CS 4803/ 7643: Deep Learning

Topics:
— Recurrent Neural Networks (RNNs)

— Truncated BackProp Through Time (BPTT)
— m——
— LSTMs

Dhruv Batra
Georgia Tech

e
Administrativia

« HW1 Grades Released
— Max regular points: 31 (4803), 36 (7643)
— Regrade requests close: 11/01, 11:55pm

— https://docs.google.com/spreadsheets/d/1hLIswTKhk QeC8
1a5ylfsOCICidL9qLcO-t0O2wngJOk/edit#gid=1468043323

15.5 [37.55 40.9 35.43 5.43

(C) Dhruv Batra 2

https://docs.google.com/spreadsheets/d/1hLlswTKhk_QeC81a5ylfsOCICidL9qLcO-tO2wngJOk/edit

e
Administrativia

« HW3 Released
— Due: 11/06, 11:55pm
— Last HW
— Focus on projects after this

— https://Iwww.cc.gatech.edu/classes/AY2019/cs7643 fall/asse
ts/hw3.pdf

* (Guest Lecture by Peter Anderson

— Tuesday 10/30
— Topic: Vision + Language QNNS + RNNSs)

(C) Dhruv Batra 3

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw3.pdf

Recap from last time

(C) Dhruv Batra 4

- 000000000000
New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION
You GOTTA KNOW WHEN TO QUIT

Y WHE

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

(C) Dhruv Batra You GOTTA KNOW WHEN TO QUIT 5

New Words

* Recurrent Neural Networks (RNNSs)

1 Recursive Neural Networks
— General family; think graphs instead of chains

« Types: .
(= “Vanilla” RNNs (Elman Networki)]
{— Long Short Term Memory (LSTMs)

— Gated Recurrent Units (GRUS)

* Algorithms
— BackProp Through Time (BPTT) >
TS

ugh Structure (BP

(C) Dhruv Batra 6

What's wrong with|M LPS}’
* Problem 1: Can’'t model Mezj

— Fixed-sized Inputs & Outputs

N—

—Ntﬂmw

* Problem 2: Pure feed-forward processing

(C) Dhruv Batra 7

- 00000000000
Why model sequences?

e teten

(C) Dhruv Batra 8

Sequences are everywhere...

70"‘7” Plonisoy ——b roncionmnsTER

W =) THE SOUND OF

=2 =0 ag3=1 ay=3 a;=4 ag=2 a7=H
x = bringen sie Dbitte das auto zuriick

\\Q%/

= please return the car

(C) Dhruv Batra 9

Even where you might not expect a sequence...

Vision Language AQLOU_E-Of people
Deep CNN Generating| (Shopping at an
RNN oqtdoor market.

\OA .
— @ There are many
/ vegetables at the

fruit stand.

John has a dog . —

=

John has a dog . — ((S (NP NNP)xp (VP VBZ (NP DT NN)np Jvp _lg

(C) Dhruv Batra { E 10

—

Sequences in Input or Output?

one to one

Input: No
sequence

Output: No
sequence

Example:
“standard”
classification /
regression
problems

’ cne fo many

Input: No sequence

Output: Sequence

xample:
Im2Caption

(C) Dhruv Batra

t's a spectrum...

many to one

/

Input: Sequence
Output: No

aitiple-choice
question answering

many to many many to many

0 Ang

P ﬁ\‘ I
LG | ~.}_.
!

{
|

Input: Sequence
Output: Sequence

Example_machine translation, video classification,
video captioning, open-ended question answering

11

2 Key |ldeas

* Parameter Sharing

— in computation graphs = adding gradients
- =

(C) Dhruv Batra 12

Compu’ggatioqal Graph

FC s, W) o, (B D

O g fObw — fCo
N, &0 S
A

A1
m- L m./ }E }jj_»_/
“/\/\//

W/T;flwp,

(C) Dhruv Batra y

2 Key |ldeas

« Parameter Sharing
— in computation graphs = adding gradients

* “Unrolling”

e ————
— in computation graphs with parameter sharing

(C) Dhruv Batra 15

How do we model sequences?

