics and follow 
the same laws of motion. 

These principles provide a basis for evaluating the representations and func- 
tions for computational imagery; in the development of our scheme we have 
attempted to address each of the underlying principles for mental imagery. 

Stages of Image Representations 
The hypothesis of multiple representations for mental imagery can explain 
several experimental results that cannot be explained independently by 
either a propositional, a spatial, or a visual representation. For instance, after 
a series of experiments, Atwood (1971) concluded that memory for high- 
image phrases is disrupted if followed by a task requiring the subject to pro- 
cess a visually presented digit in contrast to abstract phrases. Although other 
researchers found difficluty in replicating Atwood’s experiments, Jannsen 
(1976) succeeded consistently over several experiments and claimed that 
other failures stemmed from using an interfering task that is spatial rather 
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than visual. Baddeley and Lieberman (1980) interpreted these results as 
pointing towards distinct visual and spatial components of mental imagery. 

When images are retrieved, it is possible to recall information about 
which objects constitute a scene and their spatial relationships with other 
objects without remembering what the object looks like. Furthermore, we 
are able to recognize objects independent of any context. Distinct spatial 
and visual components for imagery can explain such phenomena, where the 
spatial component can be considered as an index that connects visual images 
to create a scene. 

Intuitively, we can distinguish between visual and spatial representations 
by considering the type of information we wish to retrieve. Consider, for ex- 
ample, answering the following questions: How many windows are there in 
your home? What city is farther north, Seattle or Montreal? What objects 
are sitting on top of your desk? Who was sitting beside Mary in class? These 
questions can typically be answered without constructing an explicit visual 
image, that is, you could possibly recall that John was sitting beside Mary 
without knowing what John looked like or what clothes he was wearing. 
Each of these questions does rely on knowing the relative locations of ob- 
jects within a recalled image, information that is embodied in a spatial 
representation. Now consider questions such as: What is the shape of your 
dog’s ears? What does a particular image look like if you rotate it ninety 
degrees? What is larger, a rabbit or a racoon? Is Montreal or Toronto closer 
to Ottawa? To answer these questions you may need to reconstruct a repre- 
sentation that preserves information such as size, shape, or relative dis- 
tance, information that is embodied in a visual representation. 

From the computational point of view, a single representational system 
cannot always effectively express all the knowledge about a given domain; 
different representational formalisms are useful for different computa- 
tional tasks (Sloman, 1985). In perceptual systems, for instance, multiple 
representations have been proposed to derive cognitively useful representa- 
tions from a visual scene. For computational imagery, we propose three 
stages of image representation, each appropriate for a different type of in- 
formation processing (Fapadias & Glasgow, 1991). The deep representation 
stores structured, descriptive information in terms of a semantic network, 
long-term memory model. The working-memory representations (spatial 
and visual) are consciously experienced and generated as symbolic and 
occupancy arrays, as needed, using information stored in the deep represen- 
tation. Details about the computational advantages of each of the image 
representations involved in the scheme will be presented in the following 
section. 

KNOWLEDGE REPRESENTATION SCHEME 

Research in AI has long been concerned with the problem of knowledge rep- 
resentation. AI programs rely on the ability to store descriptions of a partic- 
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ular domain and formally manipulate these descriptions to derive new 
knowledge. Traditional approaches to knowledge representation include 
logic representations, which denote the objects and relations in the world in 
terms of axioms, and structural knowledge representation schemes, which 
denote concepts and relations in terms of structural hierarchies. 

In addition to general schemes, there exist specialized schemes concerned 
with the representation of the visual representation of images. In discrimi- 
nation trees, objects are sorted by discriminating on their coordinates, as 
well as other quantitative and qualitative discriminators (McDermott 8c 
Davis, 1984). A simple way of describing volume or shape is with occupancy 
arrays, where cells of the array denote objects filling space. For computer 
vision applications, an occupancy array is often called a gray-level descrip- 
tion, because the value of the cells encode the intensity of light on a gray 
scale from white to black. For our molecular scene analysis application, we 
use three-dimensional occupany arrays that correspond to electron density 
maps resulting from X-ray diffraction experiments. The values of the cells 
in such maps correspond to the electron density in a unit cell of a crystal. 

According to Biederman (1987), the visual representation for objects can 
be constructed as a spatial organization of simple primitive volumes, called 
geons. Other researchers have proposed alternative primitive volumes, like 
generalized cones, spheres, and so forth. A major contribution in represen- 
tational formalisms for images is the progression of primal sketch, 2’/2D 
sketch, and 3D sketch (Marr & Nishihara, 1978). The primal sketch repre- 
sents intensity changes in a 2D image. The 21/D sketch represents orienta- 
tion and depth of surface from a particular viewer perspective. Finally, the 
3D sketch represents object-centered spatial organization. 

The representation schemes discussed before are not suggested as struc- 
tures for representing human knowledge and do not necessarily commit to 
addressing questions about mental processes. Whereas many AI researchers 
believe that the best way to make true thinking machines is by getting com- 
puters to imitate the way the human brain works (Israel, 1987), research in 
knowledge representation often is more concerned with expressiveness and 
efficiency, rather than explanatory and predictive power. Thus, although 
our knowledge representation scheme attempts to preserve the most rele- 
vant properties of imagery, whenever possible we try to overcome the limita- 
tions of the human information-processing system. For example, theories 
of divided attention argue that attention can be concentrated on, at most, a 
few mental processes at a time. Our proposed scheme has the capability of 
relatively unrestrictive parallel processing of spatial images. Furthermore, 
although the resolution of mental images is limited by the capabilities of the 
human mind, in the knowledge representation scheme the resolution restric- 
tions are imposed by the implementation architecture. 

A theory of arrays provides a formalism for the representations and 
functions involved in computational imagery. Array theory (More, 1981) is 
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the mathematics of nested, rectangularly arranged collections of data ob- 
jects. Similar to set theory, array theory is concerned with the concepts of 
nesting, aggregation, and membership. Array theory is also concerned with 
the concept of data objects having a spatial position relative to other objects 
in a collection. Thus, it provides for a multidimensional, hierarchical repre- 
sentation of images, in which spatial relations are made explicit. 

We consider computational imagery as the ability to represent, retrieve, 
and reason about information not explicitly stored in long-term memory. In 
particular, we are concerned with visual and spatial information. Recall 
that the visual component of imagery specifies how an image looks and is 
used to retrieve information such as shape, size, and volume, whereas the 
spatial component of imagery denotes where components of an image are 
situated relative to one another and is used to retrieve information such as 
neighborhoods, adjacencies, symmetry, and relative locations. As illustrated 
in Figure 1, the long-term memory representation is implemented as a 
description of the image, and the working-memory representations corres- 
pond to representations that make explicit the visual and spatial properties 
of an image. In the remainder of this section, we describe each of the repre- 
sentations in detail and discuss the primitive functions that operate on 
them. First, though, we overview the theory or arrays that provide the basis 
for describing and implementing the representations and functions for com- 
putational imagery. 

