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Topics: 
– Variational Auto-Encoders (VAEs)
– Key Ideas

– AEs, Variational Inference



Administrativia
• HW3 out

– Due: 11/06, 11:55pm

• Final project
– No poster session
– Webpage submission

• Details out soon 
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Recap from last time
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Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far… Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

K-means clustering

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Tasks
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx c Discrete

Dimensionality
Reduction

x z Continuous

Supervised Learning

Unsupervised Learning

Density 
Estimation

x p(x) On simplex



Some Data

11(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

12(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 
cluster Center 

locations

13(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k 
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to. (Thus 
each Center “owns” 
a set of datapoints)

14(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to.

4. Each Center finds 
the centroid of the 

points it owns

15(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated! 16(C) Dhruv Batra Slide Credit: Carlos Guestrin



K-means
• Randomly initialize k centers

– µ(0) = µ1
(0),…, µk

(0)

• Assign: 
– Assign each point iÎ{1,…n} to nearest center:
–

• Recenter: 
– µj becomes centroid of its points

17(C) Dhruv Batra Slide Credit: Carlos Guestrin

C(i) ⇥� argmin
j

||xi � µj ||2



What is K-means optimizing? 
• Objective F(µ,C): function of centers µ and point 

allocations C:

–

– 1-of-k encoding

• Optimal K-means:
– minµmina F(µ,a) 

18(C) Dhruv Batra 

F (µ, C) =
NX

i=1

||xi � µC(i)||2

F (µ,a) =
NX

i=1

kX

j=1

aij ||xi � µj ||2



• Optimize objective function:

• Fix µ, optimize a (or C)

19(C) Dhruv Batra Slide Credit: Carlos Guestrin

K-means as Co-ordinate Descent

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



• Optimize objective function:

• Fix a (or C), optimize µ

20(C) Dhruv Batra Slide Credit: Carlos Guestrin

K-means as Co-ordinate Descent

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

We will discuss 3 most 
popular types of generative 
models

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN



Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational 
Autoencoders (VAE)



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



GMM

(C) Dhruv Batra 31Figure Credit: Kevin Murphy
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Gaussian Mixture Model
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Gaussian Mixture Model
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GMM
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Figure Credit: Kevin Murphy



K-means vs GMM
• K-Means

– http://stanford.edu/class/ee103/visualizations/kmeans/kmean
s.html

• GMM
– https://lukapopijac.github.io/gaussian-mixture-model/
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http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://lukapopijac.github.io/gaussian-mixture-model/


Hidden Data Causes Problems #1
• Fully Observed (Log) Likelihood factorizes

• Marginal (Log) Likelihood doesn’t factorize

• All parameters coupled! 
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Hidden Data Causes Problems #2
• Identifiability
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Hidden Data Causes Problems #3
• Likelihood has singularities if one Gaussian 

“collapses”

(C) Dhruv Batra 40x

p
(x

)
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 42



Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders
• Demo

– https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto
encoder.html

53

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

q" # $ p& $ #



Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Key problem
• P(z|x)
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What is Variational Inference?
• A class of methods for 

– approximate inference, parameter learning
– and approximating integrals basically.. 

• Key idea
– Reality is complex
– Instead of performing approximate computation in something 

complex, 
– Can we perform exact computation in something “simple”?
– Just need to make sure the simple thing is “close” to the 

complex thing. 
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Intuition
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• Given two distributions p and q KL divergence:

• D(p||q) = 0 iff p=q

• Not symmetric – p determines where difference is 
important

KL divergence: 
Distance between distributions

(C) Dhruv Batra 62Slide Credit: Carlos Guestrin



Find simple approximate distribution

• Suppose p is intractable posterior
• Want to find simple q that approximates p
• KL divergence not symmetric

• D(p||q)
– true distribution p defines support of diff. 
– the “correct” direction
– will be intractable to compute

• D(q||p)
– approximate distribution defines support
– tends to give overconfident results
– will be tractable

(C) Dhruv Batra 63Slide Credit: Carlos Guestrin



Example 1
• p = 2D Gaussian with arbitrary co-variance
• q = 2D Gaussian with diagonal co-variance
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z1

z2

(a)
0 0.5 1
0

0.5

1

z1

z2

(b)
0 0.5 1
0

0.5

1
argmin_q KL (p || q) 

p = Green; q = Red

argmin_q KL (q || p) 



Example 2
• p = Mixture of Two Gaussians
• q = Single Gaussian
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argmin_q KL (p || q) 

p = Blue; q = Red

argmin_q KL (q || p) 