* No input

[

(/'f:’:/:st—l }
=
SR @J@A@, -

\¥

(C) Dhruv Batra 16

-]
How do we model sequences?

* No input

st = fo(St—1)

St—1 St St+1

(C) Dhruv Batra 17

How do we model sequences?

* With inputs
—_

unfold

(C) Dhruv Batra 18

2 Key |ldeas

« Parameter Sharing \

— in computation graphs = adding gradients

* “Unrolling”

— in computation graphs with parameter sharing
/

Parameter sharing + Unrolling

— Allows modeling arbitr lengths!

— Keeps numbers of parameters in check

(C) Dhruv Batra 19

Recurrent Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

usually want to
predict a vector at
some time steps

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

We can process a sequence of vectors x by

applying a recurrence formula at ev ' '

[

ht — f |44 xt) y
new state ——/—otdstate Input vector at
/ some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fW(ht—la xt)

Notice: the same function and the same set X
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Vanilla) Recurrent j\ural Network

The\state tonsists of a smgle hldden vecton h

s

] \’\5 Ad
,_}ﬁsz ht— awt

l[w,\,\ Nl

Sometimes called a ‘Vanilla RNN” Er an_“Elman RNN” gfter Prof. Jeffrey Elman
It: Feil-Fer Li;"Justin Johnson, eung, CS 231n

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph

h0—>fW—>h1—>fW—>h2—>fW » hy —> —» ht
X1 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph

Re-use the same weight matrix at every time-step

X1 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Ik.

RNN: Computationaany toMany _~ L >

Y1 — L, Y2 > L Y3 > L3 yr > Lt
h0—>fW—>h1—>fW—>h2—>fW » h; —> —» hy
X1 X2 X3
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to One

h0—>fW—>h1—>fW—>h2—>fW » h; —> —» hy
X1 X X3
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: One to Many

Y1 Y2 Y3 YT
h0—>fW—>h1—>fW—>h2—>fW » h; —> —» hy
/X
W

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

~)
Sequence to Sequence: Many-to-one + one-to-many

(One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

f Y1 Y2

1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example: m

}anguag&Ml

Vocabulary:
[h,e,l,0]

—
Example training

S€E ce.

“he)
—_—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

t—

: 0
tl
input layer | 2

0
input chars: “h”
=

(\CD: oo—{’o

|
)— o400

= |lo—~0o0O

Example:
Character-level

Language Model

Vocabulary:

[h,e,l,0]
Example training — 0]
sequence: mput'aver\ x :
1 L | 0 0
he"o \{/ input chars: v“h” e

1
0
o

SN

- a‘\\,‘“—fﬂx/

—
2«4
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e
Distributed Representations Toy Example

\

 Local vs Distributed

(a)

no pattern O O O O

@000 o
o] JYele
) coeo

o 000

(C) Dhruv Batra 34

e
Distributed Representations Toy Example

« Can we interpret each dimension?

(a) (D) > és §J
@ & o
no pattern O O O O no pattern O O O O
"YeoYoYe " YoY Jo
O@®OO o) X JO©

) coceo () eocoCe
< 000 © OO0 e

(C) Dhruv Batra 35

Power of distributed representations!

Local ®@O® OO®-"VR+HR+HE =2
Distributed ..O.=V+H+E:O

(C) Dhruv Batra 36

Example: _ .
Character-level output layer 15 L
Language Model) -1{/[z{ |
o
. l _ -
Voca ary' hidden layer % _%15 W_hﬁ (?g
h,e,l,_O] -0.3 D7
T TW_xh
Example training - .
sequence: input layer ; :
-

11 t}] 0=
he"O rinput chars: (“g”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: /-

