CS 4803 / 7643: Deep Learning

Topics:

- Recurrent Neural Networks (RNNs)
- BackProp Through Time (BPTT)

Dhruv Batra Georgia Tech

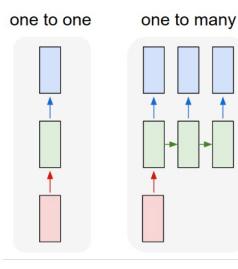
Administrativia

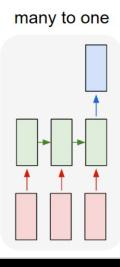
- HW3 Released
 - Due: 11/06, 11:55pm
 - Last HW
 - Focus on projects after this
 - <u>https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/asse</u> <u>ts/hw3.pdf</u>

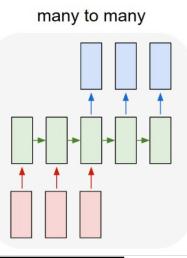
Plan for Today

- Model
 - Recurrent Neural Networks (RNNs)
- Learning
 - BackProp Through Time (BPTT)

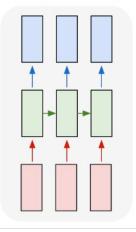
New Topic: RNNs

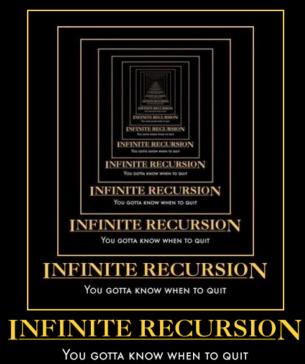






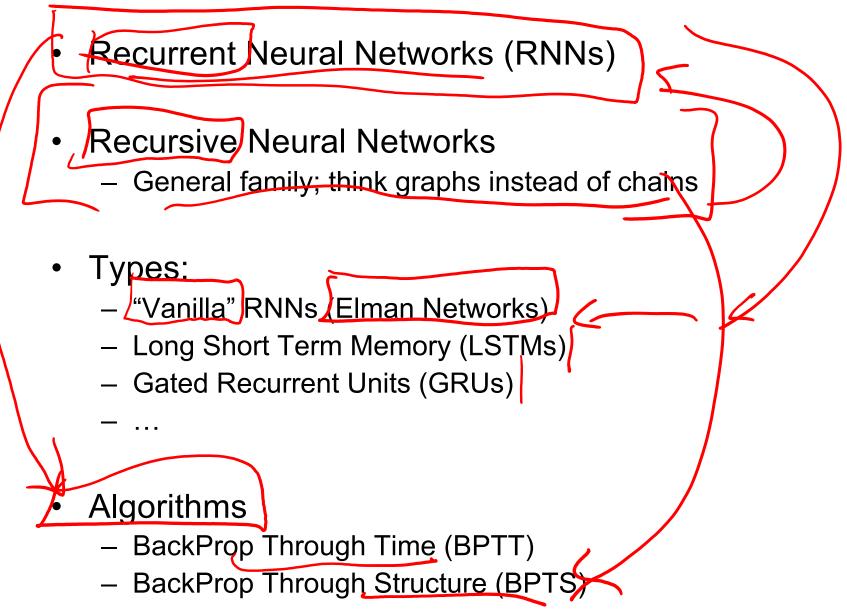
many to many





(C) Dhruv Batra

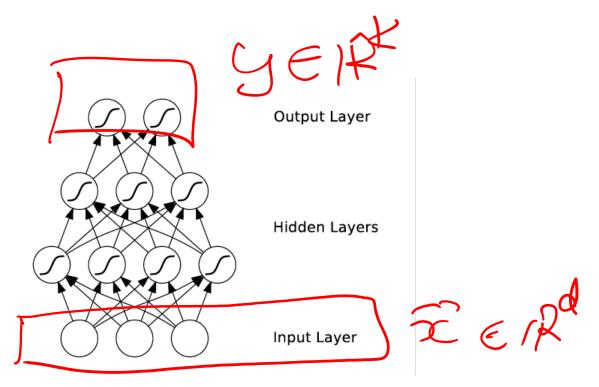
New Words



What's wrong with MLPs?

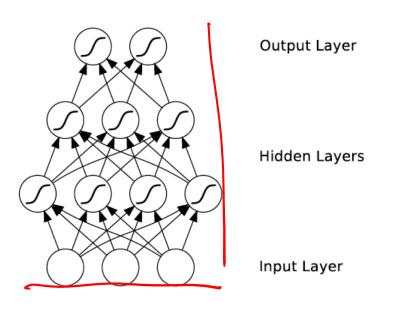
- Problem 1: Can't model sequences
 - Fixed-sized Inputs & Outputs

No temporal structure



What's wrong with MLPs?

- Problem 1: Can't model sequences
 - Fixed-sized Inputs & Outputs
 - No temporal structure
- Problem 2: Pure feed-forward processing /
 - <u>No "memory"</u>, no feedback



Why model sequences?

