CS 4803 / 7643: Deep Learning

Topics:

- Convolutional Neural Networks
 - (Finish) Backprop in conv layers
 - Toeplitz matrices and convolutions = matrix-mult
 - Dilated/a-trous convolutions
 - Transposed convolutions

Dhruv Batra Georgia Tech

Administrativia

- HW0 Grades Released
 - 1 week to talk to TAs about any concerns.

Administrativia

- HW1 Analysis
 - <u>https://evalai.cloudcv.org/web/challenges/challenge-page/132/leaderboard/377</u>
 - <u>https://docs.google.com/spreadsheets/d/1k-</u> <u>ePFv77CUMhnzLFvVmR2k9JP0MYLX3eaLQS84vsVtl/edit#</u> <u>gid=1412360458</u>

Overfitting plots

Administrativia

- HW2 Released
 - Due: 10/18, 11:55pm
 - <u>https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/asse</u> <u>ts/hw2.pdf</u>

- Project Sign-up
 - Due: 10/05
 - <u>https://reproducibility-challenge.github.io/iclr_2019/</u>
 - <u>https://docs.google.com/spreadsheets/d/1BipWLvvWb7Fu6</u>
 <u>OSDd-uOCF1Lr_4drKOCRVdhxm_eSHc/edit#gid=0</u>

Recap from last time

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Pooling Layer

By "pooling" (e.g., taking max) filter

responses at different locations we gain robustness to the exact spatial location of features.

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

_					
	1	3	2	9	
	7	4	1	5	
	8	5	2	3	
	4	2	1	4	

J	I
(1

Pooling Layer: Examples

Classical View = Inefficient

Re-interpretation

• Just squint a little!

"Fully Convolutional" Networks

• Can run on an image of any size!

Benefit of this thinking

- Mathematically elegant
- Efficiency
 - Can run network on arbitrary image
 - Without multiple crops

Plan for Today

- Convolutional Neural Networks
 - (Finish) Backprop in conv layers
 - Dilated/a-trous convolutions
 - <u>Toeplitz matrices and convolutions = matrix-mult</u>
 - Transposed convolutions

Notes

Backprop in Convolutional Layers -a, c'-b k2-1 w[a', 6] x n'+a', c'+b', 0'=0 _

Plan for Today

- **Convolutional Neural Networks**
 - (Finish) Backprop in conv layers
 - Dilated/a-trous convolutions
 - Toeplitz matrices and convolutions = matrix-mult
 Transposed convolutions

(C) Dhruv Batra

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

(C) Dhruv Batra

Plan for Today

- Convolutional Neural Networks
 - (Finish) Backprop in conv layers
 - Dilated/a-trous convolutions
 - Toeplitz matrices and convolutions = matrix-mult
 - Transposed convolutions

Toeplitz Matrix

Diagonals are constants

Why do we care?

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_with_itself2.gif (C) Dhruv Batra
40

Figure Credit: Dumoulin and Visin, https://arxiv.org/pdf/1603.07285.pdf

GEMM

Plan for Today

- Convolutional Neural Networks
 - (Finish) Backprop in conv layers
 - Dilated/a-trous convolutions
 - Toeplitz matrices and convolutions = matrix-mult

Transposed convolutions

Transposed Convolutions

- Deconvolution (bad)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

So far: Image Classification

Other Computer Vision Tasks

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

2D Object Detection

DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection

Car

Object categories + 3D bounding boxes

This image is CC0 public domain

Semantic Segmentation

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

2D Object Detection

DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection

Car

Object categories + 3D bounding boxes

This image is CC0 public domain

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

This image is CC0 public domain

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: "Unpooling"

In-Network upsampling: "Max Unpooling"