Example: . |
Character-level Stiptitayy rﬁ\ i /(
Language Model i{ T
VocabUIary: hidden layer .%:?1 > ag
[h,e,Lo] 0.9 0.1
Example training 1 0
sequence: nputlayer | ¢ 0
“he"o” 0 /0\
e

target c

input chars: ,\%

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Y

W_hh| -

T
Test Time: Sample / Argmax / Beam Search

Example: Sample
Character-level <\
Softmax 00
Language Model
Sampling o
output layer %%
4.1
Vocabulary:]
[h,e,I,O] _@)hidden layer .Zoz 7;
At test-time sample I t
characters one at a input layer | 0
time, feed back to)’Lpth “3
model L—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

T
Test Time: Sample / Argmax / Beam Search

Example: Sample
Character-level 03
Language Model SO
Sampling 5 h
output layer é%

4.1
Vocabulary: T
[h,e,l,0] pidden laver IR

0.9
At test-time sample I mm—
characters one at a nput layer | 0 0
time, feed back to R - -
model =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

T
Test Time: Sample / Argmax / Beam Search

Example: Sample f\\ N
Character-level 03 25
Language Model I 1 | I
Sampling 5 | o
output layer é% _2-_%
4.1 2
Vocabulary: I
0.3 1.0
[h,e,l,O] hdden layer |01 |+ 03 (-
At test-time sample I i
characters one at a nput layer | 0 0
time, feed back to - LO
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to

model ,F

Sample

Softmax

output layer

hidden layer

input layer

input chars:

N

“e:\

A A A

.03 .25 A1

13 .20 A7

.00 .05 .68

.84 .50 .03

A A A

1.0 0.5 0.1
2.2 0.3 0.5
-3.0 1.0 1.9
4.1 1.2 1.1
0.3 1.0 0.1 |y
0.1 -+ 03 |—}—= -0.5
0.9 0.1 -0.3

1 0 0

0 1 0

0 0 1

0 0 0

llh” “e” “'H

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

hh| -

Plan for Today

« Model

— Recurrent Neural Network Variants

————

* Learning
— (Truncated) BackProp Through Time (BPTT)

(C) Dhruv Batra 43

Forward through entire sequence to

Backpropagation through time (i saience o comuie gadem
Loss \
f f f f % f £ £ % f f f f f %
I e T T o B o o o I o B e R I = < = I = = I S I S == =
\\+\ t £ § % f £ £ 5 % % % §F § §
\ \ Ry —
— =)

_

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
//ﬂNLoss

sequence instead of whole
sequence

4
//'" T ﬁ A \\ Run forward and backward
J \ through chunks of the

£ £ % f f f ¢

> > P P P P

{3 N S S S

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

T —

Truncated Backprbpagation through time

|

Loss

ARAN

| |

£ 1
—
K

> Nl —V

{3 N S
> > > > >
{3 X S S

>

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time

Loss
AR
N N S I N S S v YR S S M
> B P P e P B P P e P P P > > > >
3 S X 3 S e W S Yl S S
> \

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

~ min-char-rnn.py gist: 112 lines of Python

minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License

import numpy as np

data = open('input.txt'
chars = list(set(data))
data_size

'r').read()

vocab_size = len(data)
t 'data has %d characters,
char_to_ix = { ch:i for i,ch in
ix_to_char = { i:ch for i,ch in

len(chars)

%d unique.' % (data_size
wmerate(chars) }

enumerate(chars) }

pri

vocab_size)

hidden_size
seq_length = 25
learning_rate = 1

wxh = np.random. randn(hidden_size, vocab_size)
whh = np.random. randn(hidden_size, hidden_size)
why = np.random. randn(vocab_size, hidden_size)*0.01
bh = np.zeros((hidden_size, 1)
by = np.zeros((vocab_size, 1))

un(inputs, targets, hprev)

inputs, targets are both list of integers
hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, {}, {1, O
hs[-1] = np.copy(hprev)
loss = @

for t in xrange(len(inputs))
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1

hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh
ys[t] = np.dot(why, hs[t]) + by
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))

loss += -np.log(ps[t][targets[t], o]

