
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Recurrent Neural Networks (RNNs)

– Truncated BackProp Through Time (BPTT)
– LSTMs



Administrativia
• HW1 Grades Released

– Max regular points: 31 (4803), 36 (7643)
– Regrade requests close: 11/01, 11:55pm
– https://docs.google.com/spreadsheets/d/1hLlswTKhk_QeC8

1a5ylfsOCICidL9qLcO-tO2wngJOk/edit#gid=1468043323
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https://docs.google.com/spreadsheets/d/1hLlswTKhk_QeC81a5ylfsOCICidL9qLcO-tO2wngJOk/edit


Administrativia
• HW3 Released

– Due: 11/06, 11:55pm
– Last HW
– Focus on projects after this
– https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/asse

ts/hw3.pdf

• Guest Lecture by Peter Anderson
– Tuesday 10/30
– Topic: Vision + Language (CNNs + RNNs)
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https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw3.pdf


Recap from last time
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New Topic: RNNs
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New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)
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What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback
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Why model sequences?
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Sequences are everywhere…
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Even where you might not expect a sequence… 

Image Credit: Vinyals et al.



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 
regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients
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Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 13

Computational Graph
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2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing
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How do we model sequences?
• No input
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How do we model sequences?
• No input
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How do we model sequences?
• With inputs
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2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check
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Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht = tanh(Whhht�1 +Wxhxt + bh)

yt = Whyht + by

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

…

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

ht = tanh(Whhht�1 +Wxhxt + bh)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Distributed Representations Toy Example
• Local vs Distributed
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Distributed Representations Toy Example
• Can we interpret each dimension?
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Power of distributed representations!
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Local

Distributed

Slide Credit: Moontae Lee 



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: MLE / “Teacher Forcing” 



Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a 
time, feed back to 
model
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search
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Test Time: Sample / Argmax / Beam Search
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Test Time: Sample / Argmax / Beam Search



Plan for Today
• Model

– Recurrent Neural Network Variants

• Learning 
– (Truncated) BackProp Through Time (BPTT)
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee

566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086


x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generated 
C code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural Image Captioning

(C) Dhruv Batra 66

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim



Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning
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Neural Image Captioning
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Sequence Model Factor Graph
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y1 y2 y3 y4 y5

. . .

P (yt | y1, . . . , yt�1)



Beam Search Demo
• http://dbs.cloudcv.org/captioning&mode=interactive
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http://dbs.cloudcv.org/captioning&mode=interactive


A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using 
neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/


Image Captioning: Failure Cases

A woman is holding a 
cat in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/


Image Captioning with Attention

CNN

Image: 
H x W x 3

Features: 
L x D

h0

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Distribution over 
L locations

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Weighted 
combination 
of features

Distribution over 
L locations

z1Weighted 
features: D

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

h1

Distribution over 
L locations

Weighted 
features: D y1

First wordXu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

z2 y2Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

a3 d2

z2 y2Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Typical VQA Models
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How   many   horses    are      in       this     image?”

Neural Network 
Softmax

over top K answers



Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Meet LSTMs

(C) Dhruv Batra 96Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory
• Cell State / Memory

(C) Dhruv Batra 97Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate
• Should we continue to remember this “bit” of 

information or not?

(C) Dhruv Batra 98Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate
• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 99Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update

• Forget that + memorize this

(C) Dhruv Batra 100Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate
• Should we output this “bit” of information to “deeper” 

layers?

(C) Dhruv Batra 101Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 102Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from 

ct to ct-1 only 

elementwise 

multiplication by f, no 

matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 103Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 104Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

In
p

u
t

S
o

ftm
a
x

3
x3

 c
o

n
v, 6

4

7
x7

 c
o

n
v, 6

4
 / 2

F
C

 1
0

0
0

P
o

o
l

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

 / 2

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

3
x3

 c
o

n
v, 1

2
8

...

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

3
x3

 c
o

n
v, 6

4

P
o

o
l

Similar to ResNet!



LSTMs

• A pretty sophisticated cell

(C) Dhruv Batra 105Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #1: Peephole Connections

• Let gates see the cell state / memory

(C) Dhruv Batra 106Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #2: Coupled Gates

• Only memorize new if forgetting old

(C) Dhruv Batra 107Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #3: Gated Recurrent Units
• Changes: 

– No explicit memory; memory = hidden output
– Z = memorize new and forget old

(C) Dhruv Batra 108Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Other RNN Variants

[An Empirical Exploration of 
Recurrent Network Architectures,
Jozefowicz et al., 2015]



Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.


