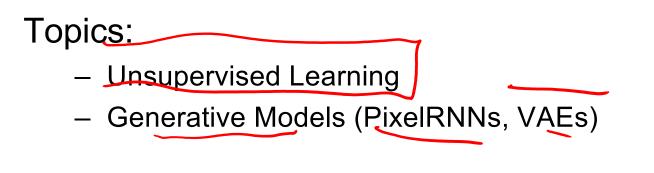
CS 4803 / 7643: Deep Learning



Dhruv Batra Georgia Tech

Administrativia

- HW1 and HW2 solutions released
 - <u>https://gatech.instructure.com/courses/28059/files/</u>
- HW3 out
 - Due: 11/06, 11:55pm

Overview

- Unsupervised Learning
- Generative Models
 - PixelRNN and PixelCNN
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

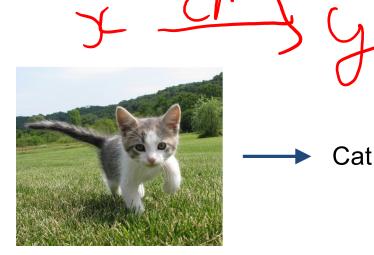
Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Classification

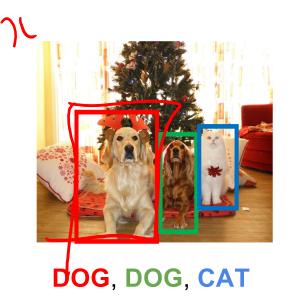
This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Object Detection

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Caption generated using <u>neuraltalk2</u> <u>Image</u> is <u>CC0 Public domain</u>.

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

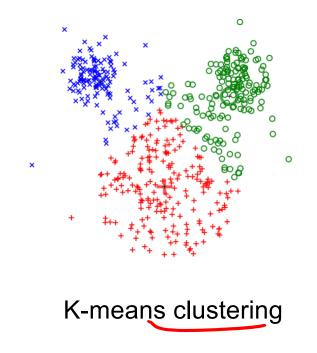
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

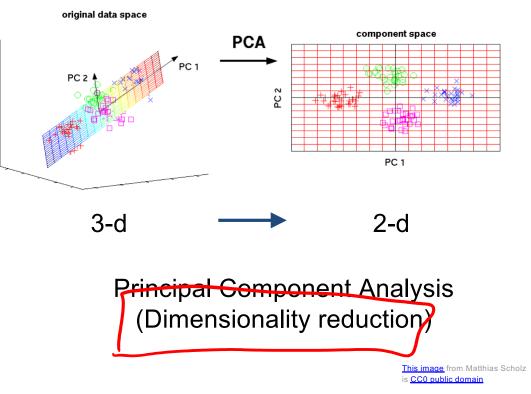
Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



This image is CC0 public domain

Unsupervised Learning

- **Data**: x Just data, no labels!
- **Goal**: Learn some underlying hidden *structure* of the data
- **Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.

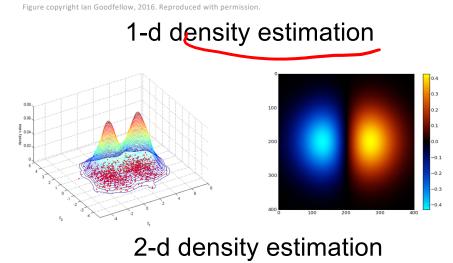


Unsupervised Learning

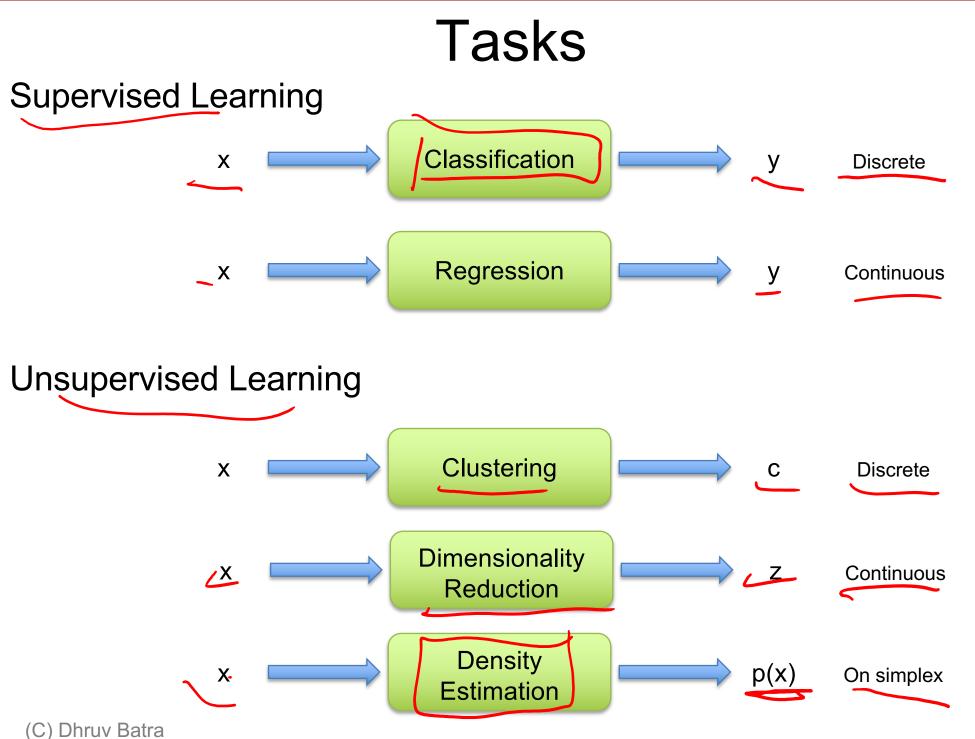
Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