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why
dbh, dby = np.zeros_like(bh), np.zeros_like(by)

dhnext = np.zeros_like(hs[6])

for t in revers

d(xrange(len(inputs)))
dy = np.copy(ps[t])

dy[targets[t]] -= 1

dwhy += np.dot(dy, hs[t].T)

dby += dy

dh = np.dot(why.T, dy) + dhnext

dhraw = (1 - hs[t] * hs[t]) * dh

dbh += dhraw

dwxh
dwhh
dhnext

np.dot(dhraw, xs[t].T)
np.dot(dhraw, hs[t-1].T)
np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]
np.clip(dparam, -5, 5, out=dparam)
return loss, dwxh, dwhh, dwhy, dbh, dby

hs[len(inputs)-1]

e(h, seed_ix, n)

sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step

x = np.zeros((vocab_size, 1)
x[seed_ix] = 1
ixes = []
for t in xrange(n)
h = np.tanh(np.dot (Wxh
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes

x) + np.dot(whh, h) + bh)

np=0,0

mhixh, mehh, mwhy = np.zeros_like(Wxh), np.zeros_like(whh), np.zeros_Like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by)

smooth_loss = -np.log(1.6/vocab_size)*seq_length
while True

if p+seq_length+1 >= len(data) or n ==

hprev = np.zeros((hidden_size, 1))
p=o

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100

sample_ix = sample(hprev,
txt = '°
print '-

inputsfe], 200
.join(ix_to_char[ix] for ix in sample_ix)
--\n %s \n----' % (ext,)

loss, dwxh, dwhh, dwhy, dbh
smooth_loss = smooth_loss *

dby, hprev = lossFun(inputs
if n% 1

targets, hprev)

print 'iter

% (n, smooth_loss)

for param, dparam, mem in z

[wxh, whh, why, bh, byl,
[dwxh, dwhh, dwhy, dbh, dby]
[mwxh, mwhh, mwhy, mbh, mby])
mem += dparam * dparam

param += -learning_rate * dparam / np.sqrt(mem + le-8)

p += seq_length
na=1

(https://qist.github.com/karpathy/d4dee
566867f8291f086)

Slide Credit: Fei-Fei Li/ Justin Johnson\Serena Yeung, CS 231n

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086

HE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,

But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, _>
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;

To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.

How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

t f' t _£¥9£g—iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
athrst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

\,——q
i v %ont thithey" fomesscerliund()

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

¢ train more

¢ train more

@.1 unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more
. Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre his soul came to the packs and drove up his father-in-law women.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

—
econd Senator:
They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Come, siy, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Stacks Project: open source algebraic geometry textbook
F_/_/\

[The Stacks Project
home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
- - 1. Preliminaries
Part Chapter online TeX source view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
. . . 5. Topics in Geometry
2. Conventions onI!ne tex() pdf > 6. Deformation Theory
3. SetTheory online tex() pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology onl!ne tex() pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

| atex source

The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING

—

__/’\~

I
T (

For @,., . where L, =%, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). =T e ge

S=Spec(R)=U xx U xx U
and the comparicolygin the fibre producs PHTT we havy prove the lemma
generated by [[Z xy U = V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 77 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= UU,‘ Xs; U,‘
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,z’, s” € S’ such that Ox .+ = O, . is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win.

To prove study we see that F|y is a covering of A”, and T; is an object of Fx g for
i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

“7. =I° ®Spuc(k) O‘:ﬂ o ’II]—-)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7y ¢ (Sch/S) fpps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
i poid stneme S.

Proof. See discussion of sheaves of sets.

Lemma 0.1. tssume (3) and (3) by the construction in the description.

uppose In | X| (by the formal open covering X and a single map Proj, (A) =

Spec(B) over U compatible with the complex
Set(A) =T(X,0x.0y)-

When in this case of to show that Q@ — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T' is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, Ui be the scheme X over
S at the schemes X; — X and U = lim; Xj. a

lemma surjective restrocomposes of this implies that F,, = F,, =

)Lemma 0.2.|Let X be a locally Noetherian scheme over S, E = Fx;g. Set T
iad I C I™ are nonzero over ig < p is a subset of Jy 00 Ay works.