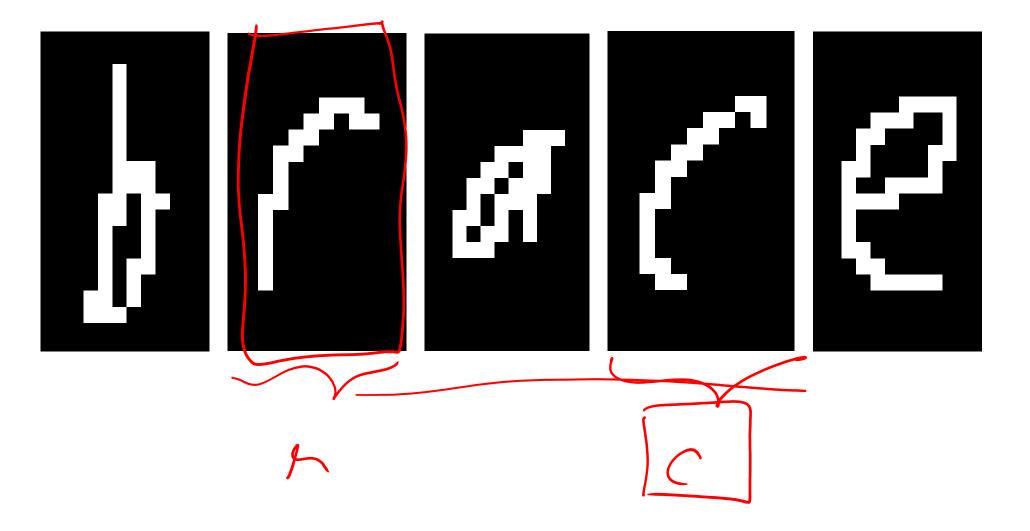
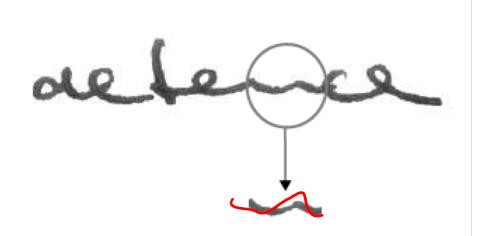
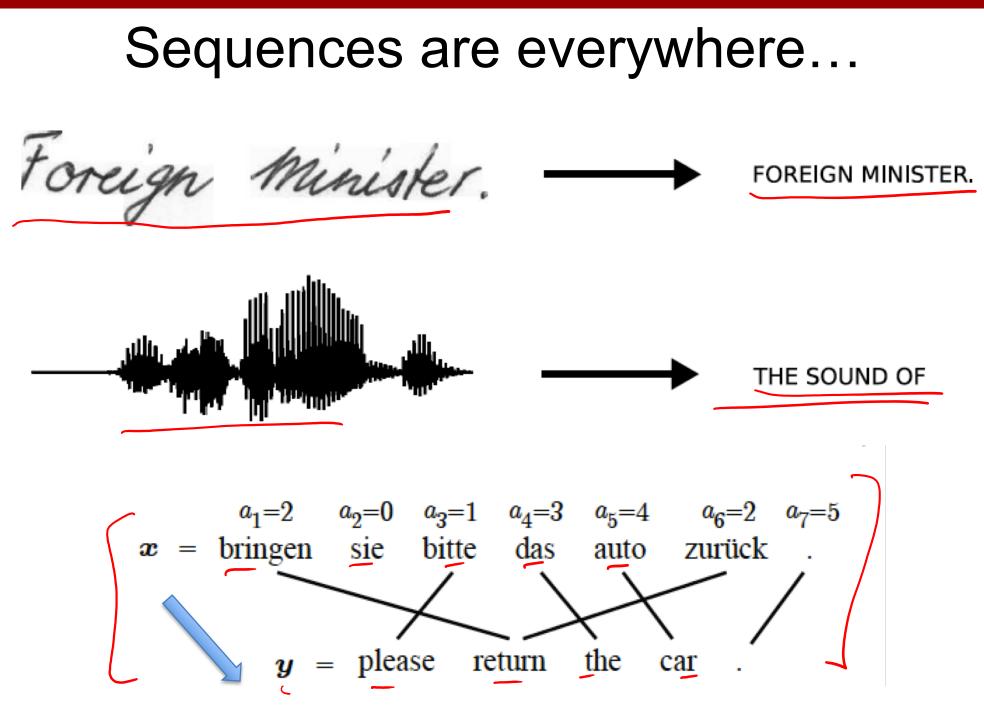


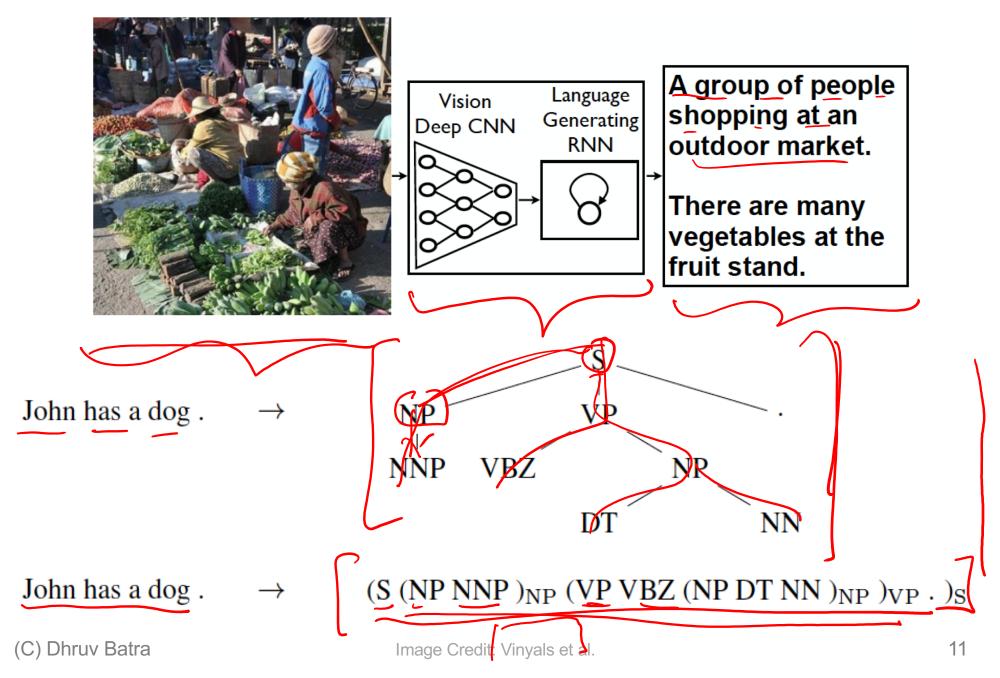
Figure Credit: Carlos Guestrin

Why model sequences?





Even where you might not expect a sequence...



Even where you might not expect a sequence...

Classify images by taking a series of "glimpses"

2	54	8	2	9	1	(1	ļ	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8		6	9	8	3	4
	0								
7	/	4	4	4	4	4	ų	7	9
3	1	8	9	3	4	2	4	2	3
6	6	1	6	З	- An	3	3	9	0
8	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
1	1	8	7	9	00	500	2	-	R

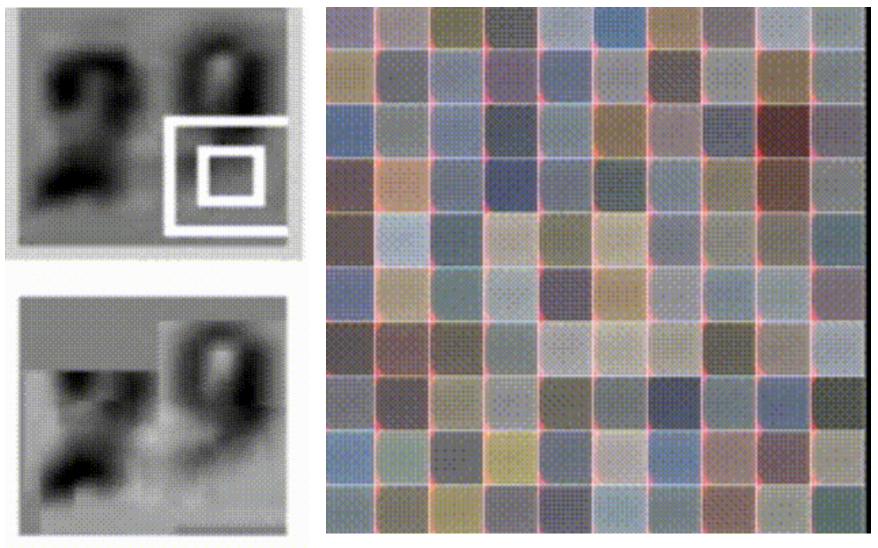
Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