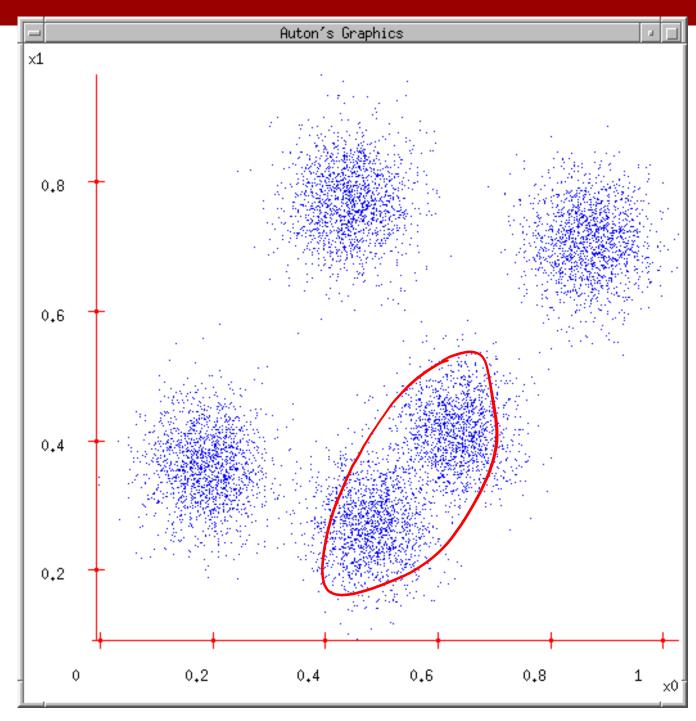
Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



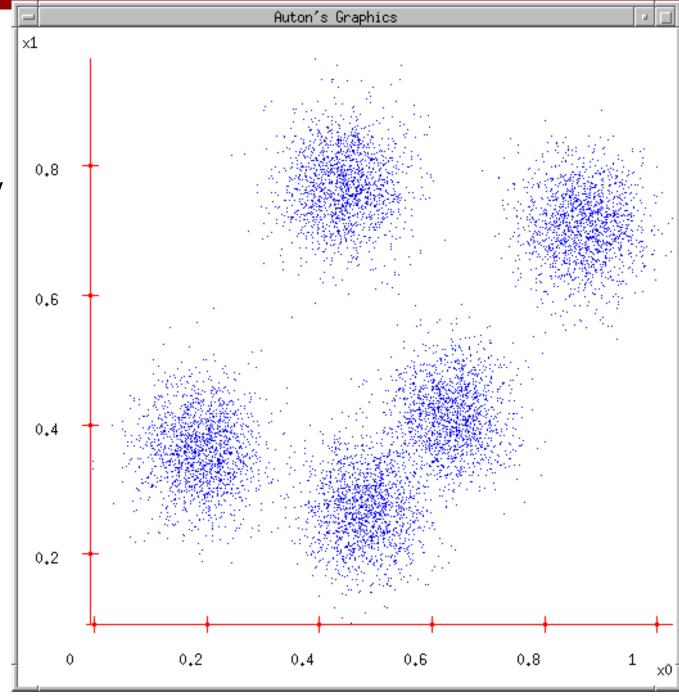
2-d density images <u>left</u> and <u>righ</u> are <u>CC0 public domain</u>

