CS 4803 / 7643: Deep Learning

Topics:

Variational Auto-Encoders (VAEs)

Key Ideas

- AEs, Variational Inference

Dhruv Batra Georgia Tech

Administrativia

- HW3 out
 - Due: 11/06, 11:55pm
- Final project
 - No poster session
 Webpage submission
 - Details out soon

Recap from last time

Overview

- Unsupervised Learning
- Generative Models
 - PixelRNN and PixelCNN
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)

So far... Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Cat

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

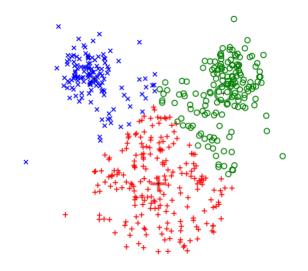
Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

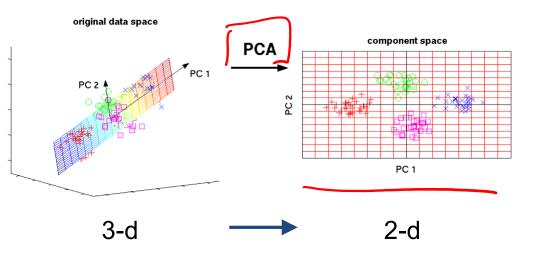


K-means clustering

This image is CC0 public domain

Unsupervised Learning

- **Data**: x Just data, no labels!
- **Goal**: Learn some underlying hidden *structure* of the data
- **Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.



Principal Component Analysis (Dimensionality reduction)

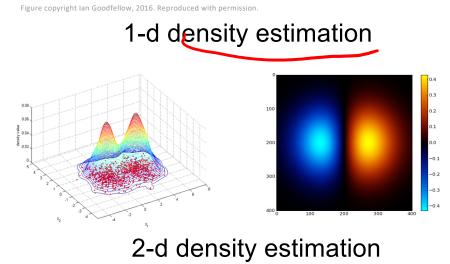
This image from Matthias Scholz is <u>CC0 public domain</u>

Unsupervised Learning

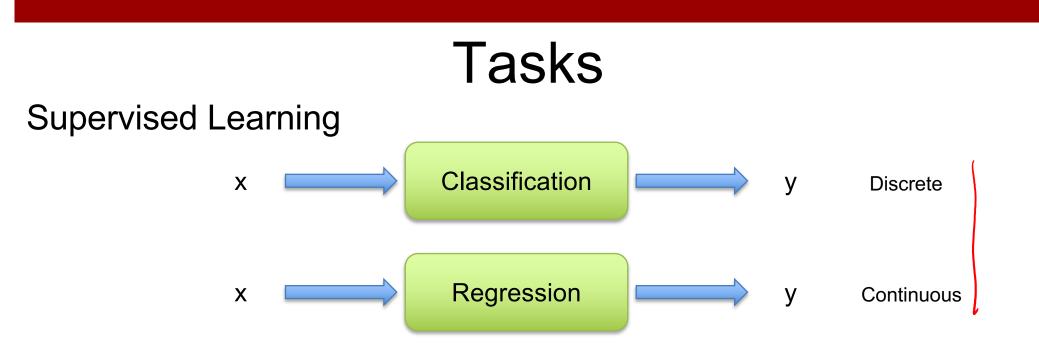
Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

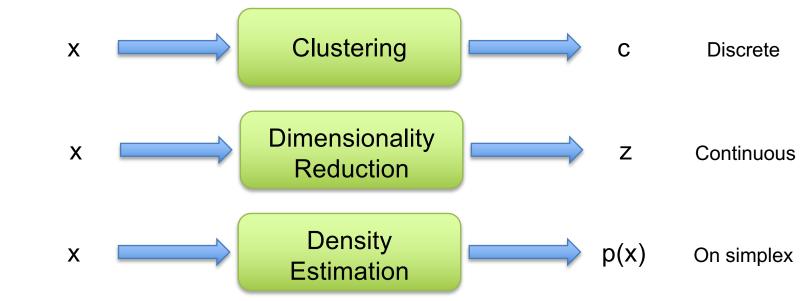
Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



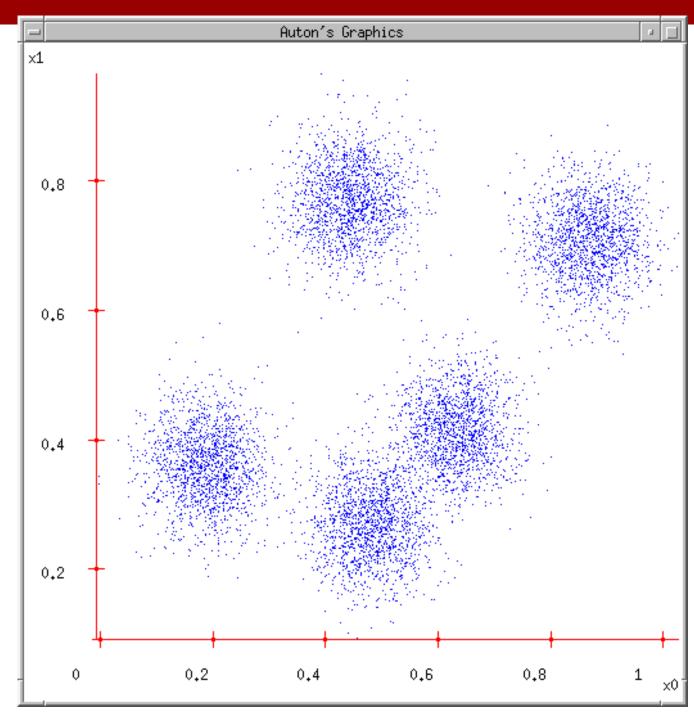
2-d density images <u>left</u> and <u>righ</u> are <u>CC0 public domain</u>