Lemma 0.3. In Situation 7?. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ??7 we see that
D(Ox+) = Ox(D)

where K is an F-algebra where 4,,4, is a scheme over S. O

Ove any open coveri 's from the less of Example 7. 3
replace S by X paces,étale Which gives an open subspace of X and T equal to Sza.,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

—

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = O0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox (F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ?7. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
B: XY SYa3¥3Y xx ¥ X
be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

ME G the diagram
—

gor,

=0/ ——a

Spec(Ky) Morsets

d(Ox,,,.6)

is a limit. Then G is a finite type and bssume S 1s a a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

o Oy is a sheaf of rings.

]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz—Fz -1Oxpu) — Ox,0x,(0%,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Oy, is a closed immersion, see Lemma ?7. This is a
A
sequence of F is a similar morphism.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

torvalds / linux

a—

Linux kermel source tree

520,037 commits 1 branch

Explore Gist Blog Help

3,7

tribut

&) karpathy +. F e g

* Star 23,054 YFork 9,141

<
Code

m I branch: master - |inux / +

Merge branch 'drm-fixes' of gitu/people.freedeskiop.org/~airiedlinux

- torvalds authored 9 hours ago

M include Marge branch ‘perf-urgent-for-linus’ of gituiigit. kemel.org/pubdscm/

M init nit: fix regression by supporting devices with major:minor:offset fo

M Documentation Merge g

& arch Merge branch ‘xB6-urgent-for-linus’ of

M block block: discard bd

M crypto Mearge git/igit kemel.org/pubvscmiinuekamal!
M drivers Mearge branch ‘drm-fixes’ of g

M firmware firmwarafhex2tw

M fs vis: read file_handle only once in handle_to_path
RN Llnrmn emmeds Yee limoe' ~F

tiigit kemelorg/pubVscmiinuxkemeligitnabiarget-pending
figit kemel.org/pubfscmA
unregistern|) in favour of bdi_destroyy()
pitherbert/crypto
Op.ong/~airn adNinux

C: restore missing default in switch statement

e b b e e o A

it 4b1786927d |

6 days

2 months
4 days

a cay

a month

et

v 74
Pull requests

. A~
Pulsa
ago
y 890 o
Graphs
ago
339 HTTPS clone URL

ago https://github.c B
ago You can clone with HTTPS,
ago S5H, or Subversion. ®
ago & Clone in Desktop
ago <> Download ZIP

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Uiy \

tatic void dp command(\struct seqg file *m, void *v)

<< (cmd[2] & 0x80);

Generated
cmd = (int)(int state ® (in_8(&ch->ch flags) & Cmd) ? 2 : 1);
lse (::: (::(:)(:"EE

seq = 1;
for (i = 0; i < 16; i++) {

if (k & (1 << 1))

pipe = (in_use & UMXTHREAD UNCCA) +

((count & 0x00000000£ff££f£f££f8) & 0x000000f) << 8;

if (count == 0)

sub(pid, ppc _md.kexec handle, 0x20000000);
pipe set bytes(i, 0);

con = i xt, val, UJT

for (i = 0; i < COUNTER; i++)

seq puts(s, “policy ");

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[1]);

static void
os_prefix(unsigned long sys)
{
flifdef CONFIG PREEMPT
PUT_PARAM RAID(2, sel) = get_state state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)-1->1lr full; low;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable (CEQ

o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >
o >

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

lter fileld"SWString FreEpres@ntation from WSer-space
packistring(W@lid *Mbufp, silizel: HMIEWEE,, s@llzel: Wen)

wmlpack
buffer

Ghar NEWdit
{ .