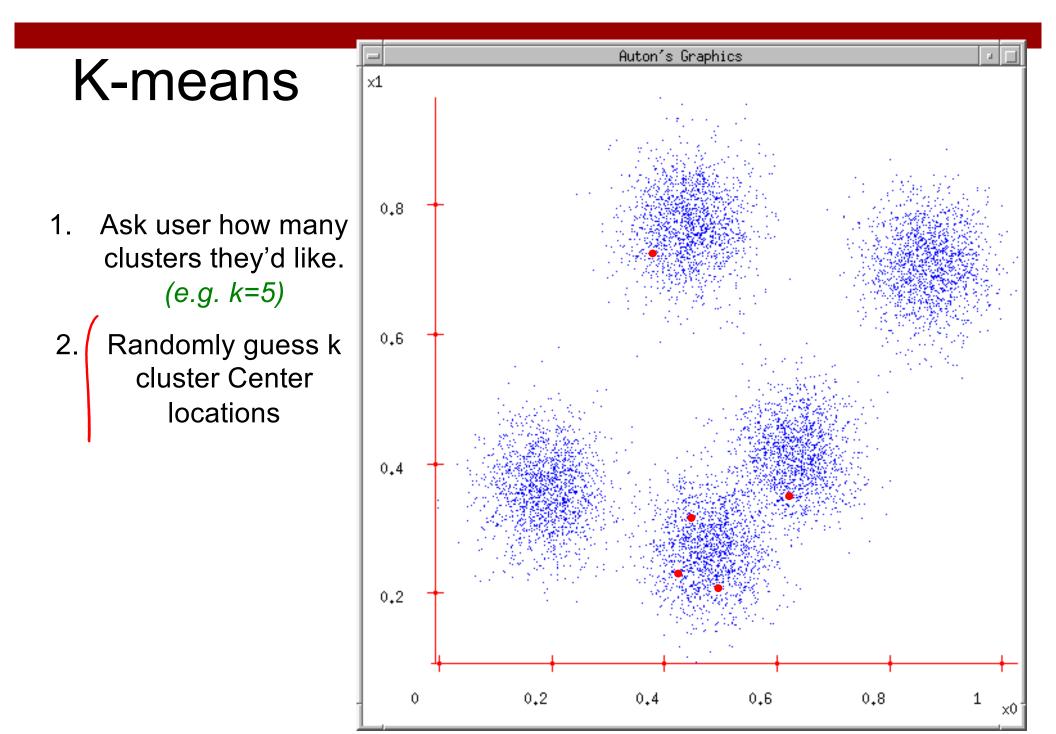


Some Data

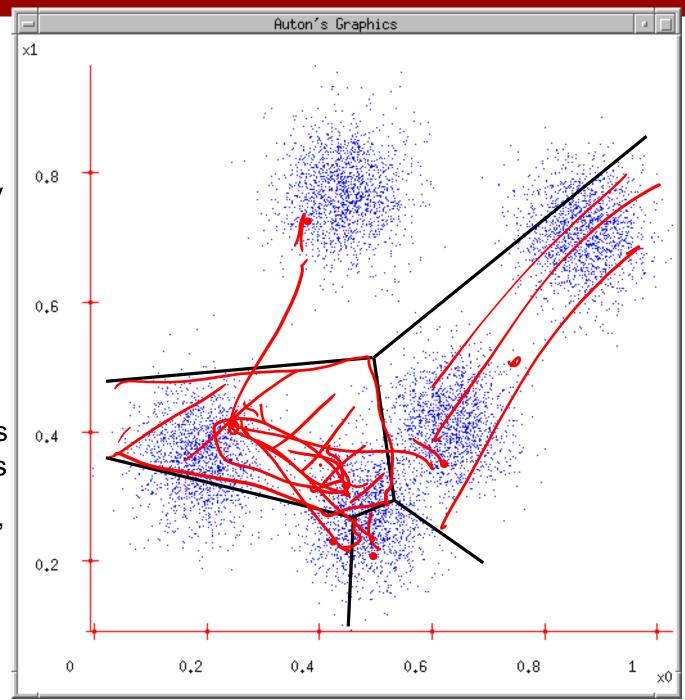


1. Ask user how many clusters they'd like. *(e.g. k=5)*

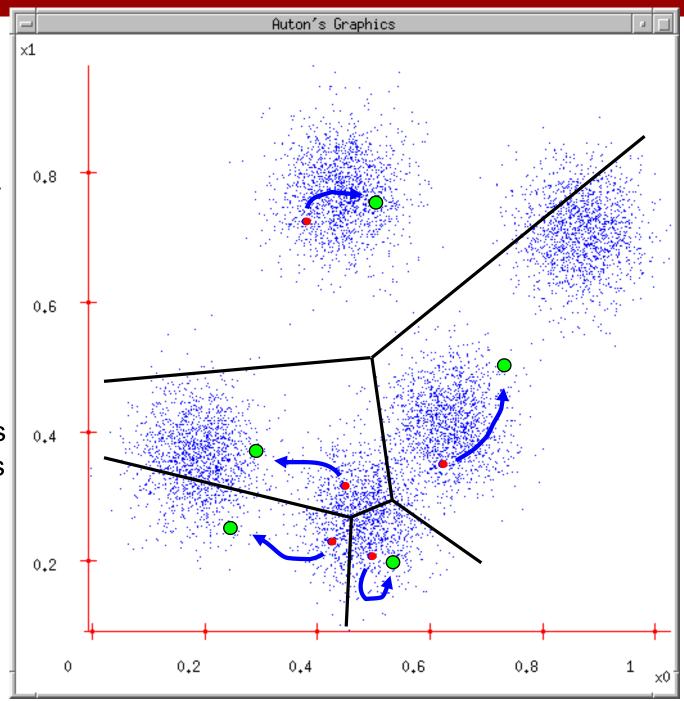