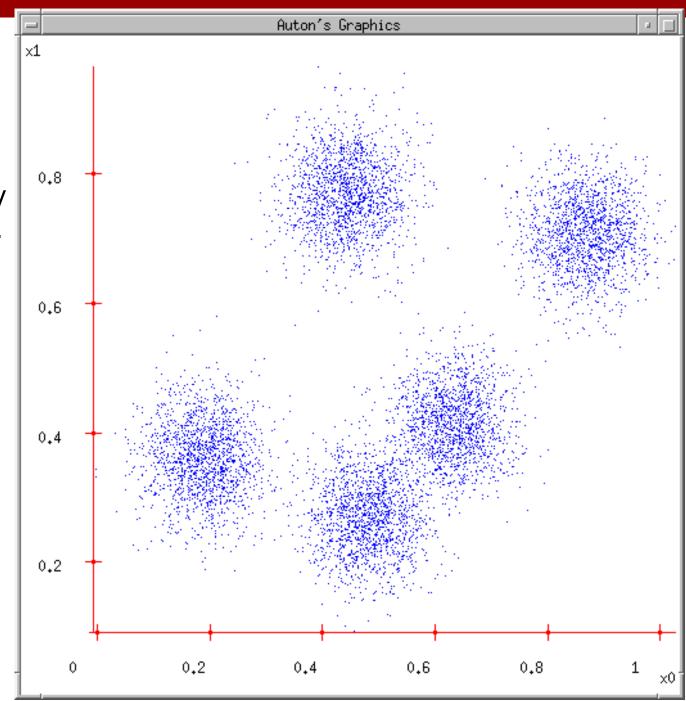
Unsupervised Learning



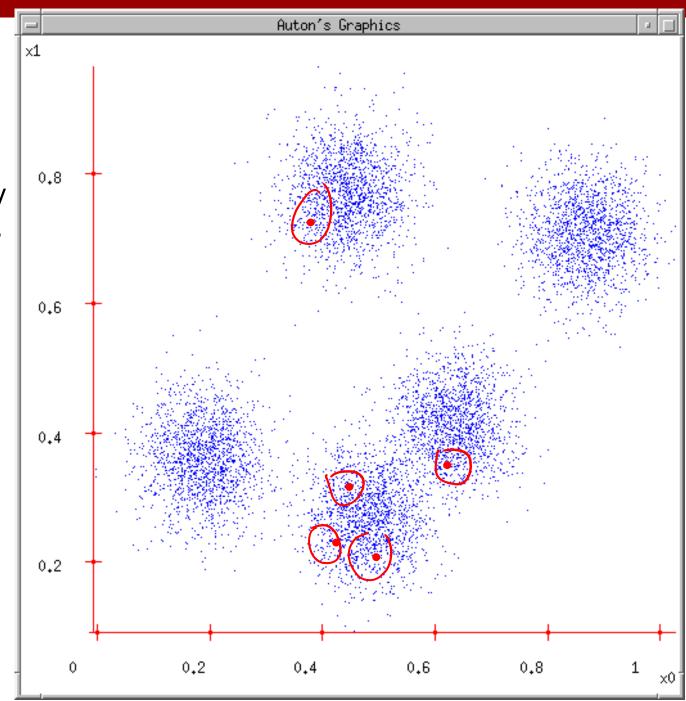
Some Data



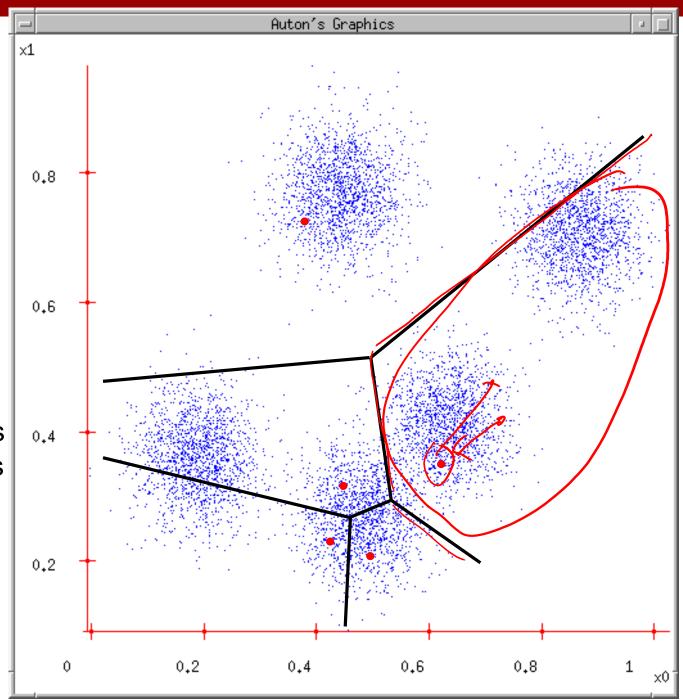
1. Ask user how many clusters they'd like. *(e.g. k=5)*



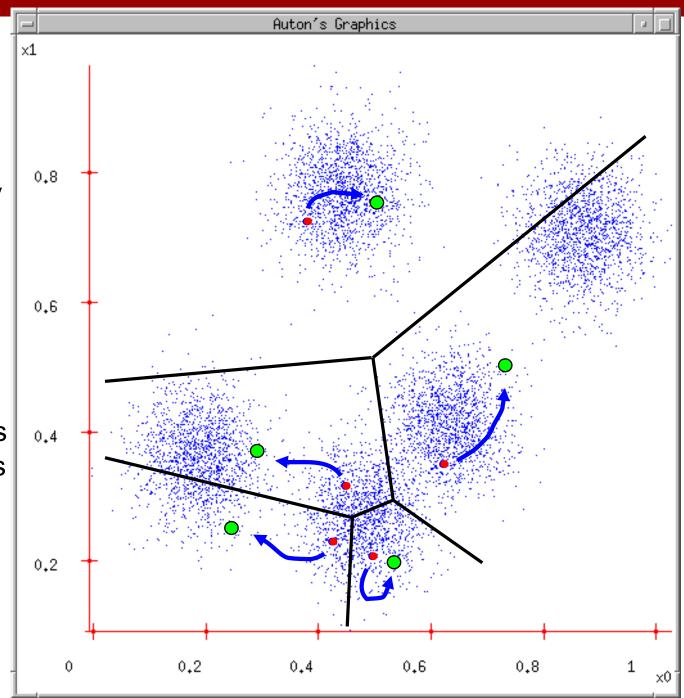
- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations



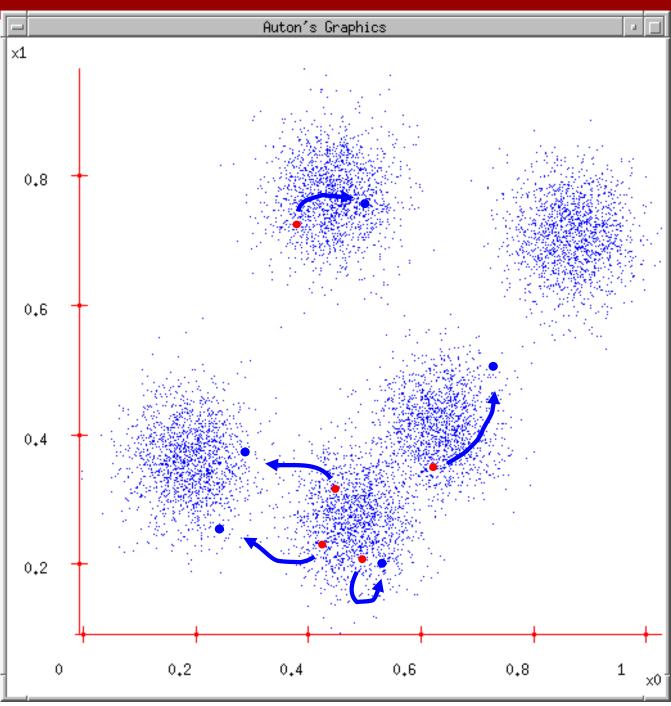
- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)



- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - 4. Each Center finds the centroid of the points it owns



- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
 - Each Center finds the centroid of the points it owns...
 - 5. ...and jumps there
- 6. ...Repeat until (C) Dhruv Baterminated!



Slide Credit: Carlos Guestrin

- Randomly initialize *k* centers
 - $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$
- Assign:
 - Assign each point $i \in \{1, ..., n\}$ to nearest center:
 - $-C(i) \leftarrow \underset{j}{\operatorname{argmin}} ||\mathbf{x}_i \boldsymbol{\mu}_j||^2$
- Recenter:
 - $-\mu_j$ becomes centroid of its points

What is K-means optimizing?