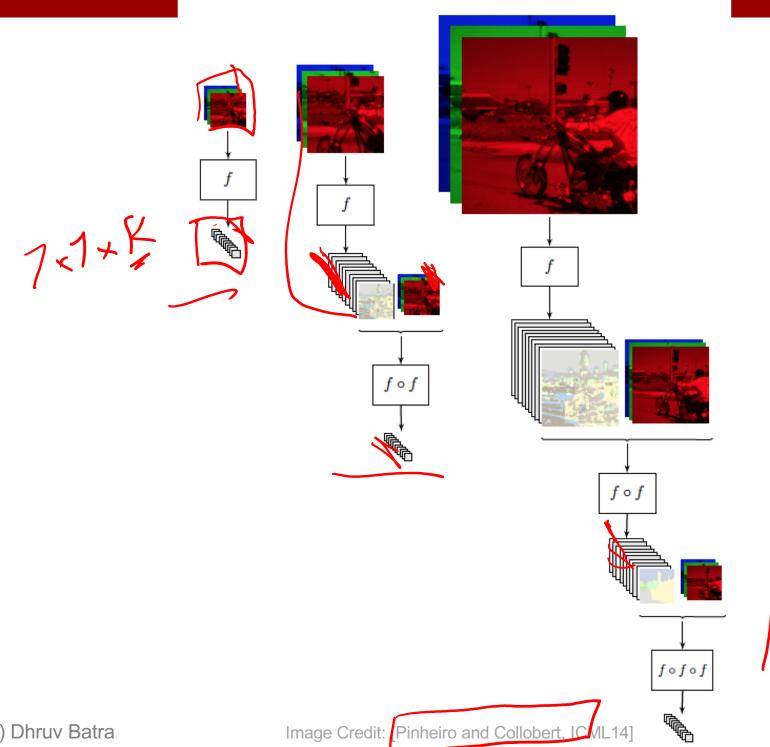
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

Even where you might not expect a sequence...

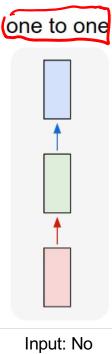
Output ordering = sequence



(C) Dhruv Batra



• It's a spectrum...

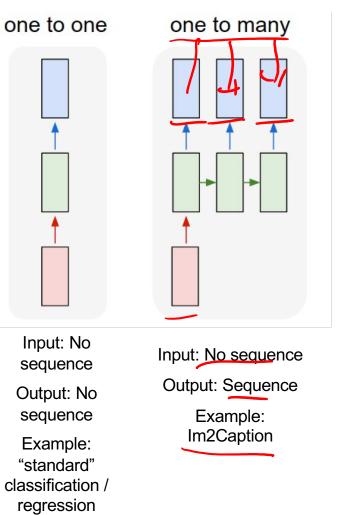


sequence Output: No

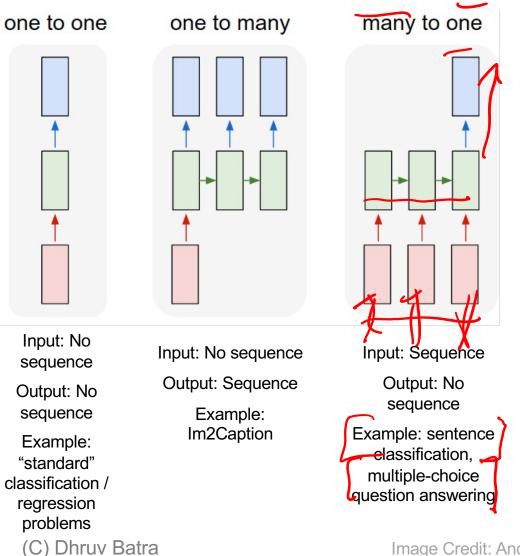
sequence

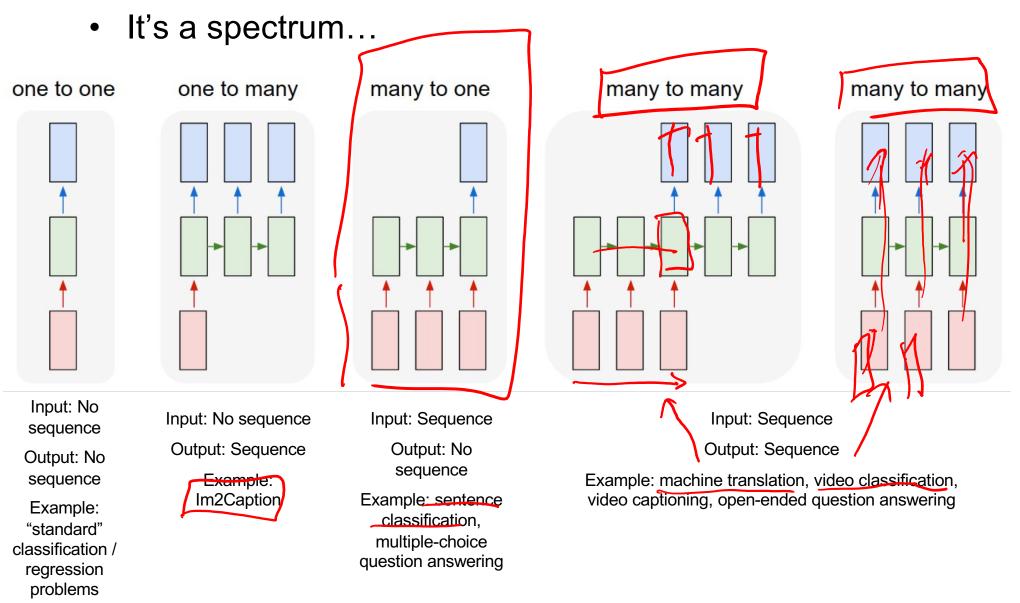
Example: "standard" classification / regression problems (C) Dhruv Batra

• It's a spectrum...



• It's a spectrum...