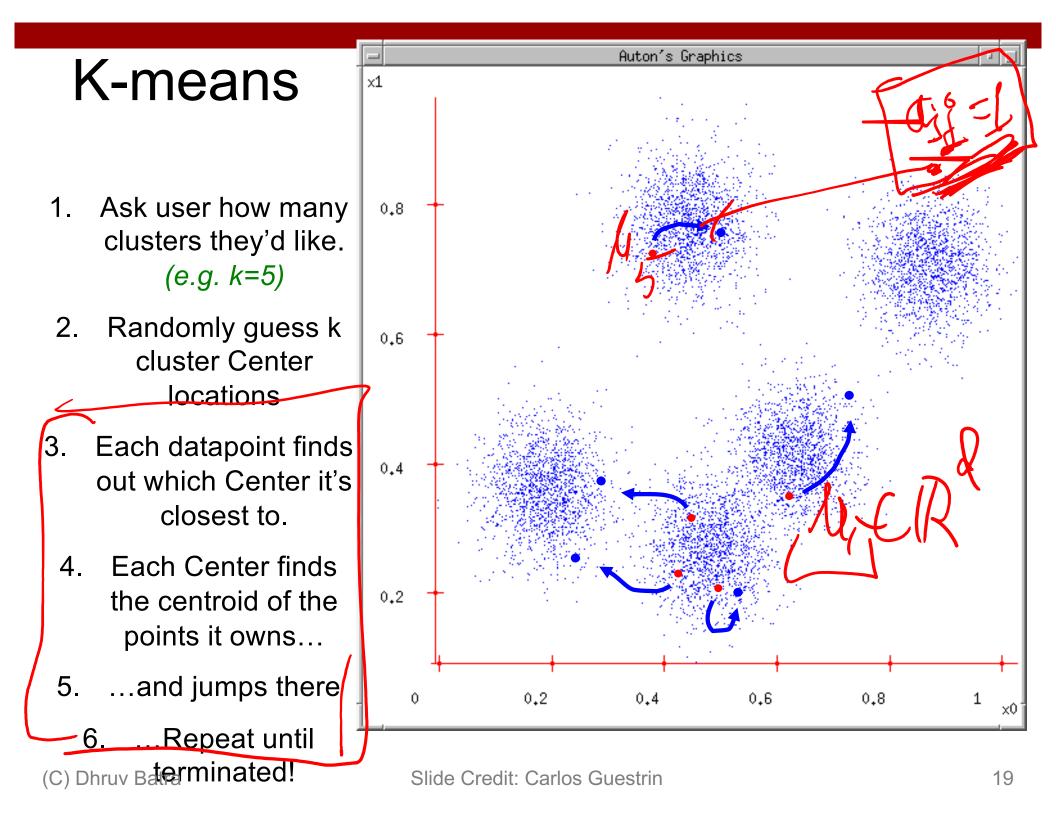


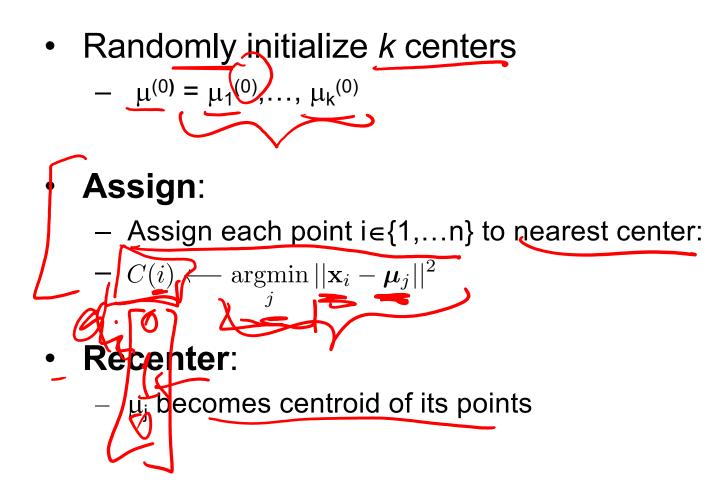
- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns







• Demo

<u>http://stanford.edu/class/ee103/visualizations/kmeans/kmean</u>
 <u>s.html</u>

