CS 4803 / 7643: Deep Learning

Topics: —
— Unsupervised Learning j - .
— Generative Models (P@ls, VAEs)

Dhruv Batra
Georgia Tech
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Administrativia

« HW1 and HW2 solutions released

— https://gatech.instructure.com/courses/28059/files/

« HW3 out
— Due: 11/06, 11:55pm
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https://gatech.instructure.com/courses/28059/files/

Overview

e Unsupervised Learning

. W&
PixelRNN and PixelCNN

o Variational Autoencoders (VAE)

o Generative Adversarial Networks (GAN)
—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

~MVised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x 2

—

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learnlng

Supervised Learning } Crl 5

Data: (x, y)

X is data, y is label
— Cat

Goal: Learn a functionto map x 2 y

Examples: Classification,
regression, object detection, Classification
semantic segmentation, image
captioning, etc.

This i s CCO ) .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 y

O

Examples: Classification,
regression, object detection,

semantic segmentation, image Object Detection
captioning, etc. _

JOG, DOG, CAT

This i cCo ) .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning
- -
Data: (x, y)

X is data, y is label

Goal: Learn a functionto map x 2 y

Examples: Classification, GRASS, !
. : : TREE, SKY
regression, object detection,
semantic segmentation, image Semantic Segmentation

captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 y

Examples: Classification, @tsittingonasuitcase on the ﬂocir (a/
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

lmage 5. CCO Public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!
~—

Goal: Learn some underlying
yhidden structure of the data

-

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, K-means clustering
feature learning, density —
estimation, etc.

This i cCo ) .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

original data space

component space

Data: x
Just data, no labels!

s e

r
Fiol = i
it s 5|

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised Learning

S— L —

Supervised vs Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

S e

)

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson,

1-d d@estimation

2-d density estimation

Serena Yeung, CS 231n

left and right


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

-]
Tasks

Supervised Learning

~—— N
X | > /CIassificatiorD | >y Discrete
T — —
_X > Regression >y Continuous
Unsupervised Learning
~__ -
X > Clustering > C Discrete
p— —_— N———
x | Dimensionality N ContinLous
& ! Reduction e ——

<

Density .
] > > 0 I
" ' Estimation ' &- w
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Some Data

(C) Dhruv Batra

Auton”s Graphics
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Slide Credit: Carlos Guestrin
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K-means

1. | Ask user how many
clusters they’d like.

[ (e.q. k=_5)

(C) Dhruv Batra

Auton”s Graphics
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x0
Slide Credit; Carlos Guestrin 15




K-means I«

1. Ask user how many
clusters they'd like.
(e.qg. k=5)

2. ( Randomly guess k | ®¢ T
cluster Center

locations
0’4 —0—
0.2 —— ..
1 l l l l 1l
T T T T T T
A 0 0,2 0.4 0,6 0.8 1

%07

(C) Dhruv Batra Slide Credit: Carlos Guestrin 16



= Auton’s Graphics

K-means |-

1. Ask user how many "

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | ¢
cluster Center
locations

3. f Each datapoint finds | o.4
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints) | 2

[ —_—

x0 7

(C) Dhruv Batra Slide Credit: Carlos Guestrin 17



— Auton”’s Graphics | _IH
K-means |-

1. Ask user how many "

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | *F
cluster Center
locations

3. Each datapoint finds | .4
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

0,2

x0 7

(C) Dhruv Batra Slide Credit: Carlos Guestrin 18



= Auton’s Graphics

K-means |-

1. Ask user how many | os T
clusters they'd like.
(e.g. k=5)

2. Randomlyguessk | ;. 4
cluster Center

. locations—7¢
3. Each datapoint finds

out which Center it’s
closest to.

0.4 T - WAL
+*
R

4. Each Center finds !
the centroid of the | ¢
points it owns...

5. ...and jumps there ; 0.2 0.4 0.6 0.8 1

x0 7

6. ... Repeat until
() bhruv BA@rminated! Slide Credit: Carlos Guestrin 19




K-means

. Randomlyﬁ' itialize k centers
_ _Lf) =f.t_1-0)""’ 1 ©)

&/\/-<.>

Assign:
— Assign each pointie{1,...n} to nearest center:
argmin ||x; — g ||
J = .