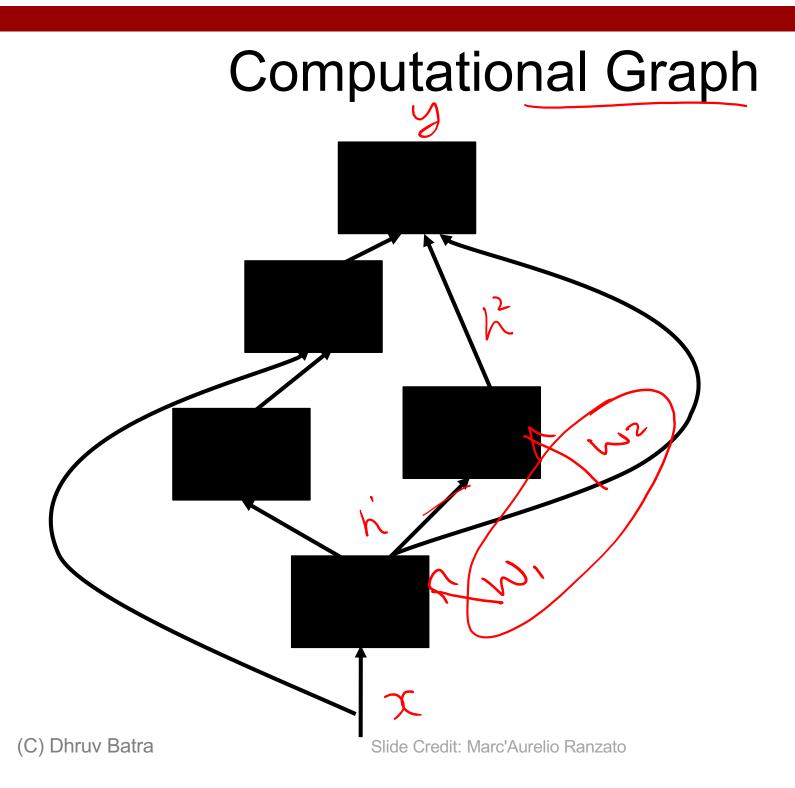




(C) Dhruv Batra

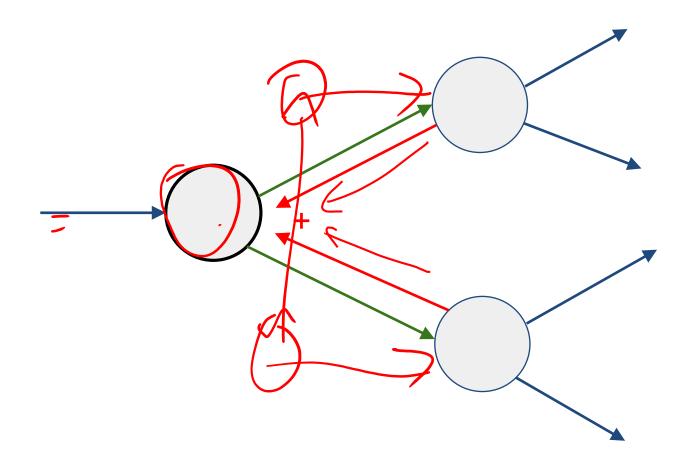
[]

- Parameter Sharing
 - in computation graphs = adding gradients



w,(t) w2(t) $f(w_1, w_2)$ $\delta, w_2 \rangle - f(w, w_2)$ $-(W_{1}+$ 1 Jws, <u>9</u>E <u>θ</u>w, $W_1 = t = W_2$

Gradients add at branches

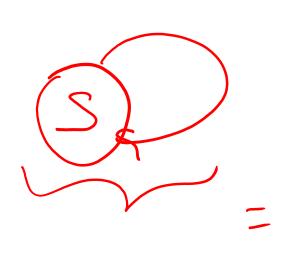


2 Key Ideas

- Parameter Sharing
 - in computation graphs = adding gradients
- "Unrolling"
 - in computation graphs with parameter sharing

How do we model sequences?

• No input

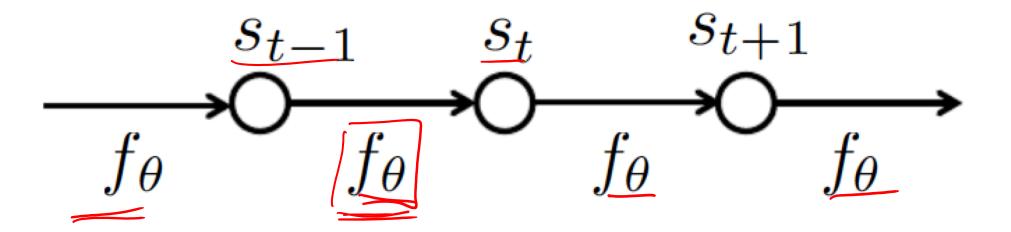


$$\underline{s_t} = \underbrace{f_{\theta}(s_{t-1})}_{\text{Solution}}$$

How do we model sequences?

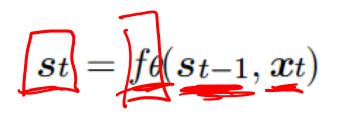
• No input

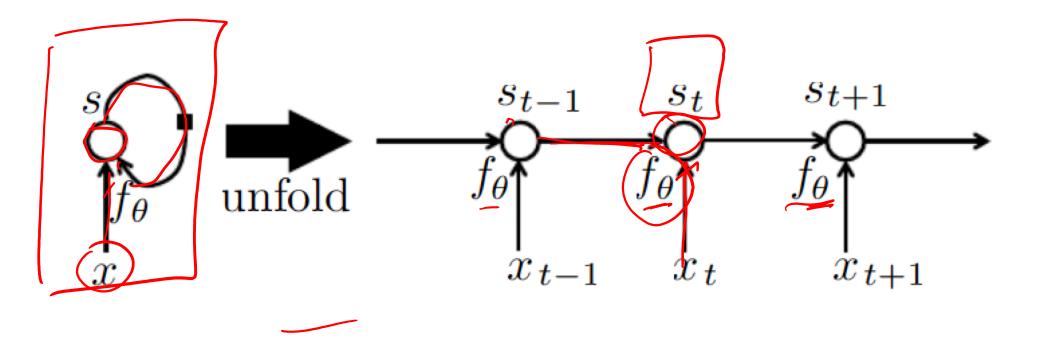
$$s_t = f_\theta(s_{t-1})$$



How do we model sequences?