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc. **Unsupervised Learning**

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

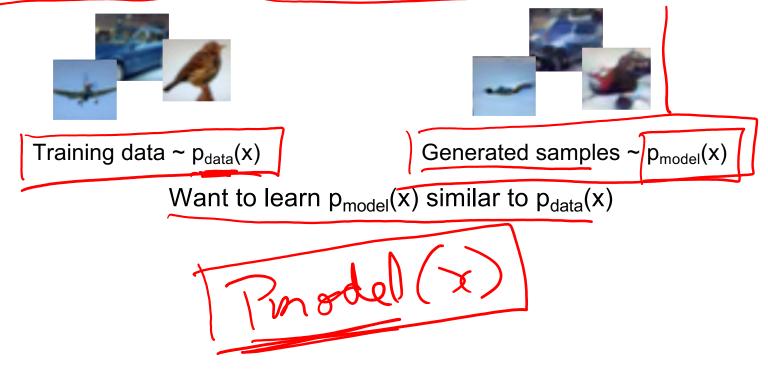
Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning Training data is cheap Data: x Holy grail: Solve unsupervised learning => understand structure of visual world Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Generative Models

Given training data, generate new samples from same distribution



Generative Classification vs **Discriminative Classification vs Density Estimation**

Generative Classification

E.g Naïve Bayes

- Model p(x, y); estimate p(x|y) and p(y)
- Use Bayes Rule to predict y

- p(x | y=ca) P(y | x) p(x)**Discriminative Classification**
 - Estimate p(y|x) directly
 - E.g. Logistic Regression
- **Density Estimation**
 - Model p(x)

(C) Dhruv Batra E.g. VAEs

Generative Models

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavors:

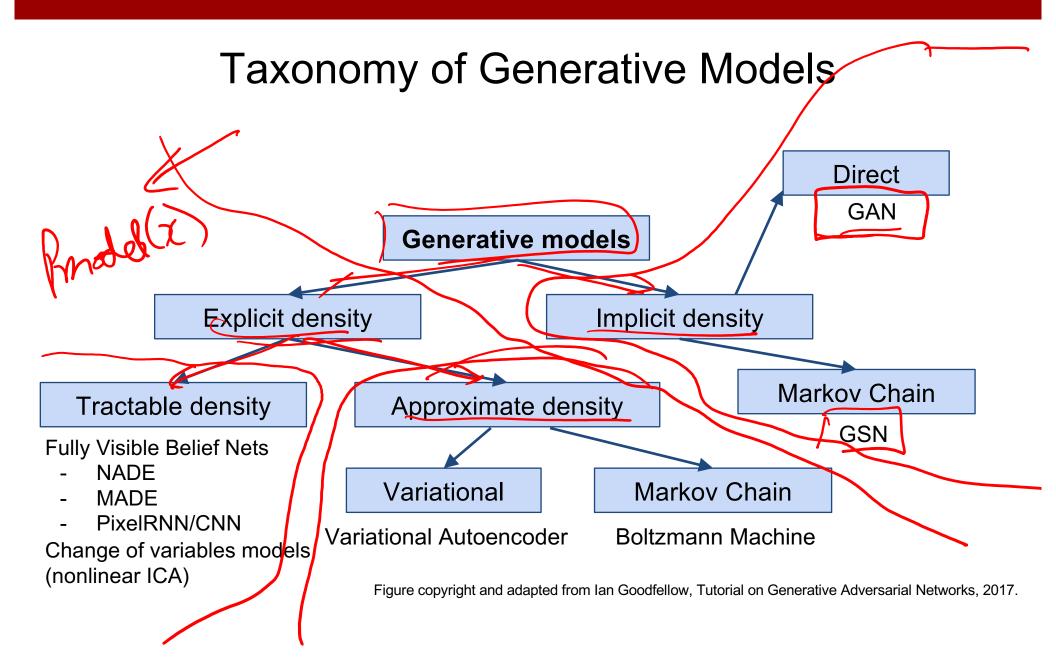
- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.