Br t s

) FErEnsre madn))

H
plem@inted Sitring Filelds, PHNHIN~AX
st lid th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

] guote detection cell l

)

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

N,
J
Cell sensitive lo positiohimine— —D<>
@ so0le importance of the crossing of the Berezina lies in the fac
at it plainly and indubitably proved the fallacy of all the plans for
utting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. wWhen the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by wvis inertiae- -
pressed forward into boats and into the ice-covered water and did not,

surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

ending, mask);

If statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

ﬁll that turns on inside comments and quotes:
u
1

hrn:;_

guote/comment cell
— —

¥
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Worm

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

wifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32
{
!for (1 = ©; 1 < AUDIT_BITMASK_SIZE; 1i++)
~if (mask[i] & classes[class][i])

code depth cell
r_/A

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

*mask)

Neural Image Captioning

Image Embezg

thion Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non=iearty LNer=t=irrearity ——

(C) Dhruv Batra 66

Neural Image Captioning

Image Embedding (VGGNet)

4096-dim

Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

(C) Dhruv Batra 67

Neural Image Captioning

Aé %cé P(next) P(next) P(next) P(next) P(next) P(next)

two

horses. <D@

mage Embedding (VGGNet)

(C) Dhruv Batra 68

mage Embedding (VGGNet)

(C) Dhruv Batra

4096-dim

Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

<start> Two people and two horses.

69

aamzmence Model Factor Graph
JCIREN S

Y- d
\/1 P,? v Y2 Y3 (Y (Us

e

-
Beam Search Demo

 http://dbs.cloudcv.org/captioning&mode=interactive

(C) Dhruv Batra 71

http://dbs.cloudcv.org/captioning&mode=interactive

Image Captlonlng Example Results

cat sitting on a S Sitting on a tree 1 ing i A white teddy bear sitting in
suitc% the floor branch Orass-wittrafrisbee— the grass

AR] ;*' 5 3
M A 4 f b
TS G i »;j
R PRINe, (o
ﬂh.) st

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using peuraltalk2
All images are_CCQ Public domain: fur

Image Captioning: Failure Cases s s WL

A bird is perched on

A woman is hlding a
cat in her hand

Amanina
baseball uniform
throwing a ball

A woman standing on a
=S g beach holding a surfboard
A person holding a e —

computer mouse on a desk
_/\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Image Captioning|with Attention

CNN ho

Features:

. LxD

Image:
HxWx3

Xu et al, “Show, Attend and Tell:
Neural Image Caption Generation with
Visual Attention”, ICML 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over
L locations

B

—~—
- =

CNN | [— | no

Features:

Image: LxD
HxWx3

Xu et al, “Show, Attend and Tell:
Neural Image Caption Generation with
Visual Attention”, ICML 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over
L locations

hO
Image:
HxWx3 Weighted 1
_ features: D
Weighted

Xu et al, “Show, Att.end and Te!l: _ Combination

Neural Image Caption Generation with

Visual Attention”, ICML 2015 of features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over

L locations
a1l
A
CNN ——p | hO > |h1
Features
Image: L x
HxWx3 Weighted 1 ’
_ features: D 4
Weighted
)l\j::rt;:yrr::gzvéa?)tttizrrldGaennde:ai:lc;n with Combination Flrwd
Visual Attention”, ICML 2015 of features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over Distribution
L locations over vocab

Image:
HxWx3 Weighted 1 ’
_ features: D 4
Weighted
Xu et al, “Show, Att.end and Te!l: _ Combination FirSt Word
Neural Image Caption Generation with
Visual Attention”, ICML 2015 of features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over Distribution

oC over vocab
al a2 d1
a
CNN ——p | hO h1
Featiyres
Image: L x _
HxWx3 Weighted
z1 1 2 2
_ features: D 4 z 4
Weighted
Xu et al, “Show, Attend and Tell: Combination
Neural Image Caption Generation with
Visual Attention”, ICML 2015 of features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Distribution over Distribution

oC over vocab
al a2 d1
a
CNN ——p | hO h1 .
Featiyres
Image: L x _
HxWx3 Weighted
z1 1 z2 2
_ features: D 4 4
Weighted
Xu et al, “Show, Attend and Tell: Combination
Neural Image Caption Generation with
Visual Attention”, ICML 2015 of features

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

Shwlwlalel BEE
FEREEERERE

bird flying over body water
P —— — —_—

! Hard attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Image Captioning with Attention

A woman is throwing a ;Eisbee in a park. A dog is standing on a hardwood floor. 4 stop.sign is on a road with a
— mountain in the background.

