
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Unsupervised Learning
– Generative Models (PixelRNNs, VAEs)



Administrativia
• HW1 and HW2 solutions released

– https://gatech.instructure.com/courses/28059/files/

• HW3 out
– Due: 11/06, 11:55pm
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Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

GRASS, CAT, 
TREE, SKY

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

K-means clustering

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Tasks
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx c Discrete

Dimensionality
Reduction

x z Continuous

Supervised Learning

Unsupervised Learning

Density 
Estimation

x p(x) On simplex



Some Data

14(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

15(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 
cluster Center 

locations

16(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to. (Thus 
each Center “owns” 
a set of datapoints)

17(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to.

4. Each Center finds 
the centroid of the 

points it owns

18(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated! 19(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means
• Randomly initialize k centers

– µ(0) = µ1
(0),…, µk

(0)

• Assign: 
– Assign each point iÎ{1,…n} to nearest center:
–

• Recenter: 
– µj becomes centroid of its points

20(C) Dhruv Batra Slide Credit: Carlos Guestrin

C(i) ⇥� argmin
j

||xi � µj ||2



K-means
• Demo

– http://stanford.edu/class/ee103/visualizations/kmeans/kmean
s.html

(C) Dhruv Batra 21

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Holy grail: Solve 
unsupervised learning
=> understand structure 
of visual world

Training data is cheap



Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Classification vs 
Discriminative Classification vs 

Density Estimation

• Generative Classification
– Model p(x, y); estimate p(x|y) and p(y)
– Use Bayes Rule to predict y
– E.g Naïve Bayes

• Discriminative Classification
– Estimate p(y|x) directly 
– E.g. Logistic Regression

• Density Estimation
– Model p(x)
– E.g. VAEs(C) Dhruv Batra 25



Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and 
planning (reinforcement learning applications!)

- Training generative models can also enable inference of  latent 
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/


Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

We will discuss 3 most 
popular types of generative 
models

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN



Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Then maximize likelihood of training data

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Complex distribution over pixel values 
=> Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Then maximize likelihood of training data

Complex distribution over pixel values 
=> Express using a neural network!

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Will need to define ordering 
of “previous pixels”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a 
time, feed back to 
model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search
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Test Time: Sample / Argmax / Beam Search



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Drawback: sequential generation is slow!

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Masked Convolutions
• Apply masks so that a pixel does not see 

“future” pixels

(C) Dhruv Batra 45



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training: maximize likelihood of training 
images

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Softmax loss at each pixel

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generation Samples

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Completion

49



Results from generating sounds
• https://deepmind.com/blog/wavenet-generative-

model-raw-audio/

50

https://deepmind.com/blog/wavenet-generative-model-raw-audio/


PixelRNN and PixelCNN

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute 

likelihood p(x)
- Explicit likelihood of 

training data gives good 
evaluation metric

- Good samples

Con:
- Sequential generation 

=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