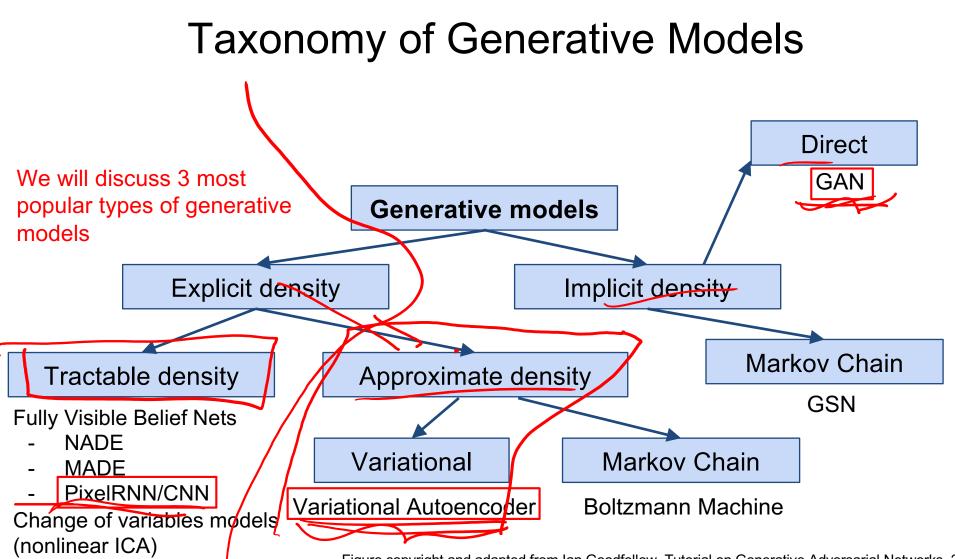
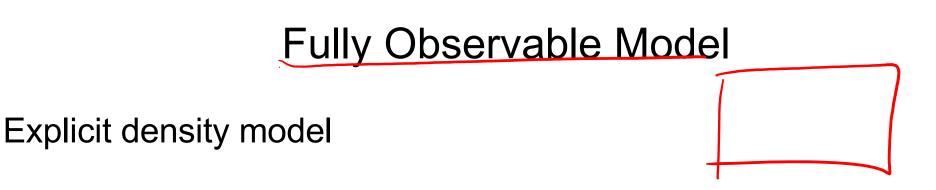
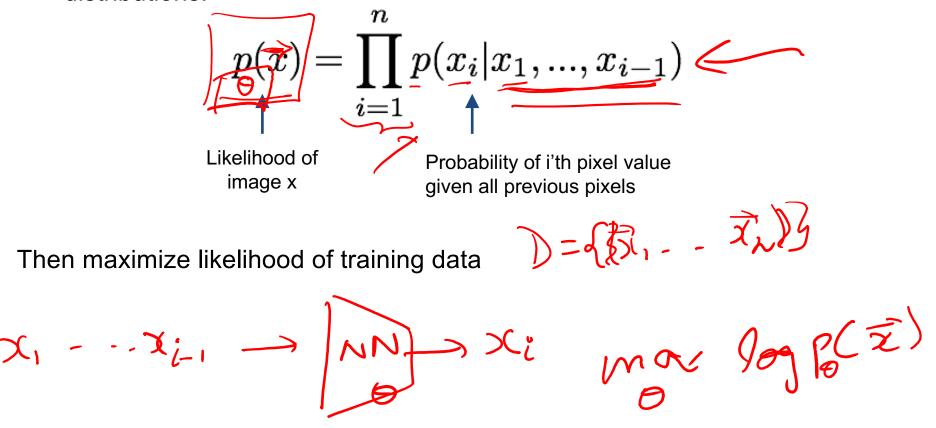


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

PixelRNN and PixelCNN



Use chain rule to decompose likelihood of an image x into product of 1-d distributions:



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

Likelihood of image x

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

Fully Observable Model

Explicit density model

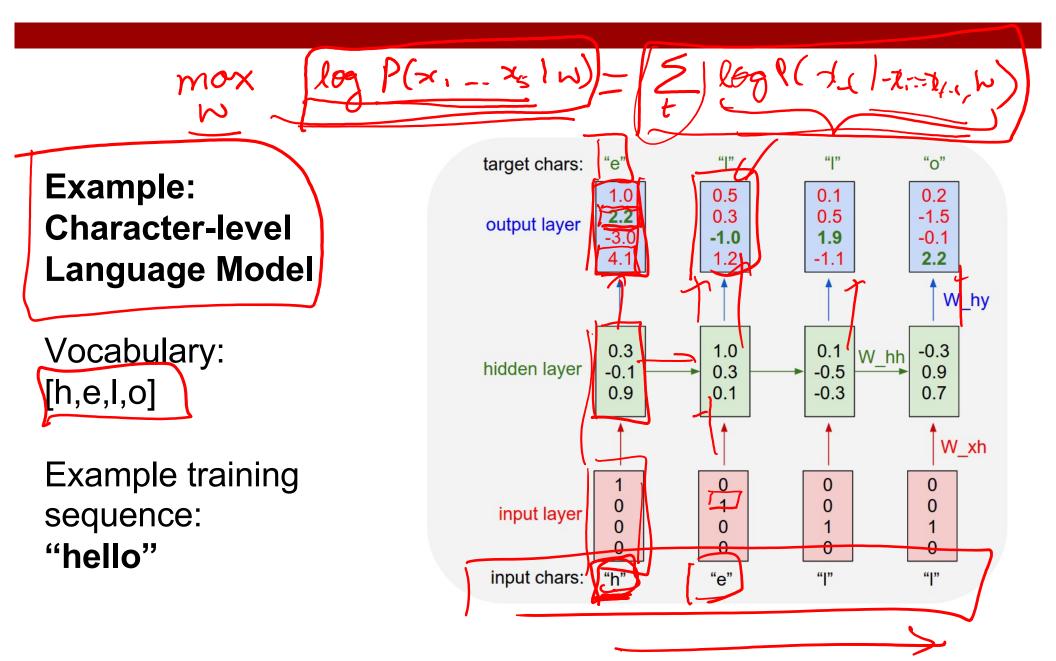
Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