• With inputs

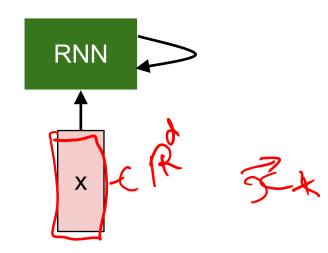




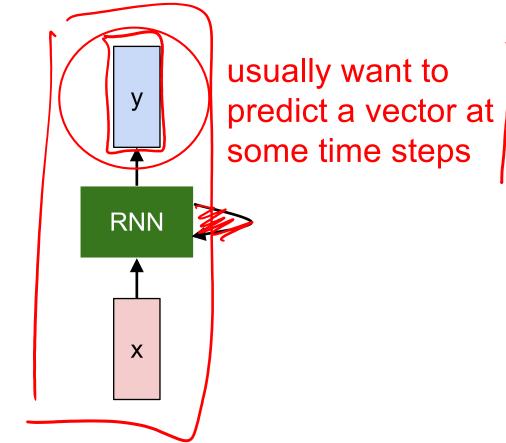
2 Key Ideas

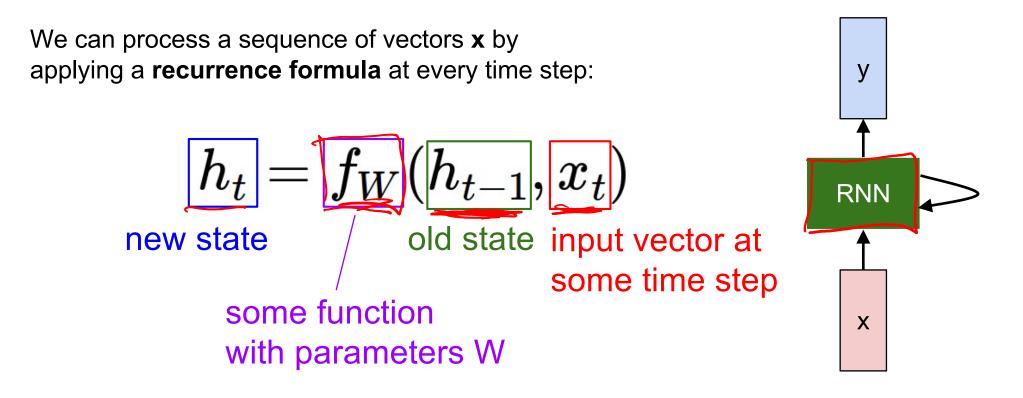
- Parameter Sharing

 in computation graphs = adding gradients
- - "Unrolling" in computation graphs with parameter sharing
- Parameter sharing + Unrolling
 - Allows modeling arbitrary sequence lengths!
 - Keeps numbers of parameters in check



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

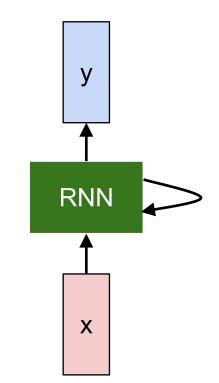




We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

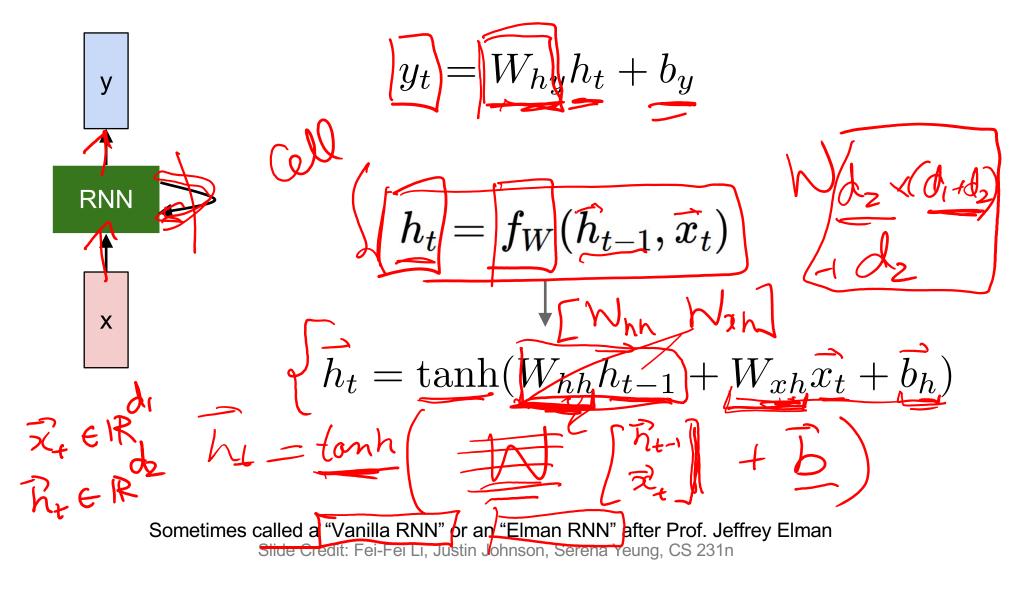
$$h_t = f_W(h_{t-1}, x_t)$$

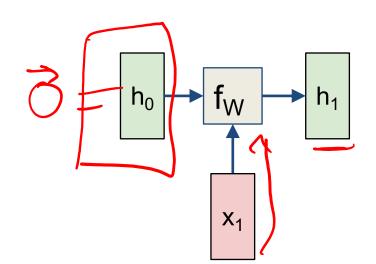
Notice: the same function and the same set of parameters are used at every time step.



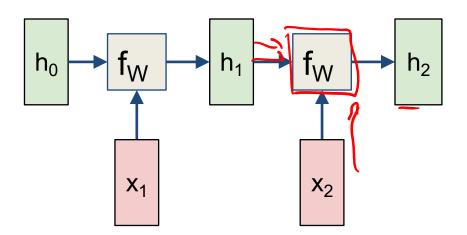
(Vanilla) Recurrent Neural Network

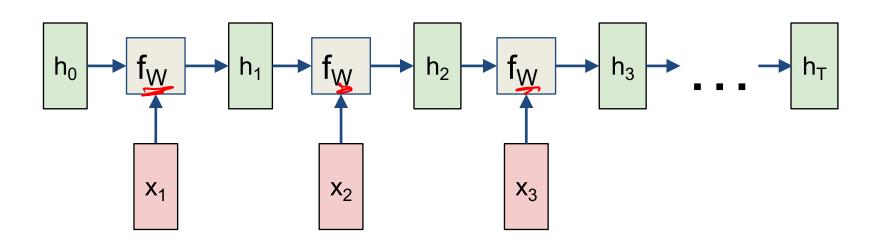
The state consists of a single "hidden" vector h:



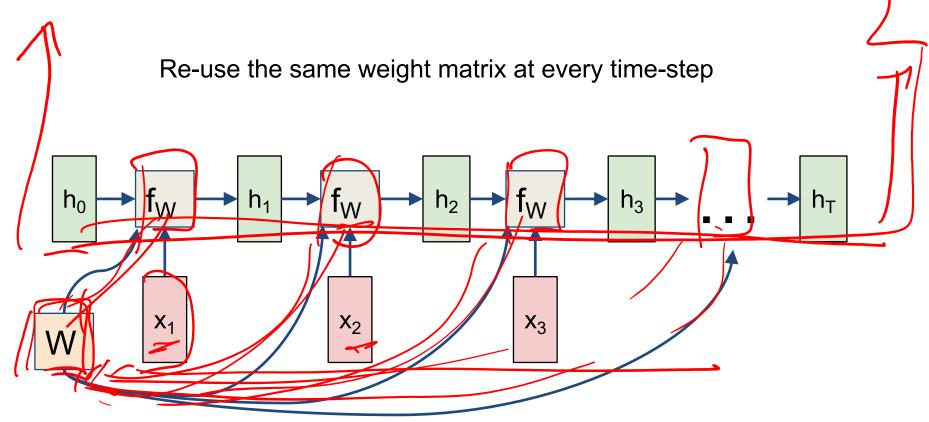


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

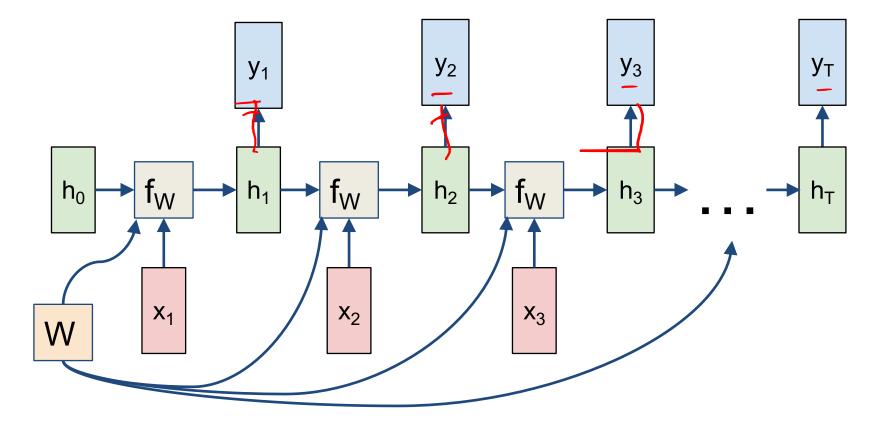




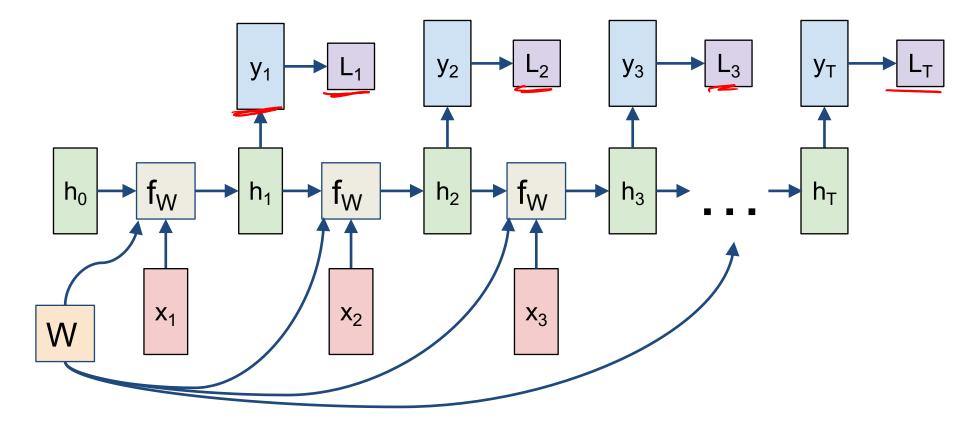
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