Objective F(μ,C): function of centers μ and point allocations C:

$$- F(\boldsymbol{\mu}, C) = \sum_{i=1}^{N} ||\mathbf{x}_i - \boldsymbol{\mu}_{C(i)}||^2$$

$$F(\boldsymbol{\mu}, \boldsymbol{a}) = \sum_{i=1}^{N} \sum_{j=1}^{k} a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

Optimal K-means:
 – min_μmin_a F(μ,a)

K-means as Co-ordinate Descent

• Optimize objective function:

$$\min_{\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_N} F(\boldsymbol{\mu}, \boldsymbol{a}) = \min_{\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} \||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

A T

• Fix μ , optimize a (or C)

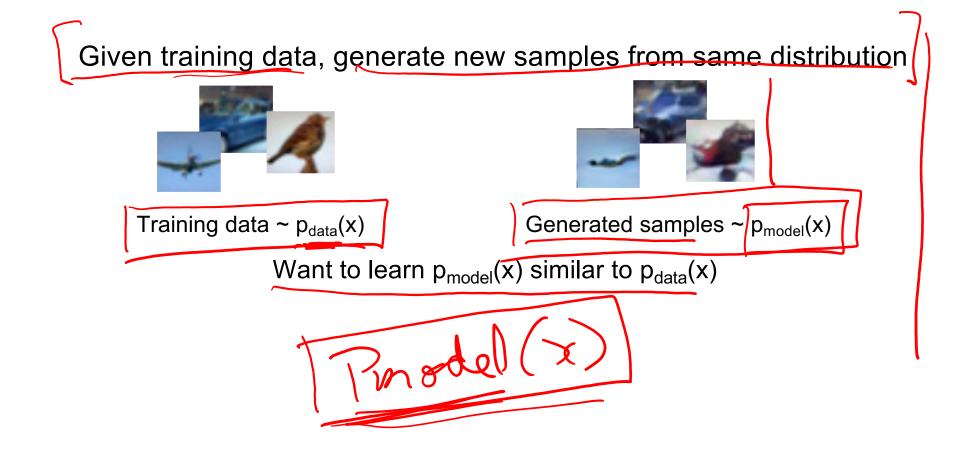
K-means as Co-ordinate Descent

• Optimize objective function:

$$\min_{\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_N} F(\boldsymbol{\mu},\boldsymbol{a}) = \min_{\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k} \min_{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_N} \sum_{i=1}^N \sum_{j=1}^k a_{ij} ||\mathbf{x}_i - \boldsymbol{\mu}_j||^2$$

Fix a (or C) optimize μ

Generative Models



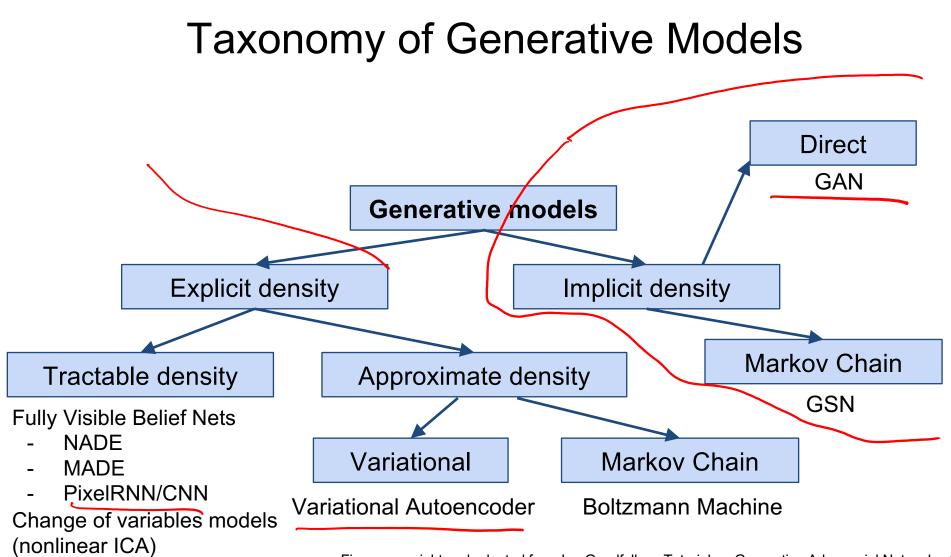


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Taxonomy of Generative Models

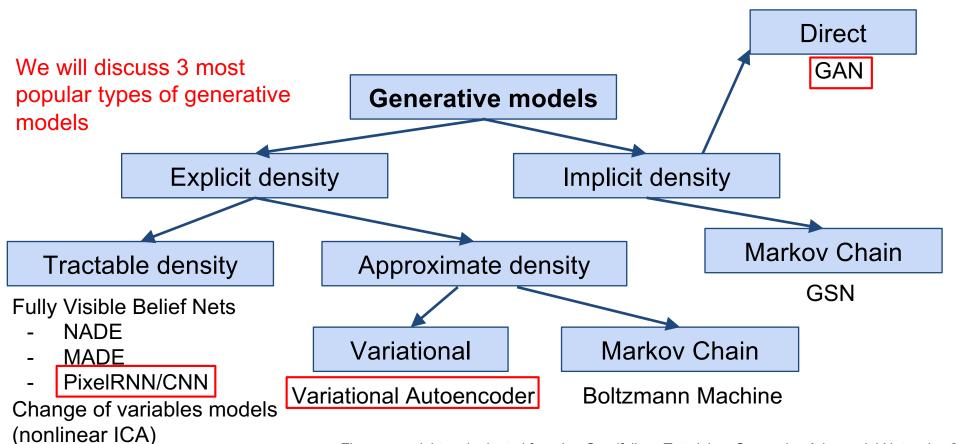
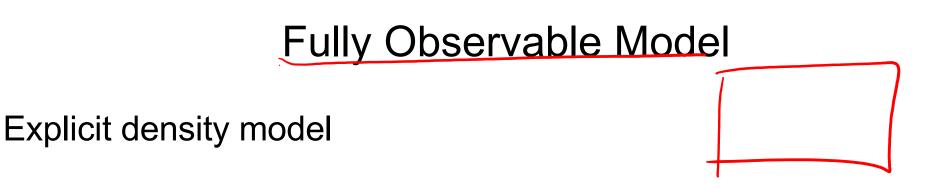
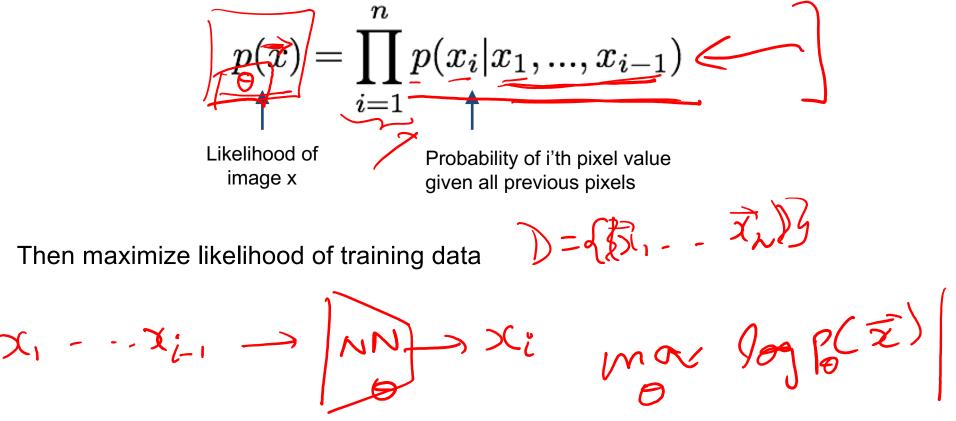