Array Theory 
Results of empirical studies suggest that images may be organized using 
both a hierarchical and a spatial structure. Components of an image may be 
grouped into features and stored based on their topological relations, such 
as adjacency or containment, or their spatial relations, such as above, 
beside, north-of, and so on. Because of the relevance of storing and reason- 
ing about such properties of an image, we base the development of the 
knowledge representation scheme for computational imagery on a theory of 
arrays. This mathematical theory allows for a multidimensional, hierarchi- 
cal representation of images in which spatial relations are made explicit. 
Furthermore, functions can be defined in array theory for constructing, 
manipulating, and retrieving information from images represented as arrays. 
For example, functions that compose, translate, juxtapose, and compare 
images have been defined within the theory. 

The development of array theory was motivated by efforts to extend the 
data structures of APL and has been influenced by the search for total 
operations that satisfy universal equations (More, 1981). In this theory, an 
array is a collection of zero or more items held at positions in a rectangular 
arrangement along multiple axes. Rectangular arrangement is the concept 
of data objects having a position relative to other objects in the collection. 
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Figure 1. Representations for computational imagery 

The interpretation of this structure can be illustrated using nested, box 
diagrams. Consider the array diagram in Figure 2. In this array the pair 
formed from 7 and 9 is an array nested within the larger array. Nesting is the 
concept of having the objects of a collection be collections themselves. This 
is an important concept in array theory because it is the power of aggregat- 
ing arbitrary elements in an array that gives the theory much of its expensive 
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Flgure 2. Example of nested array diagram 

power. The third element of the array is a symbolic array, which denotes an 
image of a house containing three parts. The indexing of the array allows 
us to make explicit such properties as above(roof,door) and left-of(door, 
window) in a notation that is both compact and accessible. 

Array theory has provided a formal basis for the development of the 
Nested Interactive Array Language, Nial. This multiparadigm programming 
language combines concepts from APL, Lisp, and FP with conventional 
control mechanisms (Jenkins et al., 1986). The primitive functions of array 
theory have all been implemented in Q’Nial (Jenkins & Jenkins, 1985), a 
commercially available, portable interpreter of Nial developed at Queen’s 
University. 

Operations in array theory are functions that map arrays to arrays. A 
large collection of total, primitive operations are described for the theory. 
They are chosen to express fundamental properties of arrays. Nial extends 
array theory by providing several syntactic forms that describe operations, 
including composition, partial evaluation of a left argument, and a lambda 
form. Array theory also contains second-order functions called transformers 
that map operations to operations. 

It has previously been shown that the syntactic constructs of array theory 
facilitate both sequential and parallel computations (Glasgow, Jenkins, 
McCrosky, & Meijer, 1989). This is an important feature when considering 
computational imagery as a basis for specifying cognitive processes, which 
themselves may be sequential or parallel. The potential parallelism in array 
theory comes from three sources: inherent parallelism in the primitive 
operations, parallelism expressed by syntactic constructs, and parallelism in 
operation application controlled by primitive transformers. The potential 
parallelism of the primitive operations results from treating an entire array 
as a single value; each array takes an array as a single argument and returns 
an array as its result. Array theory includes transformers that allow expres- 
sion of the parallel application of an operation to subparts of an array. 

The software development associated with AI problem solving in general, 
and with computational imagery in particular, differs from traditional com- 
puter applications. AI problems are solved at the conceptual level, rather 
than a detailed implementation level. Thus, much of the programming effort 
is spent on understanding how to represent and manipulate the knowledge 
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associated with a particular problem, or class of problems. This imposes 
certain features on a programming language, including interactive program 
development, operations for symbolic computation, dynamically created 
data structures, and easy encoding of search algorithms. Although Lisp and 
Prolog both address capabilities such as these, they provide very different 
and complementary approaches to problem solving. The language Nial is an 
attempt to find an approach to programming that combines the logic and 
functional paradigms of Prolog and Lisp (Glasgow & Browse, 1985, Jenkins 
et al., 1986). It has been demonstrated that array theory and Nial can pro- 
vide a foundation for logic programming (Glasgow, Jenkins, Blevis, & 
Feret, in press), as well as other descriptive knowledge representation 
techniques (Jenkins et al., 1988). These techniques have been implemented 
and tested on a variety of knowledge-based applications. 

Deep (Long-Term Memory) Representation 
The deep representation for computational imagery is used for the long- 
term storage of images. Earlier work has suggested that there exists a 
separate long-term memory model that encodes visual information descrip- 
tively (Kosslyn, 1980; Pinker, 1984). This encoding can then be used to 
generate depictive representations in working memory. As pointed out in 
Marschark, Bichman, Yuille, and Hunt (1987), most of the research in vision 
and imagery has focused on the format of the on-line conscious representa- 
tions, excluding long-term storage considerations. Our point of view is that 
the deep representation falls more in the limits of research in long-term 
memory than imagery, and we base its implementation on the hierarchical 
network model of semantic memory (Collins & Quillian, 1969). This model 
is suitable for storing images because they have a structured organization in 
which subimages can occur as elements in more complex images. 

The deep representation in our scheme is implemented using a frame 
language (Minsky, 1975), in which each frame contains salient information 
about an image or class of images. This information includes propositional 
and procedural knowledge. There are two kinds of image hierarchies in the 
scheme: the AKO (a kind of) and the PARTS. The AKO hierarchy provides 
property inheritance: Images can inherit properties from more generic image 
frames. The PARTS hierarchy is used to denote the structural decomposition 
of complex images. The deep representation for imagery can be characterized 
as nonmonotonic because default information (stored in specific slots, or 
inherited from more generic frames) is superseded as new information is 
added to a frame. 

A frame corresponding to the image of a map of Europe and part of the 
semantic network for a map domain is illustrated in Figure 3. Each node in 
the network corresponds to an individual frame and the links describe the 
relationships among frames. The AKO slot in the frame of the map of 
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Flgure 3. Example of deep representation 

Europe denotes that the frame is an instance of the concept “Map-of- 
Continent.” The PARTS slot contains the meaningful parts that compose the 
map, along with an index value that specifies their relative locations. The 
POPULATION slot contains a call to a procedure that calculates the popula- 
tion of Europe, given the populations of the countries. As well, the frame 
could incorporate several other slots, including ones used for the generation 
of the spatial and visual representations. 

For the molecular scene analysis application, the frame hierarchy is more 
complex than the simple map example. The structure of a protein is described 
in terms of a crystal, which consists of a regular three-dimensional arrange- 
ment of identical building blocks. The structural motif for a protein crystal 
can be described in terms of aggregate (complex or quaternary), three- 
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dimensional structures. Similarly, tertiary structures can be decomposed 
into secondary structures, and so on. Each level in this decomposition hier- 
archy corresponds to a conceptual frame denoting a molecular fragment at 
a meaningful level of abstraction. If we consider a fully determined crystal 
as a molecular scene, there exist databases containing over 90,000 images of 
small molecules and over 600 images of protein structures (Allen, Bergerhoff, 
& Sievers, 1987). These databases include the three-dimensional geometry 
of the molecular scenes that forms a basis for our long-term memory model 
for molecular images. 