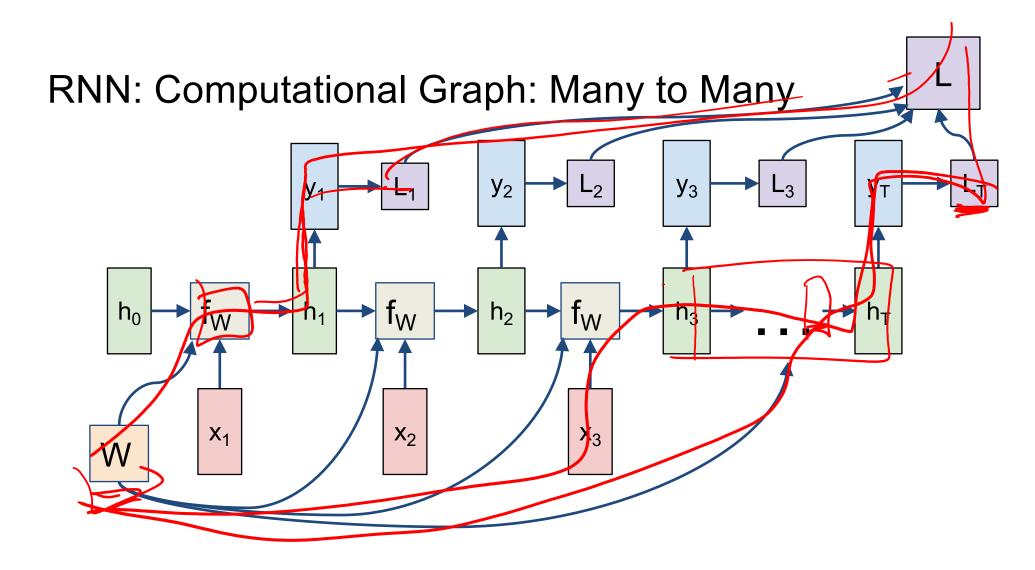


RNN: Computational Graph: Many to Many

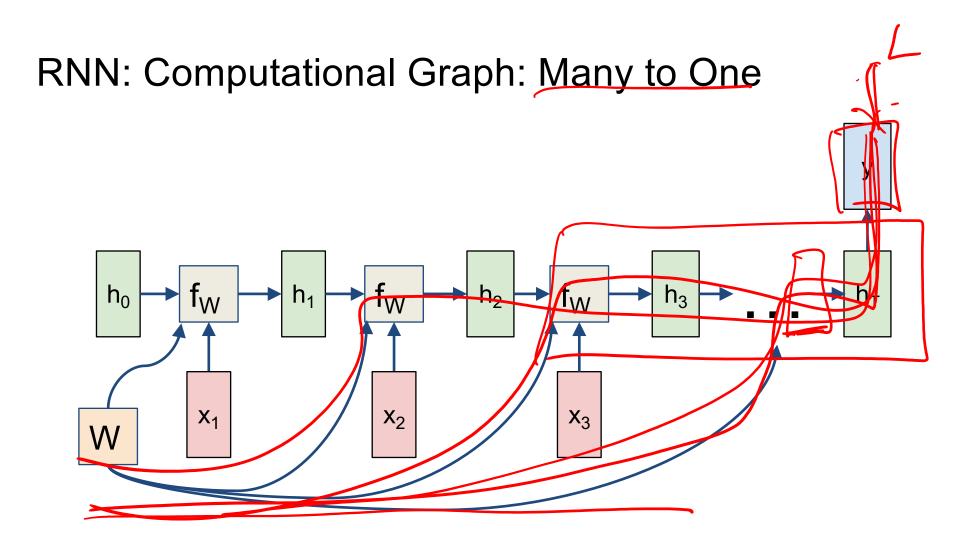


RNN: Computational Graph: Many to Many



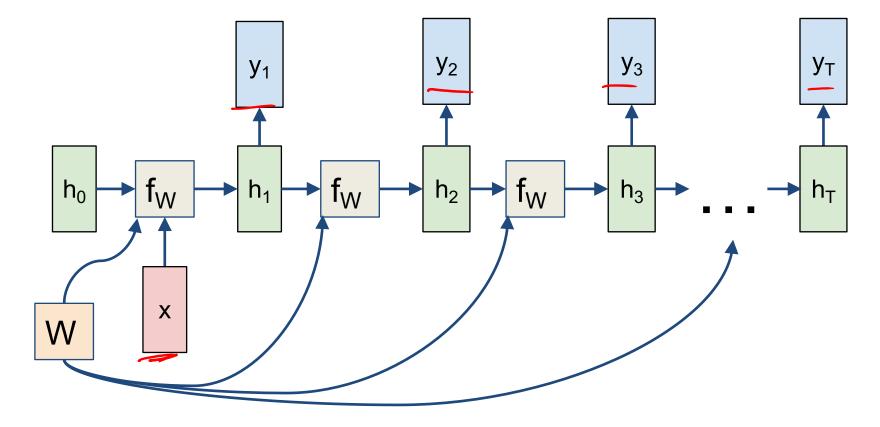


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



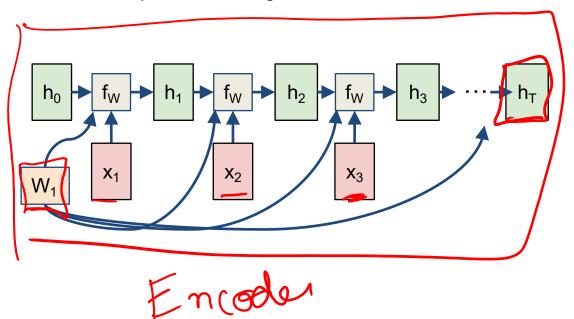
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: One to Many

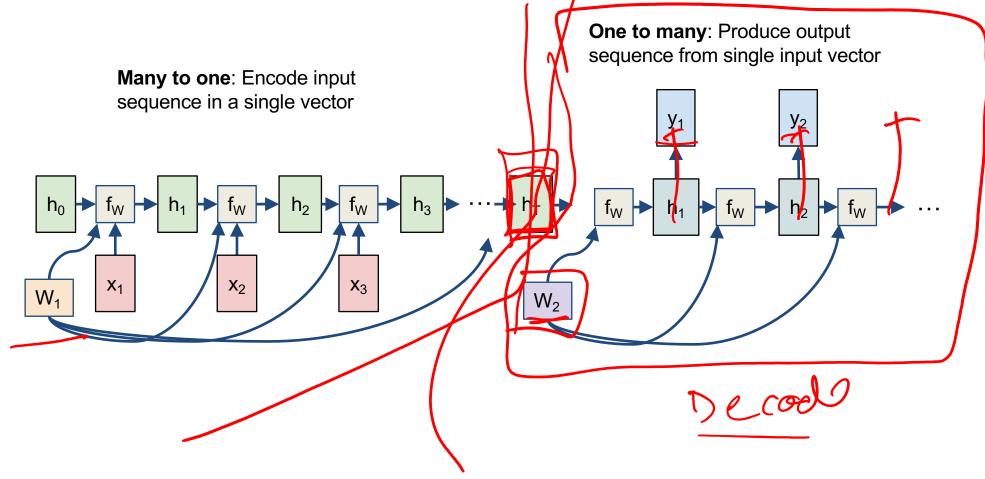


Sequence to <u>Sequence</u> Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector



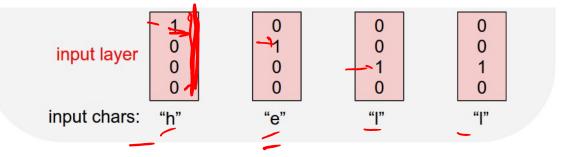
Sequence to Sequence: Many-to-one + one-to-many



 $(x_{\tau}) = P(x_{\tau})P(x_{\tau}|x_{\tau}) - P(x_{t}|x_{\tau}) - P(x_{t}|x_{\tau}-x_{t-1})$ B(x.

Vocabulary: [h,e,l,o]

Example training sequence: "hello"



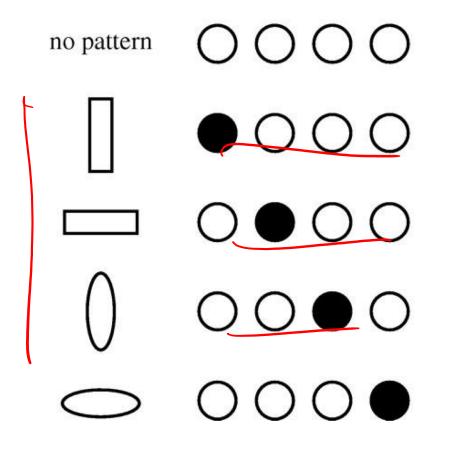
Example: $\tanh(W_{hh}h_t)$ $h_t =$ $W_{xh}x_t$ b_h **Character-level** Language Model Vocabulary: 0.3 1.0 -0.3 0.1 W hh hidden -0.1 0.3 -0.5 0.9 [h,e,l,o] 0.9 0.1 -0.3 0.7 W_xh **Example training** 0 0 0 0 0 input layer sequence: 0 1 1 0 0 0 "hello" input chars: "h" "]" "]" "e" 0 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Distributed Representations Toy Example