(C) Dhruv Batra Slide Credit: Carlos Guestrin

20




K-means
e Demo
— http://stanford.edu/class/ee103/visualizations/kmeans/kmean
s.html

(C) Dhruv Batra 21


http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (x, y) o 7Fata:l</ W
is data, y is label Just data, no labels! _

_ \Goal: Learn some underlying
Goal: Learn a function to map x -> 3) hidden structure of the data
Examples: Classification, Examples: Clustering, |
regression, object detection, dimensionality reduction,
semantic segmentation, image feature learning, density
captioning, etc. estimation, etc. !

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Unsupervi arning
|Trainin9£ata is chea 71
ata: x \

Holy grail: Solve

Just data, no labels!| unsupervised learnin
, => understand structufe

of visual world
Goal: Learn some undertvi

hidden structure of the dat

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



[Eenerative Mod@

Given training data, generate new sample

B =

l Training data ~ pyata(X) ’ ) Generated samples ~ pmodel(x) ‘ l

- Want to learn p,oq4e((X) Similar to pyaa(X)

R 50

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Classification vs
Discriminative Classification vs
Density Estimation

. Z—Gen/erative ClassificationX (1/)5—)
— Model p(x, y); estimate p(x|y) and p(y) P 3

—

— Use Bayes Rule to predict y P(«,}(;J @(Z \\jB
<— E.g Naive Bayes 0

* Discriminative Classification 9
) — Estimate p(y|x) directly ?(i l A:@DB \?9,(\3 )1> %{B

— E.g. Logistic Regression

pe)

) * Density Estimation
— Model p(x)

E.g. VAEs

(C) Dhruv Batra 25



Generative Models

Given training data, generate new samples from same distribution

A Jq

-

Training data ~ pyata(X) Generated samples ~ pmogel(X)

Want to learn p,oqei(X) Similar to pyaia(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
)

- __Explicit densi timation: explicitly define and solve for pyogel(

- Implicit density estimationt learn model that can sample from ppogei(X) 9v/o explicitly defining it

C——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why Generative Models?

-

- / GeneraTve models of time-series data can be used for simulation and

lanning (reinforcement learning applications!) .
- | Training generative models can also enable inference_of latent
representations that can be useful as general features

rom L-R are copyright: (1) Alec Radford etal 2016 (?) David Berthelotetal 2017 Phillip Isola etal 2017 Reproduced with authors permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

—



https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/

A

Taxonomy of Generative Model

Direct
N T T GAN
M(b / Generative models)
zxplicit density ‘ Implicit density
// = . ' N .
Tractable density Approximate density Mar!<ov & 1l
Fully Visible Belief Nets / \ SSl

- NADE — —

- MADE Variational Markov Chain \

- PixeRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Taxonomy of Generative Models

We will discuss 3 most
popular types of generative

models

Direct

—_—

Generative models =V

\

Explicit density

Implicit density-

7\»

V Markov Chain

Approximate densit

GSN

Variational Markov Chain

i/Variational Autoencogder Boltzmann Machine

- . »
tTractabIe density /
Fully Visible Belief Nets

- NADE

- MADE

- _|PixeIRNN/CNN
Change of variables mgdel
(nonlinear ICA)

Slide Credit:

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN




Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

) Hp (@ilz1y ey Tim1) &
f

Likelihood of / Probability of i'th pixel value
image x given all previous pixels

Y

Then maximize likelihood of training data B :{ﬁl -
X - X, — ANl X (/V\GV QQFCI,B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 00000000000
Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
)

p(z) = || p(zilz1,..., zi1)
to=

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Complex distribution over pixel values \
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 00000000000
Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
)

p(z) = || p(zilz1,..., zi1)

1=1 _ — ]
T T VVHI need to define orderin
Likelihood of Probability of i'th pixel value of “previous pixels

image X given all previous pixels

Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



) input chars:

T target chars: |“e” I “0”
Example: 0.1 0.2
Character-level output layer 19| |01
Language Model = 223

T 7 Tw_hy
: [ i
VOca ary' hidden layer > -(())15 W_hr; (?g
h,e,l,o] ; -0.3 0.7
T TW_xh
Example training : 0 0
Sequence: input layer g EI) (1)
uhe"Ou _ 0 8
Y [ v

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PlerRNN [van der Oord et al. 2016] P(”}( o ! gyb\b