Semantic networks and frames have previously been suggested as repre- 
sentations for images in vision research. One example of this deals with the 
interpretation of natural scenes (M. Levine, 1978). In Levine’s system, the 
spatial relations are,represented as arcs such as left-of, above, or behind. A 
classic example of the use of semantic networks is the work of Winston 
(1975) on structural descriptions. In that study on scene understanding, 
common structures, such as arches and pedestals, are represented in terms 
of their decomposition into parts and a description of the spatial relations 
among the parts. Although this approach may be useful for some applica- 
tions, we argue later that explicitly representing spatial relations in terms of 
an indexed array provides increased computational efficiency for spatial 
reasoning. 

Our implementation of the deep representation has several attractive 
properties. First, it provides a natural way to represent knowledge because 
all the information about an image (or a class of images) can be stored in a 
single frame, and the structure of images is captured by the PARTS hierarchy. 
It is assumed that a property is stored at the most general level possible 
(highest level in the conceptual hierarchy) and is shared by more specific 
levels, thus providing a large saving in space over propositional or database 
formulations of property relations. The deep representation also incorporates 
the psychological concept of semantic networks in an implementation that 
provides features such as procedural attachment. The nonmonotonic feature 
of the frame allows for reasoning with incomplete information; default in- 
formation can be stored in conceptual frames and inherited and used for 
depicting or reasoning about subconcepts or instances of images. Despite its 
attractive properties, however, the deep representation is not the most 
suitable representation for all of the information processing involved in 
imagery. Thus, we require alternative representations to facilitate the effi- 
ciency of the scheme. 

Working-Memory Representations 
Mental images are not constantly experienced. When an image is needed, it 
is generated on the basis of stored information. Thus, unlike the deep repre- 
sentation, which is used for the permanent storage of information, the 
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Figure 4. Example of occupancy arrays for visual representations 

working-memory representations of an image exist only during the time that 
the image is active, that is, when visual or spatial information processing is 
taking place. 

The distinct working-memory representations were initially motivated by 
results of cognitive studies that suggest distinct components in mental 
imagery (Kosslyn, 1987). More importantly, separate visual and spatial rep- 
resentations provide increased efficiency in information retrieval. The 
visual representation is stored in a format that allows for analysis and 
retrieval of such information as shape and relative distance. Because the 
spatial representation makes explicit the important features and structural 
relationships in an image while discarding irrelevant features such as shape 
and size, it provides a more compact and efficient depiction for accessing 
spatial and topological properties. 

Viwal Representation. The visual representation corresponds to the visual 
component of imagery, and it can either be reconstructed from the under- 
lying deep representation or generated from low-level perceptual processes. 
Similar to Kosslyn’s (1980) skeletal image, this representation is depictive 
and incorporates geometric information. Unlike Kosslyn’s approach, we 
assume that the visual representation can be three-dimensional and viewer- 
independent. 

For the current implementation of the visual representation we use occu- 
pancy arrays. An occupancy array consists of cells, each mapping onto a 
local region of space and representing information such as volume, light- 
ness, texture, and surface orientation about this region. Objects ,are 
depicted in the arrays by patterns of filled cells isomorphic in surface area to 
the objects. Figure 4 illustrates depictions of three-dimensional occupany 
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arrays corresponding to a molecular fragment at varying levels of resolu- 
tion. These arrays were constructed using geometric coordinates and radii 
of the atomic components of the molecule. 

Representing occupancy arrays explicitly in long-term memory can be a 
costly approach. As a result, other approaches to storing or generating this 
information (like generalized shapes) have been developed. Such ap- 
proaches can be incorporated into an application of the scheme for com- 
putational imagery. 

Spatial Representation. A primary characteristic of a good formalism for 
knowledge representation is that it makes relevant properties explicit. 
Although an occupancy array provides a representation for the visual com- 
ponent of imagery, it is basically uninterpreted. For the spatial component 
of imagery we are best served by a representation that explicitly denotes the 
spatial relations between meaningful parts of an image, corresponding to 
the mental maps created by humans. Thus, we use a multidimensional sym- 
bolic array to depict the spatial structure of an image, where the symbolic 
elements of the array denote its meaningful parts (Glasgow, 1990). The sym- 
bolic array preserves the spatial and topological relationships of the image 
features, but not necessarily relative sizes or distances. The arrays can be in- 
terpreted in different ways depending on the application. If, for example, 
we use the scheme to reason about geographic maps, interpretations could 
include predicates such as north, east, south, and west; if the array is used 
to represent the image of a room, then the interpretation would involve 
predicates such as above, behind, left-of, beside, and so on. For molecular 
scene analysis we are more concerned with properties such as symmetry and 
adjacency (bonding), which are made explicit by a symbolic array. The 
spatial representation can also denote nonspatial dimensions. For example, 
the symbolic array could be used to index features such as height or speed. 

The symbolic array representation for the spatial component of imagery 
is generated, as needed, from information stored explicitly in the frame rep- 
resentation of an image. For example, in Figure 3 the PARTS slot contains 
the indices needed to reconstruct the spatial representation for a simplified 
map of Europe. Figure 5 illustrates this symbolic array. Note that some parts 
occupy more than one element in an array (e.g., Italy, France). This is 
necessary to capture all the spatial relationships of the parts of an image. 
We may also wish to denote more complex relations, such as one object 
being “inside” another. This is illustrated in Figure 6, which displays a 
spatial image of a glass containing water. 

According to Pylyshyn (1973), images are not.raw, uninterpreted, mental 
pictures, but are organized into meaningful parts that are remembered in 
terms of their spatial relations. Furthermore, we can access the meaningful 
parts, that is, we are able to focus attention on a specific feature of an 
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Portugal Spain Portugal Spain Italy Italy Greece Greece 

Figure 5. Example of symbolic array for spatial representation Figure 5. Example of symbolic array for spatial representation 

-1 
Figure 6. Symbolic array depiction of inside relation 

image. Nested symbolic arrays capture these properties by representing 
images at various levels of abstraction as prescribed by the PART hierarchy 
of the deep representation; each level of embedding in an array corresponds 
to a level of structural decomposition in the frame hierarchy. For instance, 
focusing attention on Britain in the array of Figure 5 would result in a new 
array in which the symbol for Britain is replaced by its spatial representa- 
tion (see Figure 7). This subimage is generated using the PARTS slot for the 
frame of Britain in the deep representation. 

It has been suggested that people can reconstruct and reinterpret mental 
images (Finke, 1989). The proposed scheme also provides the capability to 
combine and reconstruct images, using special functions that operate on the 
symbolic array representations. For instance, we can combine a portion of 
the array of Figure 5 with a portion of the array that corresponds to the map 
of Africa and create a new array containing Mediterranean countries. 

Recall that Pinker (1988) pointed out that images are represented and 
manipulated in three dimensions. Similar to the visual representation, a 
symbolic array can be two- or three-dimensional, depending on the applica- 
tion. In the domain of molecular scenes, fragments of molecules are repre- 
sented as three-dimensional symbolic arrays at varying levels of abstraction, 
corresponding to the level of decomposition in the frame hierarchy. For 
example, a protein can be represented as a three-dimensional array of sym- 
bols denoting high-level structures, which can be decomposed into nested 
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Figure 7. Embedded symbolic array representotion 

arrays of symbols denoting progressively more detailed substructures. Be- 
cause of the size and complexity of molecular structures, it is essential to be 
able to reason at multiple levels of abstraction when analyzing a particular 
molecular scene. Figure 8 depicts a three-dimensional image of a fragment of 
a protein secondary structure, and an embedded amino acid residue substruc- 
ture containing symbols denoting atoms. Bonding at the residue and atomic 
level is made explicit through structural adjacency in the representation. 