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

PixelRNN and PixelCNN



Use chain rule to decompose likelihood of an image x into product of 1-d distributions:



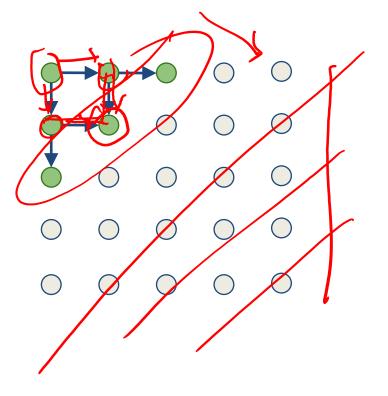
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixeIRNN [van der Oord et al. 2016]

χ. - - -

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)



Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

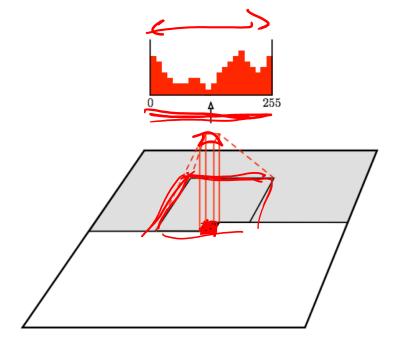


Figure copyright van der Oord et al., 2016. Reproduced with permission.

Variational Autoencoders (VAE)

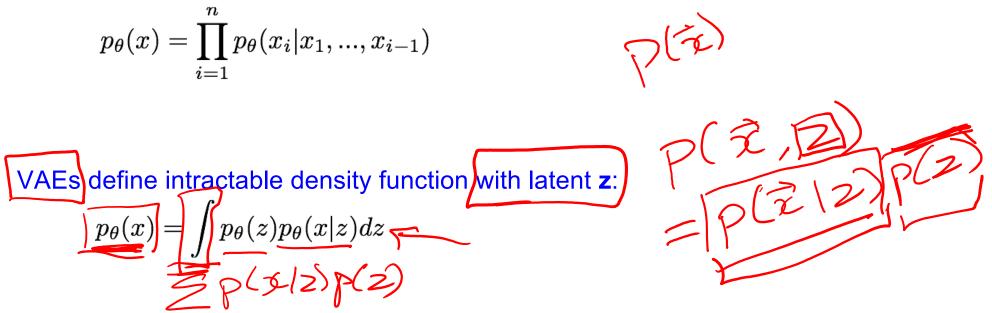
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

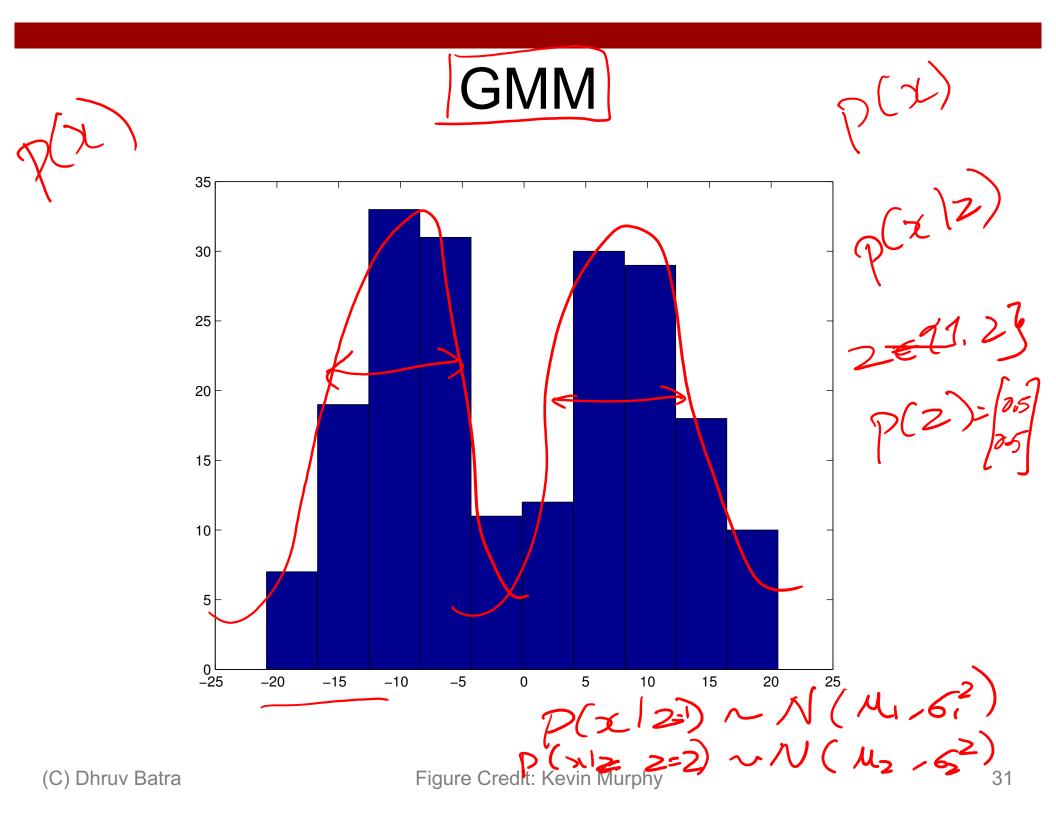
$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

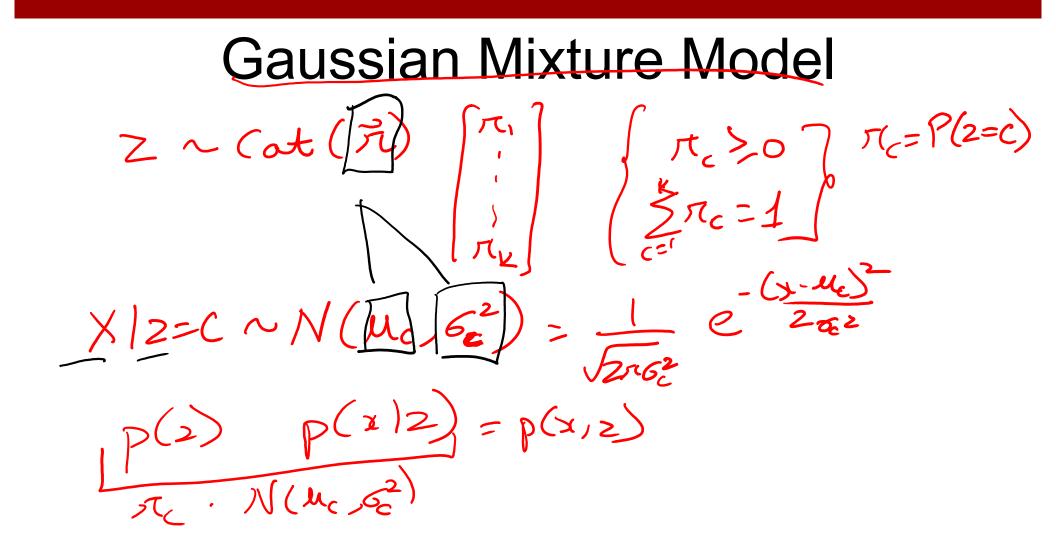
So far...