A little girl sitting on a bed with A group &f Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the waten trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Typical VQA Models

Image Embedding (VGGNet) Neural Network

Softmax
4096-dim over top K answers

\ —> P(y=0x)

—> P(y=1]x)

T T T T T
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP

+ Non-Linearity + Non-Linearity @

—> P(y=2|x)

Question Embedding (LSTM)

‘How many horses are in this image?

(C) Dhruv Batra 83

Visual Question Answering: RNNs with Attention
softmax [[| 1] n

LSTM o

CNN which is \ the\ brown bread ? .

- t1
: \
m |

What kind of animal is in the photo?
A cat.

L.

ol L~
- IR
EEuF

convolutional
feature maps C(l)

attention terms a,

. . a0
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016 Why is the person hOIdmg a knife?
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes. To cut the cake Wlth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- - o =
ki
L
_f
dept

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

. . Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a RN N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Whhht_l + thxt)

- he s
h. > stack L—» hy - tanh ((W”h Wi) (zy D

— 1 (1))

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

. . Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a RN N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Backpropagation from h;
to h;.; multiplies by W
(actually W, T)

hy = tanh(Whhht_l + th.’ljt)

L b = tanh ((Whh Wha) (h;j))

— 1 (1))

ilz’

he. 7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

. . Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

4 N 4 N 4 N\ 4 B\
W—> — > tanh W—> — > tanh W—> - tanh W—> — > tanh
h0 <> stack TL—> h1 -~ stack TL—> h2 -~ stack I\—> h3 <> stack I\—> h4
— 0 T T T e T -
X4 X X3 X4

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

. . Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 N 4 N\ 4 N\ 4 N\
W—> — > tanh W—> —> tanh W—> - tanh W—> —> tanh
h0 <> stack TL—> h1 -~ stack “\—> h2 -~ stack L: h3 <> stack L: h4
— 0 T T T L= | -
X4 Xo X3 X4

Largest singular value > 1:

Computing gradient Exploding gradients
of hy involves many

factors of W Largest singular value < 1:
(and repeated tanh) vanishing gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

. . Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 N 4 N\ 4 N\ 4 N\
W—> — > tanh W—> —> tanh W—> - tanh W—> —> tanh
h0 <> stack TL—> h1 -~ stack “\—> h2 -~ stack L: h3 <> stack L: h4
— 0 T T T L= | -
X4 Xo X3 X4

Largest singular value > 1: _» Gradient clipping: Scale

Computing gradient | Exploding gradients gradient if its norm is too big
of hy involves many

_ grad_norm = np.sum(grad * grad)
factors of W Largest singular value < 1: if grad_norm > threshold:
(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 N 4 N\ 4 B
W—> — > tanh W—> — > tanh W—> — > tanh

Tt

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

—» Change RNN architecture

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Long Short Term Memory (LSTM)

Vanilla RNN LSTM

o

o W (ht—l)

o Tt
tanh

cc=fOc_1+10g
hy = 0 ® tanh(c;)

Q O % .

h, = tanh (W (ht—1>>
Lt

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Meet LSTMs

4 N\ (O RENE ™
—»>—® ® > —>
Ganh>
A [b A
I?II(IIIItalnhIISI
—> —> —p
_ J7Tq 7L)

Neural Network Pointwise Vector -\, otenate Copy

(C) Dhruv Batra 96

LSTMs Intuition: Memory

« Cell State / Memory

Cor Ct

(C) Dhruv Batra 97

LSTMs Intuition: Forget Gate

 Should we continue to remember this “bit” of
information or not?