For image recognition and classification, it is necessary to pick out char- 
acteristic properties and ignore irrelevant variations. One approach to image 
classification is on the basis of shape. Although the visual representation 
provides one approach to shape determination, the spatial representation 
allows for a hierarchical, topological representation for shape. This approach 
is particularly useful in applications where images are subject to a large 
number of transformations. For example, a human body can be configured 
many ways depending on the positions of the arms, legs, and so forth. Al- 
though it is impossible to store a separate representation for every possible 
configuration, it is possible to represent a body using a symbolic array that 
makes explicit the parts of the body and the relations among parts that re- 
main constant under allowable transformations. Figure 9 illustrates such 
a spatial representation. Combined with a primitive shape descriptor (such 
as generalized cylinder), the spatial representation provides for multidimen- 
sional shape descriptors as proposed by Marr (1982). 

The spatial representation can be thought of as descriptive because it can 
be expressed as a propositional representation, where the predicates are 
spatial relationships and the arguments are concrete, imaginable objects. 
Although information in the spatial representation can be expressed as 
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Cysteine 
Flgure 8. Symbolic array of molecular fragment 

propositions, the representations are not computationally equivalent, that 
is, the efficiency of the inference mechanisms is not the same. The spatial 
structure of images has properties not possessed by deductive propositional 
representations. As pointed out by Lindsay (1988, p. 231), these properties 
help avoid the “combinatorial explosion by correct but trivial inferences 
that must be explicitly represented in a propositional system.” Lindsay also 
argued that the spatial image representations (symbolic representations in 
our case) support nondeductive inference using built-in constraints on the 
processes that construct and access them. Consider, for example, the spatial 
representation of the map to Europe. To retrieve the information about 
what countries are north of Germany, we need only search a small portion 
of the symbolic array. Alternatively, in a propositional approach, the spatial 
relations would be stored as axioms such as 

north-of(Britain, Portugal), north-of(France, Spain), 
north-of(Holland, Belgium). . . , 

and general rules such as 
north-of(X, Y) A north-of(Y,Z) - north-of(X,Z). 
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Flgure 9. Spatial representation for topological shape description 

To determine what countries are north of Germany using this representa- 
tion involves considering all axioms plus recursive calls to the general rule. 
Thus, although the information embodied in the spatial representation is 
derivable from propositional knowledge, the indexing of this information 
using an array data structure can make spatial reasoning more efficient. 

Another advantage of symbolic arrays, with respect to propositional rep- 
resentations, concerns temporal reasoning. Any cognitive system, natural 
or artificial, should be able to deal with a dynamic environment in which a 
change in a single item of knowledge might have widespread effects. The 
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problem of updating a system’s representation of the state of the world to 
reflect the effects of actions is known as the frame problem (Raphael, 
1971). Representing an image as a symbolic array has advantages when con- 
sidering this problem. Consider, for example, changing the position of a 
country in our map of Europe. In a propositional representation we would 
have to consider all of the effects that this would have on the current state. 
Using the symbolic array to store the map, we need only delete the country 
from its previous position and insert it in the new one. Because spatial rela- 
tionships are interpreted, not logically inferred, from image representa- 
tions, we eliminate some of the problems associated with nonmonotonicity 
in domains involving spatial and/or temporal reasoning. There still re- 
mains, however, the problem of dealing with truth maintenance if we desire 
to preserve relations as changes are made. 

The representation scheme provides the ability to extract propositional 
information from symbolic arrays and to create or manipulate symbolic 
arrays with respect to propositional information. It should be noted, though, 
that the spatial representation does not provide the full expressive power of 
first-order logic: We cannot express quantification or disjunction. For ex- 
ample, it is not possible to represent an image of Europe that denotes the 
fact that Britain is either north of or south of Portugal. But mental images 
cannot express such information either. The representation scheme can be 
integrated with a logic representation through Nlog, a logic programming 
environment based on the theory of nested arrays (Glasgow et al., 1991). In 
this environment, the spatial information extracted through ‘imagery pro- 
cesses can be used as propositions in logical deductions. 

Primitive Functions for Computational Imagery 
Approaches to knowledge representation are distinguished by the opera- 
tions performed on the representations. Thus, the effectiveness of our 
scheme can be partially measured by how well it facilitates the implementa- 
tion of imagery-related processes. In this section we review some of the 
primitive imagery functions that have been defined for the scheme. We also 
discuss how these functions provide the building blocks for more complex 
processes, 

In his computational model for imagery, Kosslyn (1980) considered three 
basic categories of image processes: procedures for image generation 
(mapping deep representations into visual representations), procedures for 
evaluating a visual image, and procedures for transforming an image. Al- 
though we attempt to capture much of the functionality of the procedures 
described by Kosslyn, and in fact can categorize our operations similarly, 
the nature of our representations imply great difference in the implementa- 
tions. For example, we define operations for both visual and spatial reason- 
ing of three-dimensional images. Also, because our images can be organized 
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hierarchically, we have defined functions that allow us to depict parts of an 
image at varying levels of abstraction using embedded arrays. When consid- 
ering spatial functions, we were also influenced by the work of Kritchevsky 
(1988), who defined (but did not implement), a classification scheme for ele- 
mentary spatial functions that include operations for spatial perception, 
spatial memory, spatial attention, spatial mental operations, and spatial 
construction. As well as attempting to capture much of the functionality 
derived from cognitive studies of behavior, we have been influenced by our 
desire to incorporate our tools in reasoning systems for knowledge-based 
system development. Thus, we have been concerned with issues such as effi- 
ciency and reusability of our primitive functions. 

The implementation of the imagery functions assumes global variables 
corresponding to the current states of long-term and working memory. The 
primitive functions modify these states by retrieving images from memory, 
transforming the contents of working memory or storing new (or modified) 
images in long-term memory. 

We consider the primitive functions for imagery in three classes corre- 
sponding to the three representations: deep, visual, and spatial. Functions 
for deep and visual memory have been considered previously in research 
areas such as semantic memory, vision, computational geometry, and 
graphics. Thus, we provide a brief overview of these classes and concentrate 
on the more novel aspect of our research, the functions for spatial reason- 
ing. We also discuss the processes involved in transforming one representa- 
tion into another, a powerful feature of our knowledge representation 
scheme. Note that the proposed functions have been specified using array 
theory and implemented in the programming language Nial. 

Long-Term Memory Functions. The frame concept was initially proposed 
as a model for analogy-driven reasoning (Minsky, 1975). In the context of 
imagery, this type of reasoning involves the understanding of an image in a 
new context based on previously stored images. The functions for the deep 
representation of imagery are exactly those of the Nial Frame Language 
(Hache, 1986). In this language, imagery frames contain information describ- 
ing images or classes of images, where knowledge is organized into slots that 
represent the attributes of an image. 