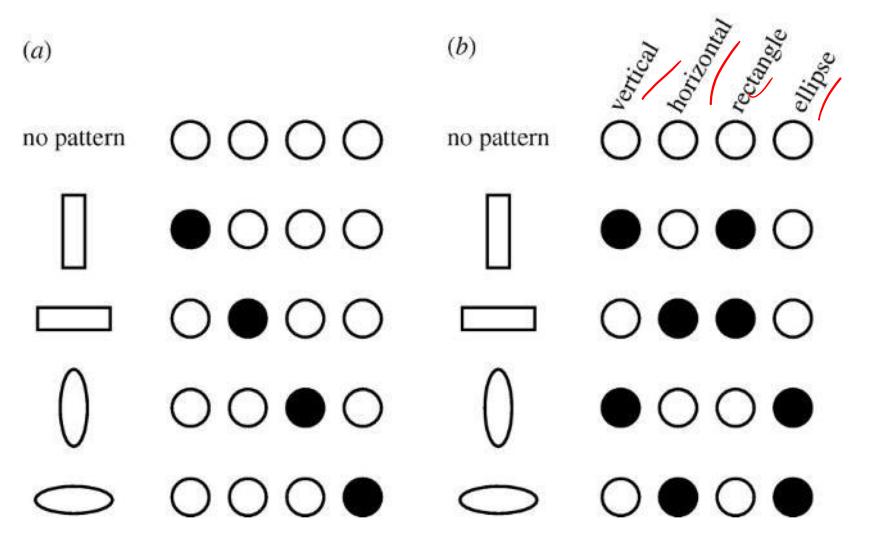
Local vs Distributed

⁽*a*)

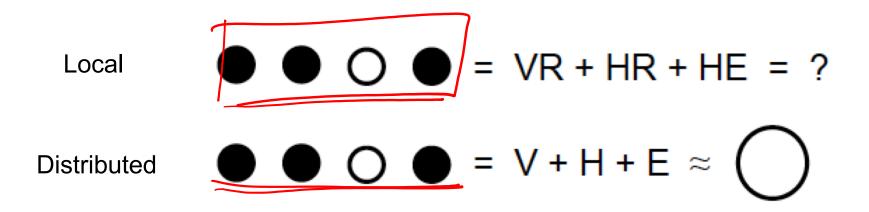


Distributed Representations Toy Example

• Can we interpret each dimension?



Power of distributed representations!

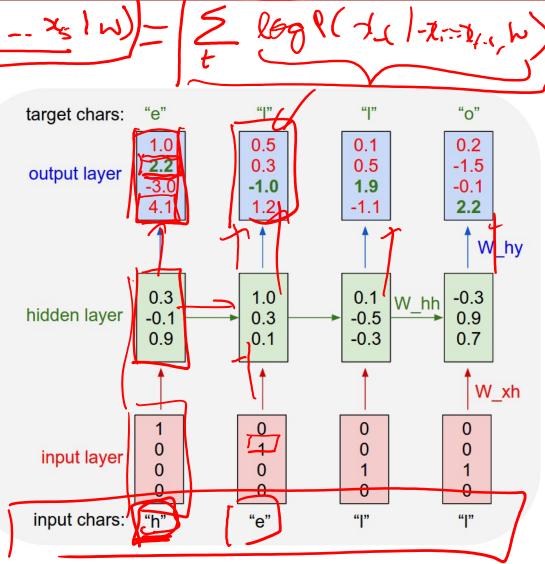


$$\max_{W} \left(\log P(x_1 - x_2 | w) - \frac{1}{t} \right)$$

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

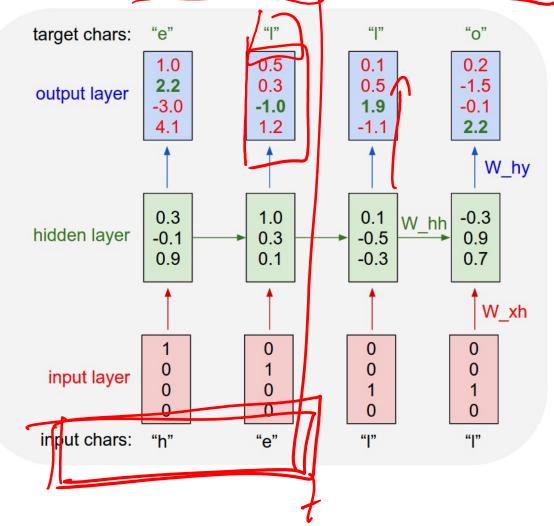


Training Time: MLE / 'Teacher Forcing"

Example: Character-level Language Model

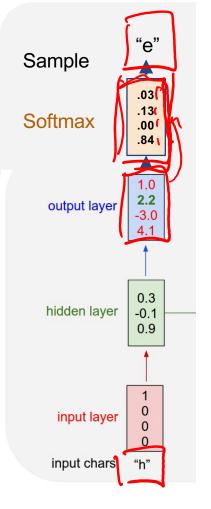
Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



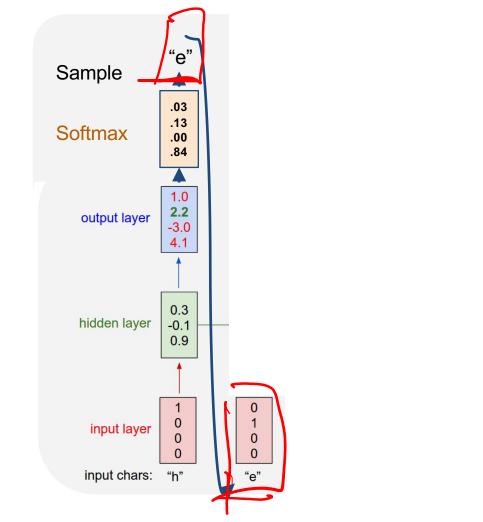
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



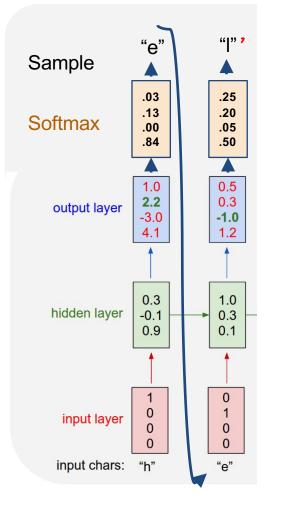
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