Je Jt = U(Wf'[ht—laxt] + bf)

hi—1

L

(C) Dhruv Batra 98

-]
LSTMs Intuition: Input Gate

« Should we update this “bit” of information or not?
— If so, with what?

it =0 (Wi-lhi—1, 2] + b;)
Ct :tanh(Wc-[ht_l,mt] -+ bc)

(C) Dhruv Batra 99

LSTMs Intuition: Memory Update

* Forget that + memorize this

ftT Ltﬂ@ Cy = fi* Cioq +ip % Cy

(C) Dhruv Batra 100

LSTMs Intuition: Output Gate

« Should we output this “bit” of information to “"deeper”
layers”?

or =0 (W |hi—1,2¢] + bo)
ht = Ot * tanh (Ct)

(C) Dhruv Batra 101

LSTMs Intuition: Additive Updates

Backpropagation from
c; to ¢4 only
elementwise

> Y
< o «— C multiplication by f, no

e X e ey Matrix multiply by W

(C) Dhruv Batra 102

LSTMs Intuition: Additive Updates

® D, 6?

TUninterrupted radient flow!

\

——%) @ > m
Ganh>
A 0 A
I?Ilclvllta;hlljl
—p
9 UR4NE 7> Uad

(C) Dhruv Batra 103

LSTMs Intuition: Additive Updates

® D, 6?

TUninterrupted radient flow! .
!

- —® @ > —»
CGtanh>
A 1 »8 A
lo||[o] [tanh]| | O |
— | | |) — —>

_ L VA4N Y

| | |
2 © &)

IO}
. . < Ak
| SIENE|E LRI B & o ol ko
Similar to ResNet! SR BB BB BRI E | AN ENE 21N E 2
o |l Bl LRl ElEL FLELL ELELLELE Blel BlBLo Bl El
2] 3 - - = | =4
E 8)—2 20-2 2-0'3 '0-4 4-0-2 3-0'2 D g D-g 2 =B SIBE
N, |} 1] |
o) 2 joo 3)
RIR R R A BB BB IS
Ny

(C) Dhruv Batra dit: Christop thub.io/pc 104

LSTMs

« A pretty sophisticated cell

&)

T

4 ™)

(C) Dhruv Batra

s B
_}_Cf g

(o] (o] (] [o]
T P

Neural Network Pointwise ~ Vector -~ iohate

105

-
LSTM Variants #1: Peephole Connections

» Let gates see the cell state / memory

ft — 0 (Wf°[Ct—17ht—17xt] + bf)
it =0 (W;-|Cy=1,hi—1,2¢ + b;)
-

Ot — U(WO'[Ctvht—laxt] + bo)

(C) Dhruv Batra 106

LSTM Variants #2: Coupled Gates

« Only memorize new if forgetting old

P@—P Ct:ft*ct—l‘l'(l_ft)*ét

(C) Dhruv Batra 107

LSTM Variants #3: Gated Recurrent Units

« Changes:

— No explicit memory; memory = hidden output

— Z = memorize new and forget old

(C) Dhruv Batra

Zt:O'(WZ'

't — O (Wr .
}Nlt — tanh (W . [’I“t X ht_l,ﬂft])

_ht—la Lt

_ht—la Lt

)
)

ht:(l—zt)*ht_1+zt*izt

108

Other RNN Variants

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUTI:
z = sigm(Wx, +by)
r = sigm(Wex, + Wihe + b;)
hiyyy = tanh(Wy(r @ hy) + tanh(xg) + by,) @ 2
+ ho(1-2)
MUT2:
z = sigm(Wear, + Wighy +5;)
r = sigm(xr; + Wyhy + b;)
hevr = tanh(Whn(r @ he) + Weaze + bn) © 2
+ hg . [l = .':_)
MUT3:
z = sigm(Wex, + Wy, tanh(h,) + b;)
r = sigm(Weze + Wi hy + B)
heyy = tanh(Win(r @ hy) + Wepz +by) © 2

+ ho(l-—2=2)

Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.