Like most frame languages, the Nial frame language uses a semantic net- 
work approach to create configurations of frame taxonomies. The hierarch- 
ical network approach supports AKO links for implementing an inheritance 
mechanism within the frame structure. Frames in the language are imple- 
mented and manipulated as nested association lists of slots and values. 
Creating a generic or instance frame for an image requires assigning values 
to its slots, which is achieved using the function fdefine. Information is 
modified, added to, or deleted from an existing frame using the fchange, 
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fput, and fdelete operators. Knowledge is retrieved (directly or through in- 
heritance) from frames using the fget function. These and many other 
frame functions are implemented as part of the Nial AI Toolkit (Jenkins et 
al., 1988). 

The decomposition of images into their components is an important con- 
cept of computational imagery. This is achieved through a PARTS slot that 
contains the meaningful parts of an image and their relative location. Be- 
cause the spatial representation of an image is stored relative to a particular 
axis, an instance frame may also contain an ORIENTATION slot. As described 
later, the PARTS and ORIENTATION slots allow for reconstruction of the 
spatial representation of an image. 

Functions for Visual Reasoning. Functions for visual reasoning have 
been studied extensively in areas such as machine vision and graphics. Similar 
to previous work, we consider visual images as surface or occupancy repre- 
sentations that can be constructed, transformed, and analyzed. 

The occupancy array representation for the visual component of imagery 
can be constructed in a number of ways, depending on the domain of appli- 
cation. For example, the visual representation can be stored as generalized 
shape descriptions and regenerated at varying levels of resolution. They 
may also be reconstructed from geometric information stored in the deep 
representation. 

Imagery functions for manipulating occupancy arrays include rotate, 
translate, and zoom, which change the orientation, location, or size of a 
visual image. Functions for retrieving volume and shape are also being imple- 
mented. Whereas many of these functions are generic, domain-specific func- 
tions can also be implemented for a particular application. For example, 
when considering molecular scenes we are concerned with a class of shape 
descriptors that correspond to the shape of molecular fragments at varying 
levels of abstraction (e.g., residues, secondary structure, molecule, etc.) 

Functions for Spatial Reasoning. Whereas functions for visual and 
memory-based reasoning have been studied previously, the primitive func- 
tions for spatial imagery are more unique to our representation. The impor- 
tance of spatial reasoning is supported by research in a number of areas, 
including computer vision, task planning, navigation for mobile robots, 
spatial databases, symbolic reasoning, and so on (Chen, 1990). Within the 
imagery context we consider spatial reasoning in terms of a knowledge rep- 
resentation framework that is general enough to apply to various problem 
domains. We also consider the relationship of spatial image representations 
to visual and deep representations. 

As mentioned earlier, the functions for computational imagery are im- 
plemented assuming a global environment consisting of a frame knowledge 
base and the current working-memory representation. Generally, the 
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TABLE 1 
Primitive Functions for Spatial Reasoning 

Name Mwiw Description 

retrieve 

Put 
f/rid 
delete 
move 

furn 
focus 

unfocus 
store 
ad/ocent 

DMXN-WM 
WMXNXNXL-WM 

WMXN-1 
WMXN-WM 
WMXNXL-WM 

WM X DIrection,- WM 
WMXN-WM 

representation 
WM-WM Return to original image 
WMXDMXN-DM Stores current image in long-term memory 
WMXN-N* Determine adjacent image components 

Reconstruct spatial image 
Place one image component relative to another 
Find location of component 
Delete image component 
Move image component to new location 
Rotate image 90°in specified direction 

Replace specified subimage with its spatial 

working-memory representation consists of a single symbolic array (for 
spatial reasoning) or an occupancy array (for visual reasoning). One excep- 
tion to this case is when we are using the spatial array to browse an image by 
focusing and unfocusing attention on particular subimages. In this case we 
need to represent working memory as a stack, where we push images onto 
the stack as we focus and pop images from the stack as we unfocus. Table 1 
presents a summary of some of the functions for spatial imagery. We specify 
these functions as mappings with parameters corresponding to deep memory 
(DM), working memory (WM), image name (N) and relative or absolute 
location (L). 

In order to reason with images, it is necessary to provide functions that 
allow us to interpret the spatial representations in terms of propositions 
within a given domain. For example, consider the three-term series prob- 
lem: John is taller than Mary, Sam is shorter than Mary, who is tallest? It 
has been suggested that people represent and solve such a problem using an 
array where the spatial relationships correspond to the relative heights (Hut- 
tenlocker, 1968): 

As discussed earlier, describing and solving such a problem using a proposi- 
tional approach involves an exhaustive search of all the axioms describing 
the relation. The symbolic array representation allows direct access to such 
information using a domain-specific array theory function tallest, which 
returns the first element of the array: 

tallest is operation A virst A}. 
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If our array is representing a map domain, we could similarly define 
domain-specific domain-specific functions for north-of, east-of, bordering- 
on, and so forth. 

Cognitive theories for pattern recognition support the need for attention 
in imagery, where attention is defined as the ability to concentrate tasks on 
a component (or components) of an image. The concept of attention is 
achieved using the spatial representation by defining a global variable that 
corresponds to a region of attention (and possibly an orientation) in a 
spatial representation of an image and implementing functions that impli- 
citly refer to this region. For example, we have defined functions that ini- 
tialize a region of attention (attend), shift attention to a new region (shift), 
retrieve the components in the region of attention (at-attend), focus on 
region of attention to retrieve detail (focus-attend), and so on. These func- 
tions are particularly useful for applications where we wish to describe and 
reason about a scene from an internal, rather than external, perspective. 
Consider, for example, a motion-planning application where the spatial 
representation reflects the orientation and current location of the moving 
body. 

Complex Functions for Imagery. Using the primitive functions for com- 
putational imagery we can design processes corresponding to more complex 
imagery tasks. For example, a function for visual pattern matching can be 
defined using the rotation and translation functions to align two visual rep- 
resentations of images, and a primitive compare function to measure the 
similarity between these occupancy arrays. 

To retrieve properties of an image, it may be necessary to focus on details 
of subimages. For example, we may wish to determine all the regions of 
countries on the border of an arbitrary country X. This can easily be deter- 
mined by applying the focus function to the countries adjacent to country X 
and then determining the content of these subimages. This can be expressed 
as the array theory function definition border, where the body of the defini- 
tion is enclosed by the curly brackets: 

border is operation X {content (EACH focus) adjacent X}. 

A key feature of our approach to knowledge representation for imagery 
is the underlying array theory semantics, which allows us to consider all rep- 
resentations as array data structures and implement functions that 
transform one representation of an image to another. Figure 10 illustrates 
the transformations supported by the scheme. Although the implementa- 
tion of functions used for storage, retrieval, and interpretation may be com- 
plex and domain specific, the primitive functions for imagery provide a 
basis for their implementation. For further details of the use of imagery for 
image interpretation in the domain of molecular scene analysis see Glasgow, 
Fortier, and Allen (1991). 
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Figure 10. Stages of image representation 

CONTRIRUTIONS OF COMPUTATIONAL IMAGERY 

In the introduction we proposed three goals for our research in computa- 
tional imagery: the cognitive science goal, the AI goal, and the applications 
goal. Combined, these goals attempt to address the fundamental question: 
What are the underlying processes involved in mental imagery, and how can 
corresponding computational processes be efficiently implemented and 
used to solve real-world problems? We do not believe that the three goals 
can be approached independently. The representations and functionality of 
computational imagery are motivated by empirical results from cognitive 
science, as well as the pragmatic needs of applications in AI. Also, the tools 
that have been developed for computational imagery can be used to imple- 
ment and test cognitive theories and thus increase our understanding of 
mental imagery. In this section we discuss the major contributions of com- 
putational imagery to each of the prescribed goals. 