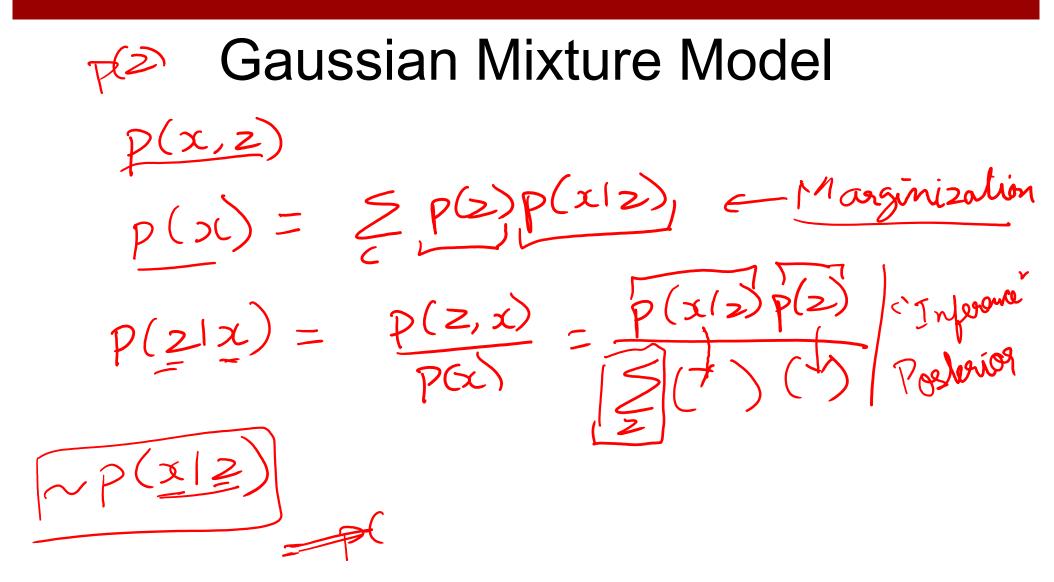
PixelCNNs define tractable density function, optimize likelihood of training data:

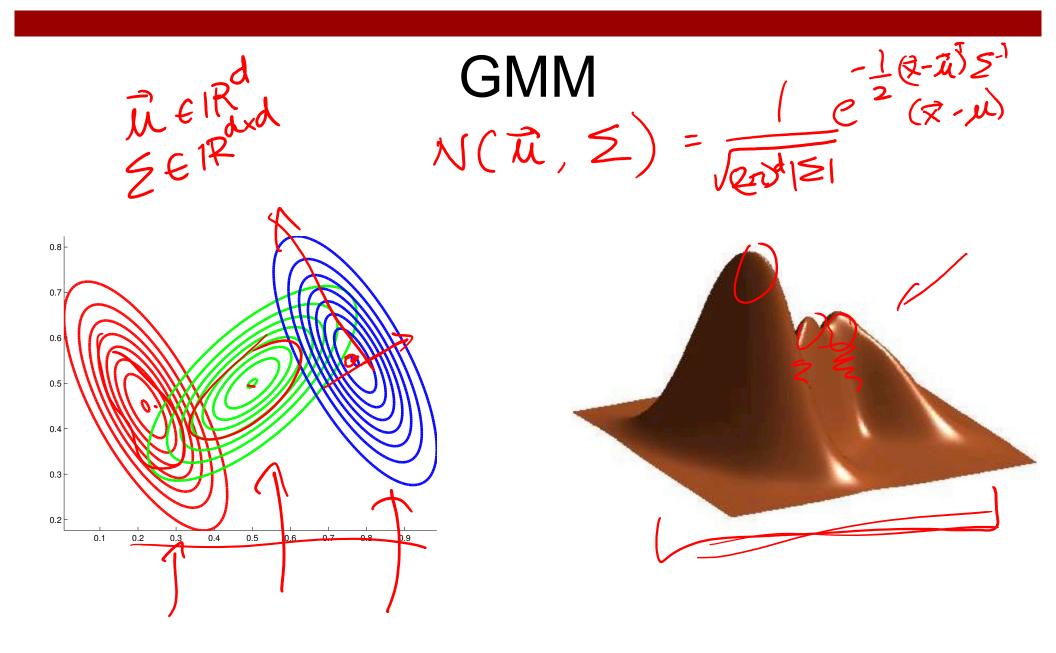


Cannot optimize directly, derive and optimize lower bound on likelihood instead









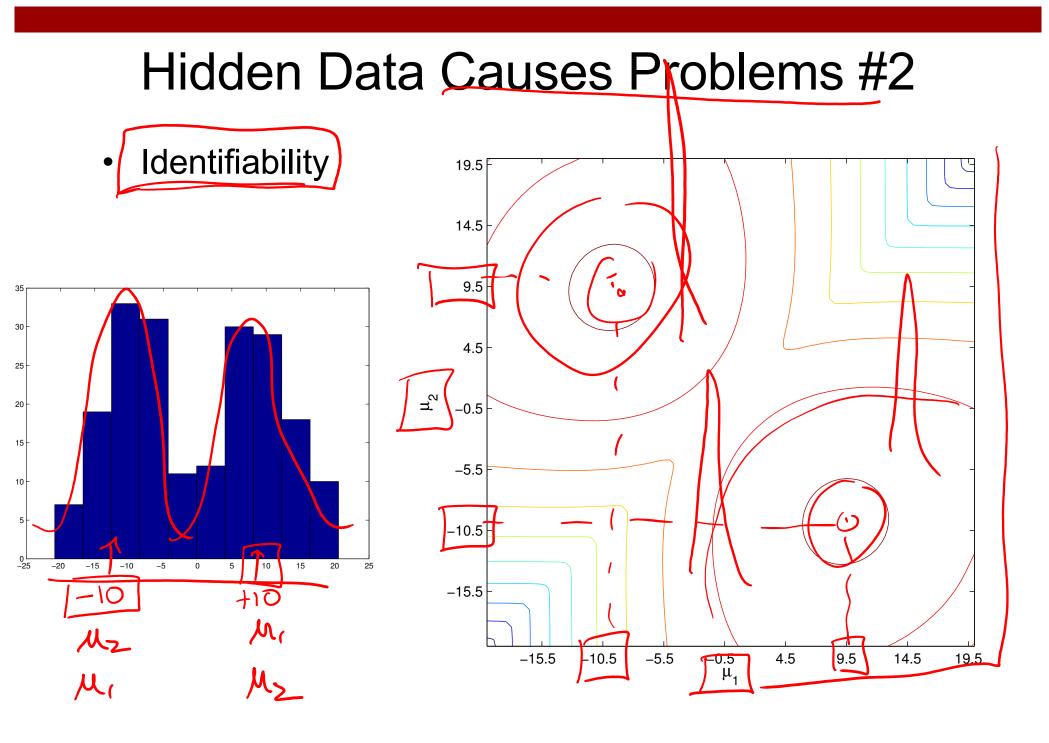
K-means vs GMM

- K-Means
 - <u>http://stanford.edu/class/ee103/visualizations/kmeans/kmean</u>
 <u>s.html</u>
- GMM
 - <u>https://lukapopijac.github.io/gaussian-mixture-model/</u>