$$\uparrow$$
Likelihood of
image x
Probability of i'th pixel value
given all previous pixels
Will need to define ordering
of "previous pixels"

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

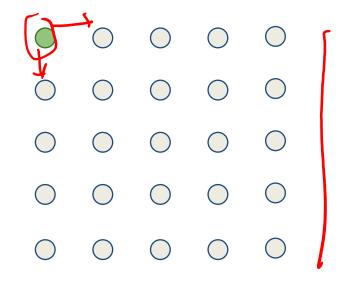


PixeIRNN [van der Oord et al. 2016]

 $P(\chi, - -)$

Generate image pixels starting from corner

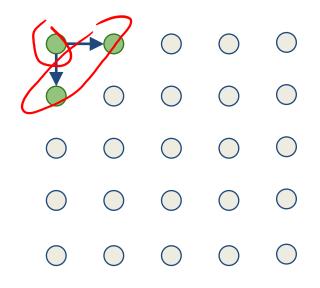
Dependency on previous pixels modeled using an RNN (LSTM)



PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

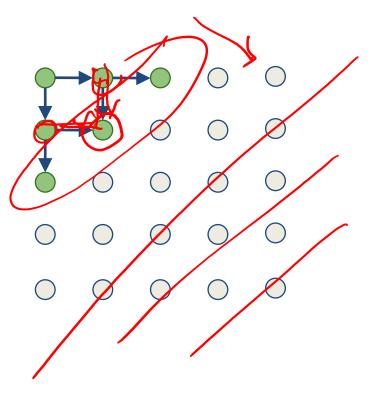
Dependency on previous pixels modeled using an RNN (LSTM)



PixeIRNN [van der Oord et al. 2016]

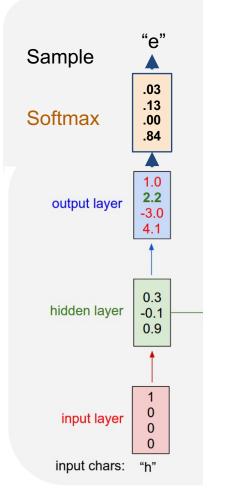
Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)



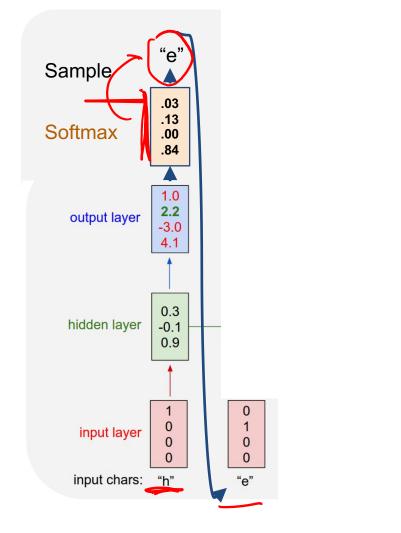
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



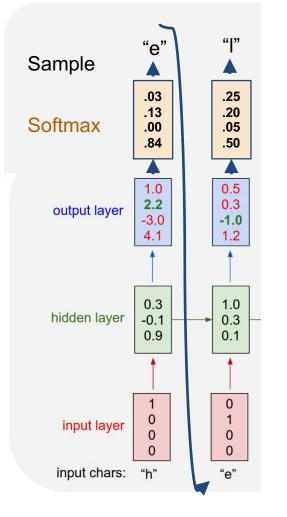
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



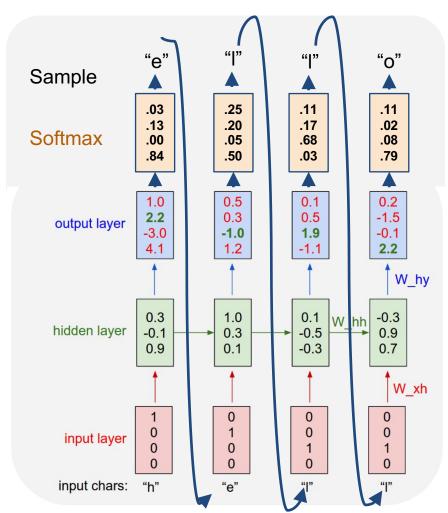
Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]



Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

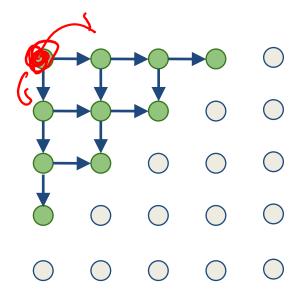


PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!



Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

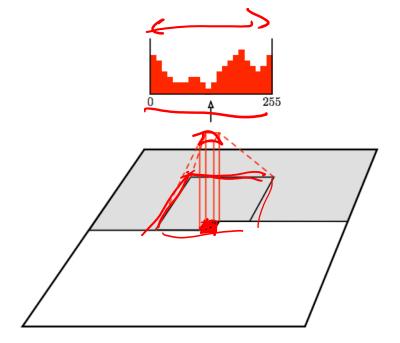
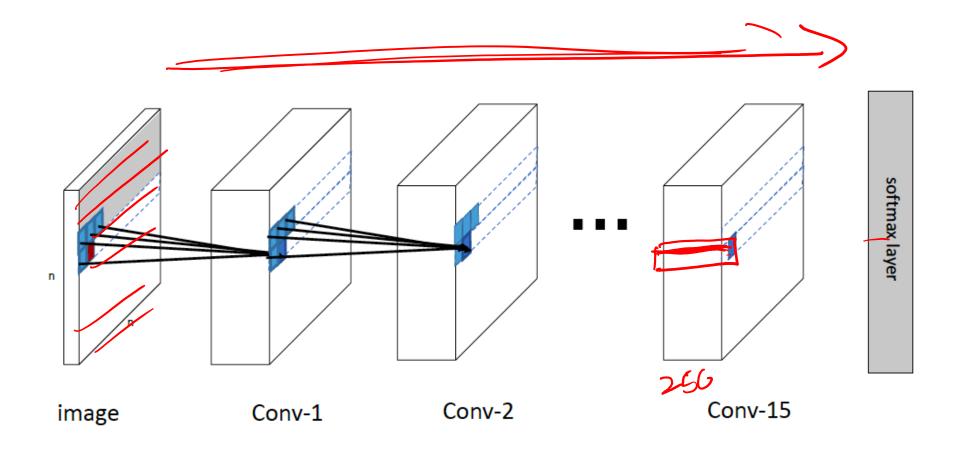
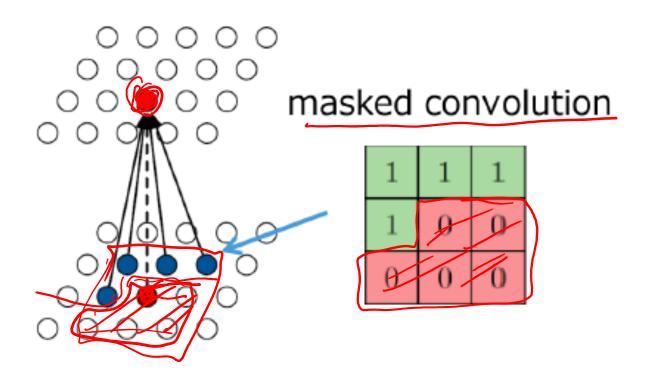


Figure copyright van der Oord et al., 2016. Reproduced with permission.



Masked Convolutions

 Apply masks so that a pixel does not see "future" pixels



PixeICNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

Softmax loss at each pixel

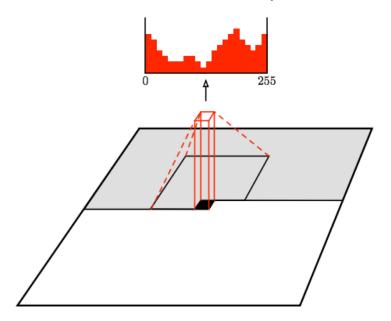


Figure copyright van der Oord et al., 2016. Reproduced with permission.

PixeICNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation must still proceed sequentially => still slow

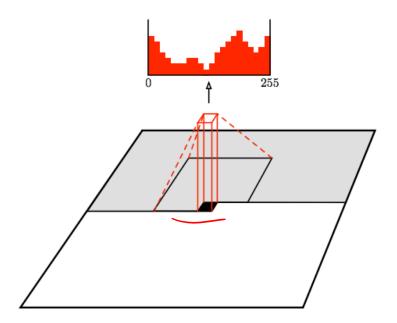


Figure copyright van der Oord et al., 2016. Reproduced with permission.

Generation Samples



32x32 CIFAR-10

32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Figure 1. Image completions sampled from a PixelRNN.

Results from generating sounds

• <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>

PixelRNN and **PixelCNN**

Pros:

- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples

Con:

Sequential generation
 => slow

Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc...

See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)