Cognitive Science Goal 
A primary objective of research in cognitive science is to study and explain 
how the mind works. One aspect of work in this area is the theory of com- 
putability. If a model is computable, then it is usually comprehensible, com- 
plete, and available for analysis; theories that are implemented can be 
checked for sufficiency and used to simulate new predictive results. In a 
discussion of the issues of computability of cognitive theories for imagery, 
Kosslyn (1980) expressed frustration with existing implementation tools: 

There is a major problem with this approach however; the program will not run 
without numerous “kluges,” numerous ad hoc manipulations required by the 
realities of working with a digital computer and a programming language like 
ALGOL or LISP. (p. 137) 

Kosslyn went on to state that: 
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The ideal would be a precise, explicit language in which to specify the theory 
and how it maps into the program. (p. 138) 

Array theory, combined with the primitive functions and representations 
for computational imagery, provides such a meta-language. Moreover, it 
allows us to represent an image either visually or spatially, and provides for 
the implementation and testing of alternative, and possibly conflicting, 
models for mental imagery. 

Consider the problem of mental rotation. Although empirical observa- 
tions conclude that rotation involves an object representation being moved 
through intermediate orientations (Shepard & Cooper, 1982), a still unre- 
solved issue is the actual content of the representation used. One obvious 
representation is a visual depiction of the object that preserves detailed 
three-dimensional shape information. An alternative approach is one in 
which the object is represented as vectors corresponding to the major axes 
of the object (Just & Carpenter, 1985). This type of representation can be 
considered as spatial in nature: It preserves connectivity of parts but 
discards surface information about the image. Furthermore, whereas some 
researchers argue that images encode size (e.g., Kosslyn, 1980), others claim 
that mental images preserve information about relative positions but not 
size (e.g., Kubovy & Podgorny, 1981). This conflict, as possibly others, 
could be attributed to the different representations used by subjects in the 
different experimental tasks. Using the primitives of computational imagery 
and array theory, such theories could be simulated and analyzed. Although 
we are not interested in entering into the imagery debate, we suggest that 
such simulations could contribute to discussions in this area. As another ex- 
ample, consider that Pylyshyn’s (1981) main criticism of depictive theories 
of imagery is that they confuse physical distance in the world with the repre- 
sentation of distance in the head. The visual representation for computa- 
tional imagery does, in fact, attach a real distance to the representation, in 
terms of the number of cells in the array depicting the image. The spatial 
representation, on the other hand, does not preserve distance information. 
Thus, the distinct representations could be used to model conflicting 
theories of image scanning. 

The use of abstract representations for storing and manipulating three- 
dimensional images has been supported by research in cognition. Attneave 
(1974) suggested that humans represent three-dimensional objects using an 
internal model that at some abstract level is structurally isomorphic to the 
object. This isomorphism provides a “what-where” connection between 
the visual perception of an object and its location in space. A similar con- 
nection exists between the visual and spatial representations for imagery. 

The human brain is often compared to an information-processing system 
where computations can either be serial or parallel. Ullman (1984) suggested 
that there may be several forms of parallelism involved in mental imagery. 
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One form is spatial parallelism, which corresponds to the same operations 
being applied concurrently to different spatial locations in an image. Func- 
tional parallelism occurs when different operations are applied simulta- 
neously to the same location. Funt (1983) also argued that many spatial 
problems are amenable to parallel processing. In developing a parallel com- 
putational model for the rotation problem, Funt was able to simulate the 
linear-time behavior corresponding to the human solution of the problem. 

As well as allowing for multiple representations for testing cognitive 
theories, the array theory underlying computational imagery also provides 
both sequential and parallel constructs for specifying the processes involved 
in imagery. For example, the EACH transformer of array theory is a primi- 
tive second-order function that applies an operation to all of the arguments 
of an array, that is, EACHf[A,,. . .,A,,] = [AA,),. . ., f(An)]. Thus, we 
could specify a spatial parallel operation such as EACHfocus, which would 
simultaneously reconstruct all of the subimages in a given image. Func- 
tional parallelism can be captured using the atlas notation of array theory. 
An atlas is a list of functions that may be applied in parallel to an array. For 
example, the expression [f,, fi, . . . fn] A specifies simultaneous application 
to the functions f,, . . . , fn to array A. Using the atlas construct and the func- 
tions of computational imagery we can specify such spatial parallelism as 
[turn, move], which expresses the simultaneous updating of working and 
deep memory to reflect the translation and rotation of an image. 

A full study of the relationship between parallel processing in mental 
imagery and computational parallelism is a topic for future research. It has 
previously been demonstrated that the constructs of array theory are power- 
ful enough to express a wide gambit of concurrent processing (Glasgow et 
al., 1989). It may then be possible to analyze the limitations of parallel pro- 
cessing in cognitive tasks by analyzing the limitations when specifying these 
in array theory; if we cannot express a parallel algorithm for a task, then 
perhaps it is inherently sequential, cognitively as well as computationally. 

A detailed discussion of the relationship between mind and computer 
was presented by Jackendoff (1989), who addressed the issue of studying 
the mind in terms of computation. More specifically, Jackendoff suggested 
that to do so involves a strategy that divides cognitive science into studies of 
structure and processing. Our functional approach to computational imagery 
is complimentary to this philosophy; image representations are array data 
structures, which can be considered distinctly from the array functions that 
operate on them. Jackendoff also supported the possibility of different 
levels of visual representation with varying expressive powers. 

In summary, the underlying mathematics for computational imagery 
satisfies Kosslyn’s ideal by providing a precise and explicit language for 
specifying theories of mental imagery. Visual and spatial representations 
are implemented as arrays and manipulated using the primitive functions of 
computational imagery, which themselves are expressed as array theory 
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operations. Finally, the primitives of array theory and computational 
imagery have been directly mapped into Nial programs, which run without 
any “kluges” or “ad hoc manipulations.” Note that the theory can also 
provide the basis for other implementations of computational imagery, as 
illustrated by the Lisp implementation of Thagard and Tanner (1991). 

Al Goal 
AI research is concerned with the discovery of computational tools for solv- 
ing hard problems that rely on the extensive use of knowledge. Whereas 
traditional approaches to knowledge representation have been effective for 
linguistic reasoning, they do not always embody the salient visual and 
spatial features of an image. Also, they do not allow for an efficient imple- 
mentation of the operations performed on this information, such as com- 
paring shapes and accessing relevant spatial properties. 