Hidden Data Causes Problems #1

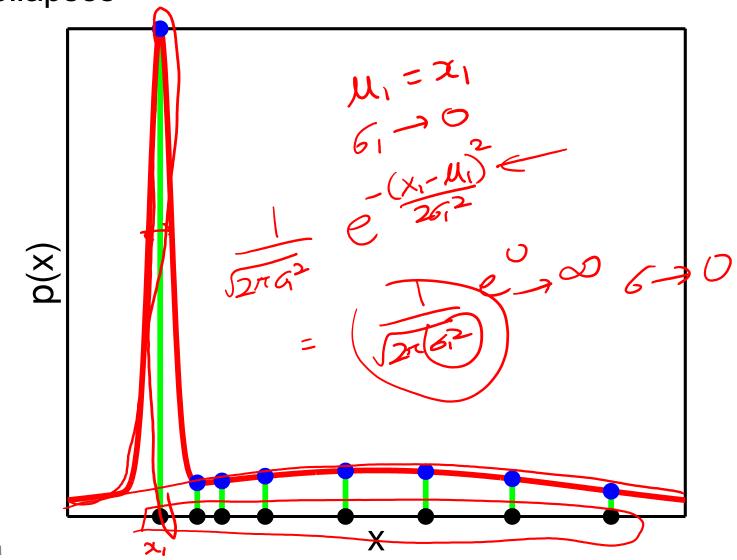
- Fully Observed (Log) Likelihood factorizes
- Marginal (Log) Likelihood doesn't factorize
- All parameters coupled!

q Л. ... ЛК, Д. - - ДК- ZI - - ZKJ = O { Z - - ZN 4 $\hat{\Theta} = aggner P(x, P(D | \Theta) - aggnero Elog P(x, |\Theta))$ dota i $\int_{1}^{2} \frac{2}{2} P(\overline{x}_{e}, 2 | \theta)$ $\int_{1}^{2} P(x|2)P(2)$



Hidden Data Causes Problems #3

 Likelihood has singularities if one Gaussian "collapses"



(C) Dhruv Batra

(C) Dhruv Batra

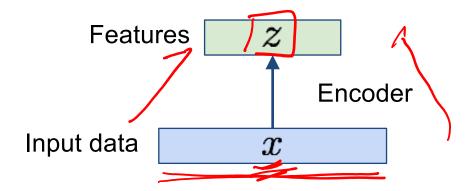
Variational Auto Encoders

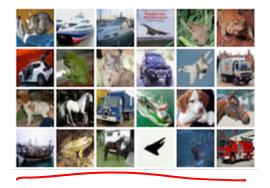
VAEs are a combination of the following ideas:

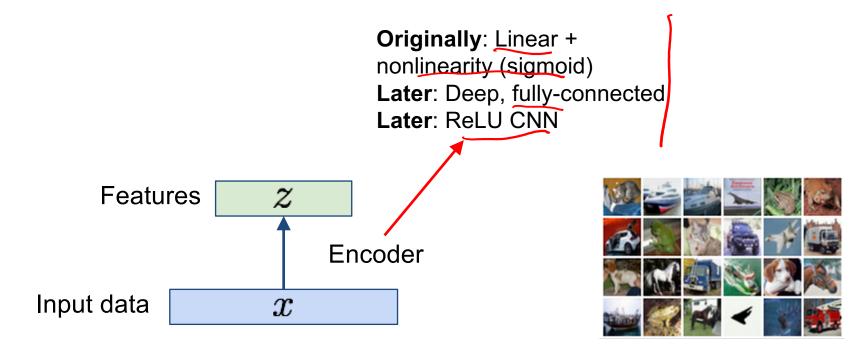
1. Auto Encoders

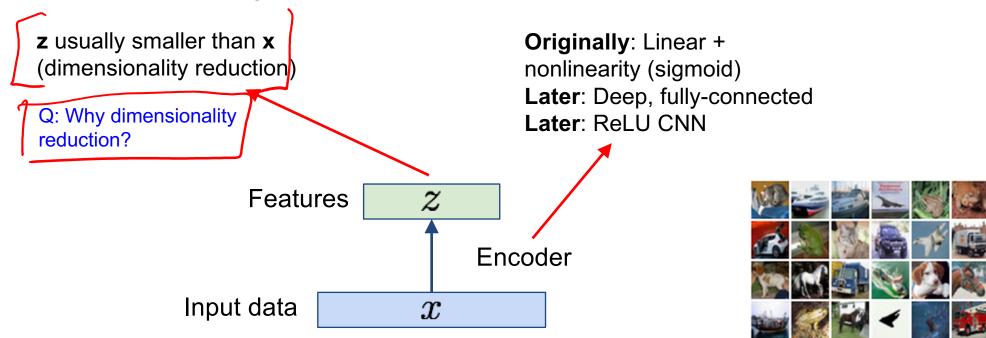
2. Variational Approximation

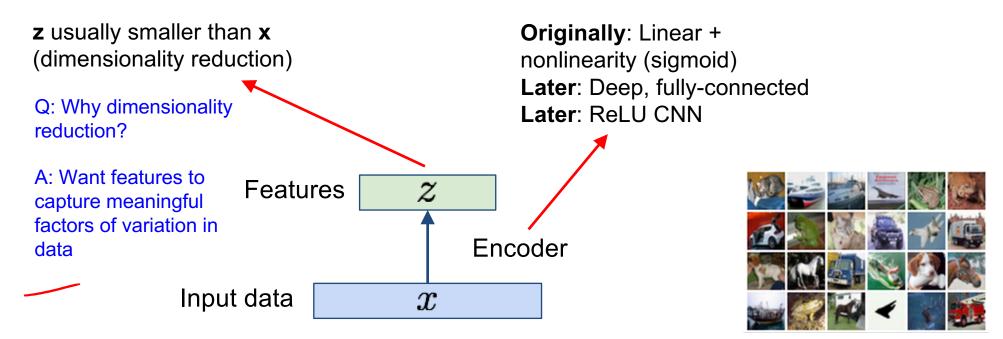
- Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick



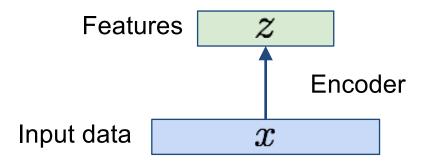


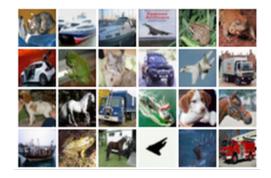






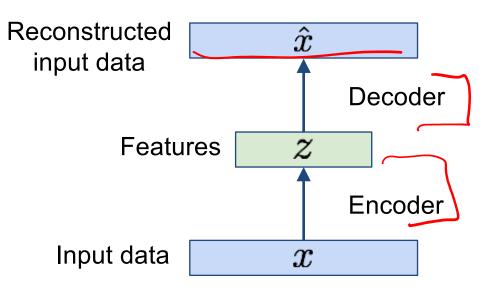
How to learn this feature representation?