Generate image pixels starting from corner

o
O
O O O O O
o O O O O
O O O O O

Dependency on previous pixels modeled
using an RNN (LSTM)

O O O O
O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner O
Dependency on previous pixels modeled o O
using an RNN (LSTM) O O O
o O O
o O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

o O O O O
O O O O O




PIX6| RN N [van der Oord et al. 2016]

R

Generate image pixels starting from corner O O

Dependency on previous pixels modeled

O
using an RNN(CSTV — O O
O O QO

O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




L
Test Time: Sample / Argmax / Beam Search

Example: sample
Character-level =
Sof .
Language Model e
Sampling E
output layer _%%
4.1
Vocabulary: y
[h,e,l,O] hidden layer .%:?] —
0.9
At test-time sample I
characters one at a input layer | 9
time, feed back to e
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model
Sampling _
output layer .?3%)

41
Vocabulary: T
[h,e,l,O] hidden layer .%:?]

0.9
At test-time sample I .
characters one at a input layer | 0 ;
time, feed back to e \40
model T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



L
Test Time: Sample / Argmax / Beam Search

Example: Sample “f:\ N
Character-level 1l B
Language Model Sotmac 1% | s
Sampling 5| o
output layer _%% _(3'%
4.1 12
Vocabulary: T T
[h,e,I,O] hidden tayer [ORN | JORNl
0.9 0.1
At test-time sample I l
characters one at a inputlayer | ¢ ;
time, feed back to e \40
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



L
Test Time: Sample / Argmax / Beam Search

Example: Sample 4 Al a A
Character-level sl (s |nf] [
Softmax .00 05 68 08
Language Model 84 50 03 79
. A A A A
Sampling ]| [os1 | Tor] | oz
output layer .?3%) _(3'% (1)8 :8?
4.1 12 1.1 2.2

Vocabulary: T y x T w_ny
[h.e,l,0] wocen yor (ol | N | M (8
0.9 0.1 -0.3 0

At test-time sample I l l lw—"“
characters one at a input layer | 9 ! 0 0
. 0 0 0 0
time, feed back to e \}. \4'

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

YDrawback: sequential generation is ﬂ)

O O«

O O

O O O

O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Pixe |m [van der Oord et al. 2016]
—_—

Jé——————}>
Still generate image pixels starting from Lﬂ
corner '0\?\_‘255
Dependency on previous pixels now 2“\\\
modeled using a CNN over context region /

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



image

Conv-1

Conv-2

Conv-15

J2Ae| ‘xeun;os




-
Masked Convolutions

* Apply masks so that a pixel does not see
“future” pixels

ution

(C) Dhruv Batra 45



PixelCNN [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from Lﬂ
corner

0 T 255
A7~
Dependency on previous pixels now 7
modeled using a CNN over context region / /
Training: maximize likelihood of training
images
n
p(z) = Hp($i|2?1, ey Ti—1)
i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from Lﬂ
corner

0 255
f
. . 147 ~\
Dependency on previous pixels now
modeled using a CNN over context region /
Training is faster than PixelRNN —
(can parallelize convolutions since context region
values known from training images) /
b [

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generation Samples

e MIRCASLEIL. CELRIRCH S
HIE&IIIFI ot BEEA . R TR
Eﬂﬁb&ih‘l
WiEAT'S 2GR Do)
EhE - e
bl A Al

Bl B

b - .
P Gy BT

32x32 CIFAR-10 32x32 ImageNet

-
Ell'!l’.ﬂﬁ

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



@ Image tion

occluded

1

completions — orlglnal

..

i
. ! : | |
}
= 1

Figure 1. Image completions sampled from a PixeIRNN.
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Results from generating sounds

 https://deepmind.com/blog/wavenet-generative-
model-raw-audio/



https://deepmind.com/blog/wavenet-generative-model-raw-audio/

PixelRNN and PixelCNN

Pros:

- Can explicitly computej
likelihood p(Xx)

Improving PixelCNN performance
- Gated convolutional layers

- Explicit likelihood of - Short-cut connections

training data gives good - Discretized logistic loss
: : - Multi-scale

evaluation metric - Training tricks

- Good samples - Etc...
Dttt k=2

See
Con: - Van der Oord et al. NIPS 2016
_ _ - Salimans et al. 2017

- Sequential generation (PixelCNN++)

=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