Whereas representations and operations for visual reasoning have previ- 
ously been studied in imagery, as well as other areas such as computer vision 
and graphics, there has been little attention given to knowledge representa- 
tions for spatial reasoning. We suggest that the proposed scheme for repre- 
senting and manipulating spatial images has several advantages over visual 
or propositional representations. First, the spatial structure imposed by 
symbolic arrays supports efficient, nondeductive inferencing. Furthermore, 
the symbolic array representation for images can deal more easily with 
dynamic environments. 

The symbolic array representation for computational imagery has also 
provided the basis for analogical reasoning in spatial problems (Conklin & 
Glasgow, 1992; Glasgow, 1991). A thesis of this work is that the structural 
aspects of images, in particular the spatial relations among their parts, can 
be used to guide analogical access for spatial reasoning. Preliminary results 
in the conceptual clustering of chess game motifs has illustrated that com- 
putational imagery can be applied to the area of image classification. Cur- 
rently, we are extending this work to include classification of molecular 
structures based on spatial analogies (Conklin, Fortier, Glasgow, & Allen, 
1992). 

Applications Goal 
Since the time of Aristotle, imagery has been considered by many as a major 
medium of thought. Einstein stated that his abilities did not lie in mathema- 
tical calculations but in his visualization abilities (Holton, 1971). Similarly, 
the German chemist Kekuld stated that it was spontaneous imagery that led 
him to the discovery of the structure of benzene (MacKenzie, 1965). Mental 
simulations provide insights that contribute to effective problem-solving 
techniques. Thus, it is only natural to use the representations and functions 
of computational imagery to develop knowledge-based systems that incor- 
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porate the imagery problem-solving paradigm. One such system is an appli- 
cation to the problem of molecular scene analysis (Glasgow et al., 1991), 
which combines tools from the areas of protein crystallography and molec- 
ular database analysis, through a framework of computational imagery. 

In determining structures, crystallographers relate the use of visualiza- 
tion or imagery in their interpretation of electron density maps of a molecu- 
lar scene. These maps contain features that are analyzed in terms of the 
expected chemical constitution of the crystal. Thus, it is natural for crystal- 
lographers to use their own mental recall of known molecular structures, or 
of fragments thereof, to compare with, interpret, and evaluate the electron 
density features. Because molecular scenes can be represented as three-dimen- 
sional visual or spatial images, this mental pattern recognition process can 
be implemented using the primitive functions of computational imagery. 

In molecular scene analysis, we attempt to locate and identify the recog- 
nizable molecular fragments within a scene, As in Marr’s (1982, p. 3) defini- 
tion of computational vision, it is the “process of discovering what is present 
in the world, and where it is.” The integrated methodology for molecular 
scene analysis is being implemented as a knowledge-based system, through 
the development of five independent, communicating processes: (1) re- 
trieval and reconstruction of visual representation of anticipated motifs 
from the long-term memory (deep representation) of molecular images; 
(2) enhancement and segmentation of the visual representation of the three- 
dimensional electron density map molecular scene; (3) visual pattern match- 
ing of the segmented image features with the retrieved visual motifs; (4) 
analysis and evaluation of the hypothesized, partially interpreted spatial 
representation of the perceived image; and (5) resolution and reconstruction 
of the molecular image. These processes are applied iteratively, resulting in 
progressively higher resolution images, until ultimately, a fully interpreted 
molecular scene is reconstructed. 

The organization of the comprehensive information of crystal and molec- 
ular structures into a deep representation is crucial to the overall strategy for 
molecular scene analysis. This representation stores concepts and instances 
of molecular scene in terms of their structural and conceptual hierarchies. A 
serious problem in this domain, and in general, is to find appropriate visual 
and spatial depictions. This involves determining what features (visual or 
spatial) we wish to preserve in each of the representations. Initial algorithms 
have been developed to construct visual representations that depict the sur- 
face structure of an image and spatial representations that preserve bonding 
and symmetry information. Whether these are the most appropriate struc- 
tures for all our reasoning in the domain is still an open question. 

A full implementation of the knowledge-based system for molecular 
scene analysis is an ambitious and on-going research project. To date, we 
have been encouraged by preliminary results in the development of a long- 
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term memory model (deep representation) for molecular scenes and the im- 
plementation of some of the essential tasks of molecular imagery. These 
tasks include transforming geometric information into spatial and visual 
representations, evaluation of partially interpreted images, classification 
and retrieval of images, and visual and spatial comparison of molecular 
scenes. 

Although molecular scene analysis shares many features with visual 
scene analysis, it also differs in many ways. Both tasks involve segmentation 
of perceived images, retrieval and reconstruction of image templates, and 
pattern matching for object classification. The problem of molecular 
scene analysis is more tractable, however. Molecular images are perceived in 
three dimensions, thus eliminating the bottleneck of early vision routines. 
As well, the molecular domain is highly constrained: Molecular interactions 
and symmetry constraints impose hard restrictions on the image representa- 
tions. Finally, there exists a wealth of knowledge about molecular scenes 
and molecular interactions in existing crystallographic databases. Using 
machine-learning techniques, we hope, ultimately, to generalize, correlate, 
and classify this information. 

Although molecular scene analysis is only one of many potential applica- 
tions for computational imagery, we feel that it is important to apply our 
reasoning paradigm to a complex problem that involves extensive imagery 
abilities when carried out by humans. Because of the experience embodied 
in existing crystallographic databases and algorithms, the availability of ex- 
perts in the field and the natural constraints that exist in the domain, we 
believe that the important and real problem of molecular image reconstruc- 
tion is an ideal test case for the concepts and implementations of computa- 
tional imagery. It also suggests that the multiple representations of the 
scheme provide the framework for a complete computational model for the 
complex reasoning tasks involved in scene analysis. 

Other potential applications for imagery-based systems include haptic 
perception and medical imaging. Literature in haptic perception provides 
evidence for an interdependence between haptic perception and visual 
imagery (Katz, 1989). Of special interest, are applications such as motion 
planning and game playing, which combine spatial and temporal reasoning. 
As suggested earlier, the spatial representation for computational imagery 
facilitates nondeductive reasoning, thus precluding many of the nonmono- 
tonicity problems involved in deductive approaches in these areas. Prelimi- 
nary work in imagery and machine learning has demonstrated that the 
spatial representation for imagery can be used to depict and reason about 
structural motifs in a chess game (Conklin & Glasgow, 1992). As well, the 
representations for computational imagery have been used to describe the 
role of visual thinking in such complex domains as atomic theory develop- 
ment (Thagard & Hardy, 1992). 
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DISCUSSION 

This article introduces the concept of computational imagery, which treats 
imagery as a problem-solving paradigm in AI. By proposing a knowledge 
representation scheme that attempts to capture the fundamental principles 
of mental imagery, we provide a foundation for implementing systems rely- 
ing on imagery-based reasoning. 

Aside from related research in perception and early work in frame rep- 
resentations, the AI community has given little attention to the topic of 
imagery. Thus, we rely on relevant theories of cognition to provide initial 
guidance for our research. We are also driven by the need to apply the scheme 
to real-world applications. The representation scheme is not intended to be 
a model of mental imagery; we do not claim that in human working 
memory two “mind’s eyes” exist that process visual and spatial representa- 
tions identical to the ones we have implemented. What we do suggest is that 
the internal image representations are informationally equivalent to repre- 
sentations involved in our scheme, that is, information in one representa- 
tion is inferable from the other (Larkin & Simon, 1987). 

The knowledge representation scheme for computational imagery includes 
three image representations, each appropriate for a different kind of infor- 
mation processing. A set of primitive functions, corresponding to the fun- 
damental processes involved in mental imagery, has been designed using the 
mathematics of array theory and implemented in the functional array lan- 
guage Nial. These functions provide the building blocks for more complex 
imagery-related processes. 

The most relevant previous contribution to imagery is the work of Kosslyn 
(1980), who proposed a computational theory for mental imagery. In that 
theory, images have two components: a surface representation (a quasi- 
pictorial representation that occurs in a visual buffer), and a deep representa- 
tion for information stored in long-term memory. Like Kosslyn, we consider 
a separate long-term memory model for imagery, that ‘encodes visual infor- 
mation descriptively. Unlike Kosslyn, we consider the long-term memory to 
be structured according to the decomposition and conceptual hierarchies of 
an image domain. Thus, we use a semantic network model, implemented 
using frames, to describe the properties of images. The long-term memory 
model in Kosslyn’s theory is structured as sets of lists of propositions, 
stored in files. 

The surface representation in Kosslyn’s theory has been likened to spatial 
displays on a cathode ray tube screen; an image is displayed by selectively 
filling in cells of a two-dimenstional array. Our scheme for representing 
images in working memory is richer in two important ways. First, we treat 
images as inherently three dimensional,, although two-dimensional images 
can be handled as special cases. As pointed out by Pinker (1988), images 
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must be represented and manipulated as patterns in three dimensions, which 
can be accessed using either an object-centered or a world-centered coor- 
dinate system. Second, we consider two working-memory representations, 
corresponding to the visual and spatial components of mental imagery. Just 
as the long-term memory stores images hierarchically, the visual and spatial 
representations use nested arrays to depict varying levels of resolution or 
abstraction of an image. Although the functionality of many of the primi- 
tive operations for computational imagery were initially motivated by the 
processes defined by Kosslyn’s theory, their implementation varies greatly 
because of the nature of the image representations. 

Possibly the most important distinction between our approach to com- 
putational imagery and Kosslyn’s computational theory is the underlying 
motivation behind the two pieces of work. Kosslyn’s model was initially 
developed to simulate and test a particular theory for mental imagery. 
Whereas computational imagery can be used to specify and implement 
cognitive theories, its development was based on the desire to construct 
computer programs to solve hard problems that require visual and spatial 
reasoning. Thus, efficiency and expressive power, not predictive and ex- 
planatory power, are our main concerns. 

As a final illustration of the knowledge representation scheme, consider 
the island map used by Kosslyn (1980) to investigate the processes involved 
in mental image scanning. Figure 11 presents a visual depiction of such a 
map, as well as a spatial representation that preserves the properties of 
closeness (expressed as adjacency) and relative location of the important 
features of the island. It does not attempt to preserve relative distance. Con- 
sider answering such questions as: What is the shape of the island? Is the 
beach or the tree closer to the hut? These properties can be retrieved using 
the visual representation of the map. For example, we could analyze the sur- 
face of the island and compare this with known descriptions in the deep rep- 
resentation to retrieve shape information. Now consider the queries: What 
is north of the tree? What is the three-dimensional structure of the hut? 
Although it may be possible to derive this information from the visual rep- 
resentation, it would be a costly process. Using the symbolic array represen- 
tation, however, we can easily access and retrieve spatial information using 
an efficient constrained search procedure. Although it may be argued that it 
is also initially costly to construct the spatial representation, the process of 
determining the structure of this representation can be carried out once, and 
then the results stored in the deep representation for later use. 

More detailed information can be accessed from the spatial representa- 
tion using the focus function to construct and inspect spatial images at 
lower levels of the structural hierarchy. For this particular example, there is 
not sufficient information to determine all of the three-dimensional features 
of the hut from the two-dimensional visual depiction. Using the computa- 
tional imagery paradigm, which incorporates inheritance in the deep repre- 
sentation, we can construct the three-dimensional symbolic array using 
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Figure 11. Visual and spatial representation of Kosslyn’s (1980) island map 
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information stored in the generic frame for the concept “hut” to fill in 
missing details. 

It is worth noting here that the spatial representation is not just a low- 
resolution version, or approximation, of the visual representation of an im- 
age. As well as capturing the structural hierarchy of an image, the symbolic 
array may discard, not just approximate, irrelevant visual information. For 
example, in particular molecular applications we are primarily concerned 
with bonding information, which is made explicit using adjacency in a 
three-dimensional symbolic array. Visual and spatial properties such as size, 
distance, relative location (i.e., above, behind, left-oJ etc.) may not be im- 
portant for such applications and thus are not preserved. 

Another approach to visual reasoning was presented by Funt (1980), who 
represented the state of the world as a diagram, and actions in the world as 
corresponding actions in the diagram. Similar to Kosslyn, Funt used two- 
dimensional arrays to denote visual images. A more recent model describes 
how visual information can be represented within the computational frame- 
work of discrete symbolic representations in such a way that both mental 
images and symbolic thought processes can be explained (Chandrasekaran 
& Narayanan, 1990). Although this model allows a hierarchy of descrip- 
tions, it is not spatially organized. 

One way of evaluating our approach to computational imagery is in 
terms of the fundamental principles of mental imagery, as described in 
Finke (1989). In particular, the scheme was designed around the principle of 
implicit encoding, which states that imagery is used to extract information 
that was not explicitly stored in long-term memory. We retrieve information 
such as shape and size using the visual representation and information per- 
taining to the relative locations of objects in an image using the spatial rep- 
resentation for working memory. The principle of perceptual equivalence is 
captured by our assumption that perception and imagery share common 
representations. In fact, the processes involved in transforming a visual rep- 
resentation to a spatial representation are just those of scene analysis: taking 
a raw, uninterpreted image (visual representation) and identifying the sub- 
components and their relative positions (spatial representation). The spatial 
representation captures the principle of spatial equivalence, because there is 
a correspondence between the arrangement of the parts of a symbolic array 
of an image, and the arrangement of the actual objects in the space. Note, 
though, that Finke argued for a continuous space of mental images, whereas 
the spatial representation assumes a discrete space. The principle of struc- 
tural equivalence is preserved by the deep and the spatial representations, 
which capture the hierarchical organization of images. Furthermore, images 
in our representation scheme can be reorganized and reinterpreted. The 
scheme captures the functionality required of the principle of transforma- 
tional equivalence by providing primitive array functions that can be used 
to manipulate both the visual and spatial representations of images. 
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When questioned on the most urgent unresolved difficulties in AI research, 
Sloman (1985) replied: 

I believe that when we know how to represent shapes, spatial structures and 
spatial relationships, many other areas of AI will benefit, since spatial 
analogies and spatial modes of reasoning are so pervasive. (pp. 386487) 

Experimental results suggest that people use mental imagery for spatial 
reasoning. Thus, by facilitating an efficient implementation of the processes 
involved in mental imagery, computational imagery provides a basis for 
addressing the difficulties suggested by Sloman and developing AI systems 
that rely on representing, retrieving, and reasoning about visual and spatial 
properties of images. 
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