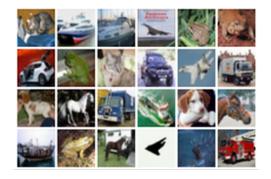




How to learn this feature representation?

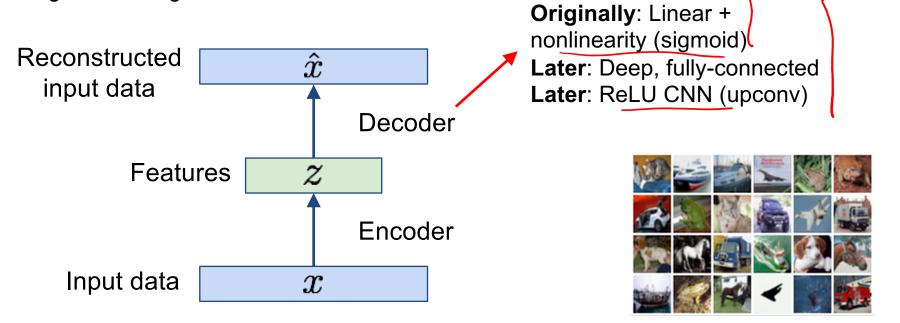
Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself





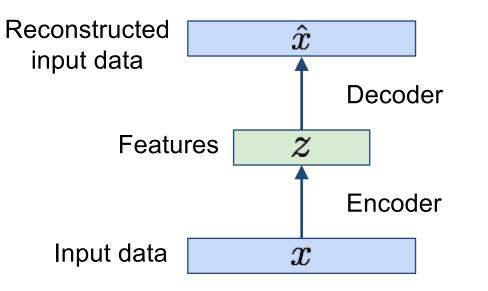
How to learn this feature representation?

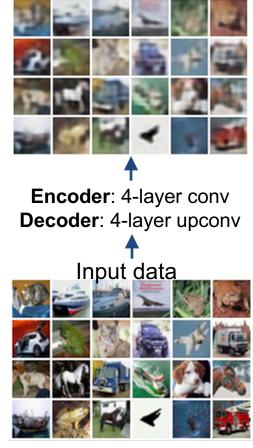
Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

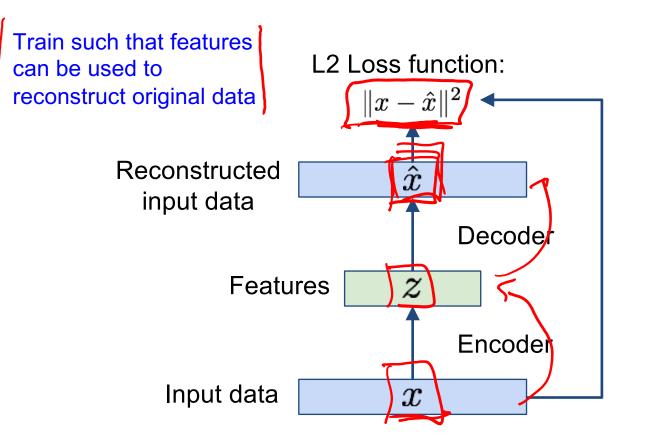


How to learn this feature representation?

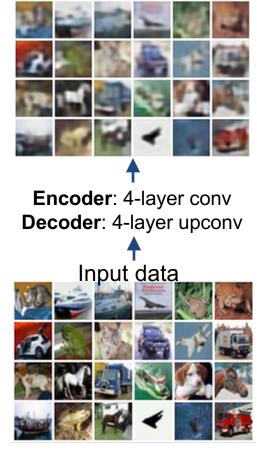
Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself



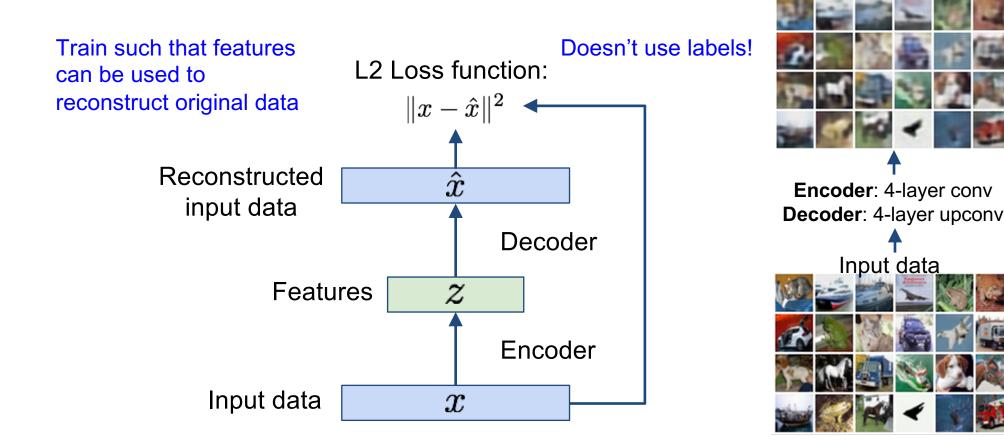




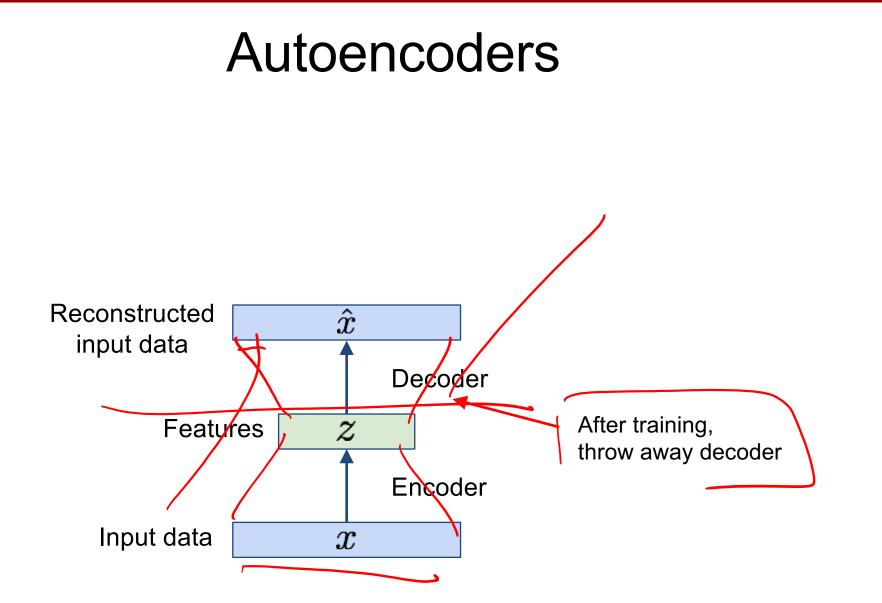
Reconstructed data

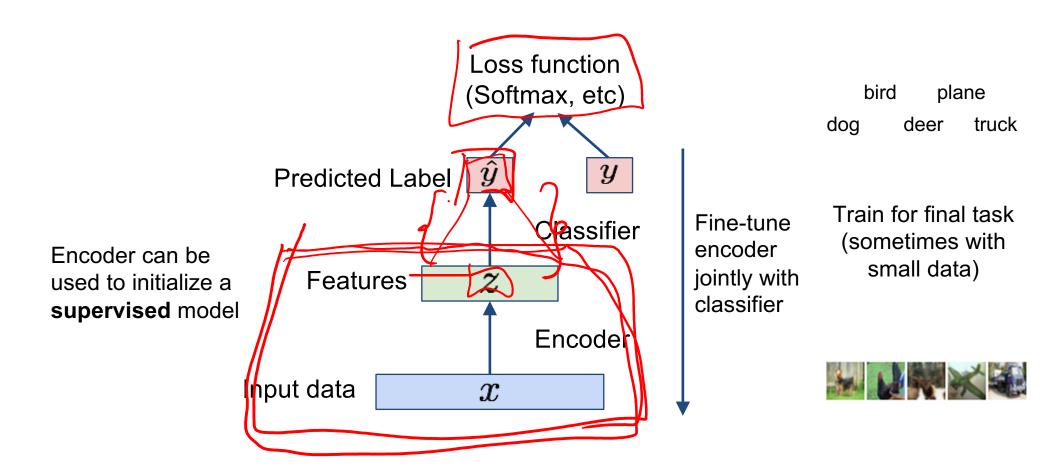


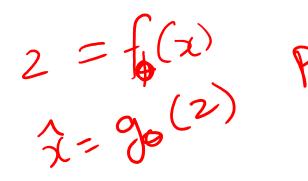
Reconstructed data

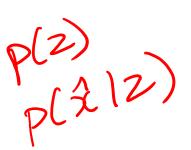


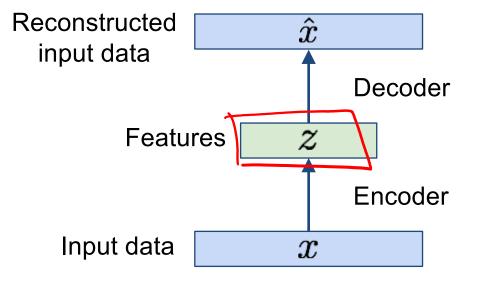
- Demo
 - <u>https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto</u> <u>encoder.html</u>









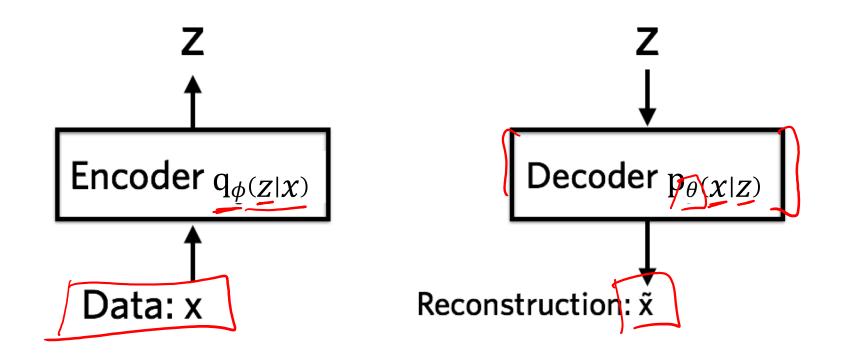


Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Features capture factors of variation in training data. Can we generate new images from an autoencoder?

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

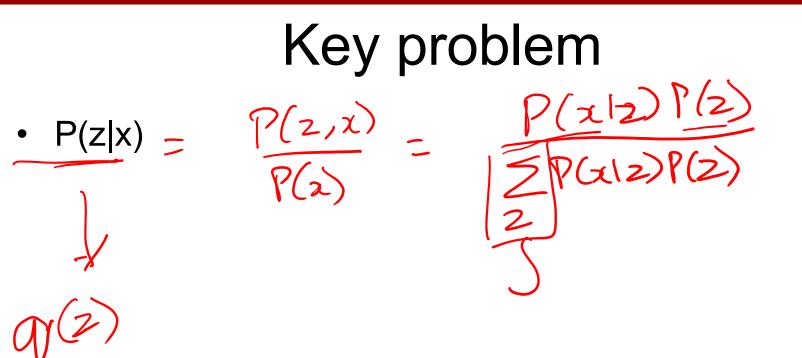


Variational Auto Encoders

VAEs are a combination of the following ideas:

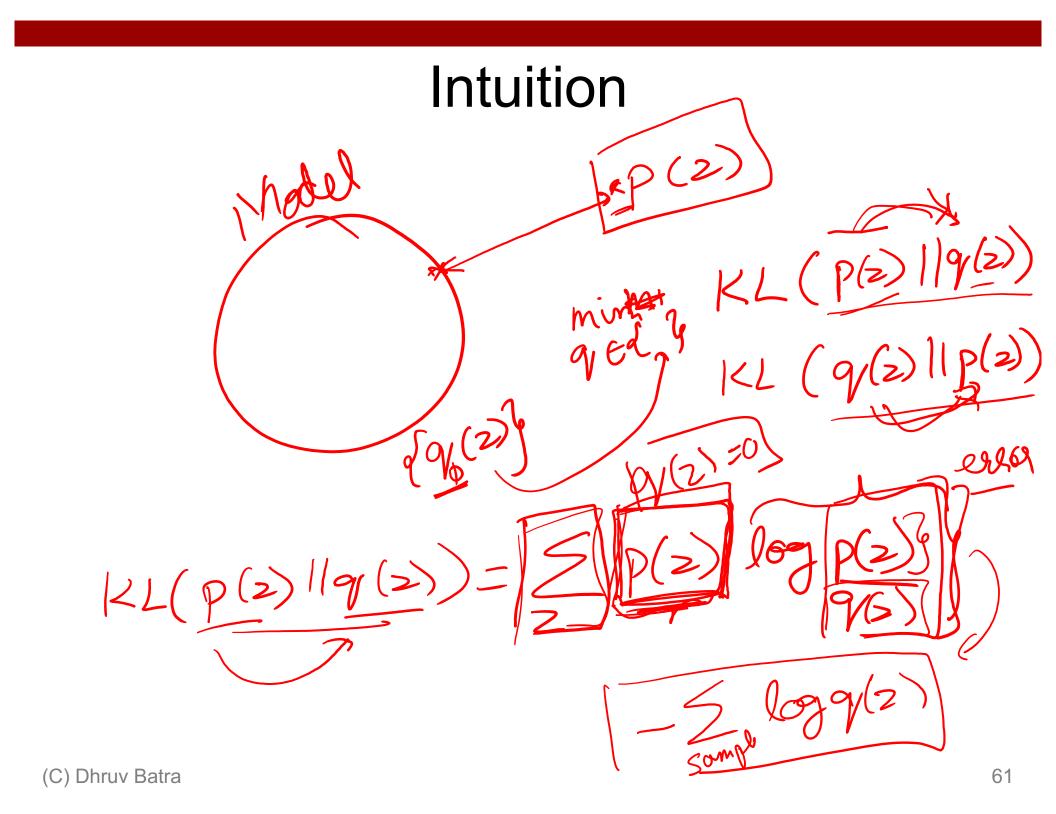
1. Auto Encoders

- 2. Variational Approximation
 - Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick



What is Variational Inference?

- A class of methods for
 - approximate inference, parameter learning
 - and approximating integrals basically..
- Key idea
 - Reality is complex
 - Instead of performing approximate computation in something complex,
 - Can we perform exact computation in something "simple"?
 - Just need to make sure the simple thing is "close" to the complex thing.



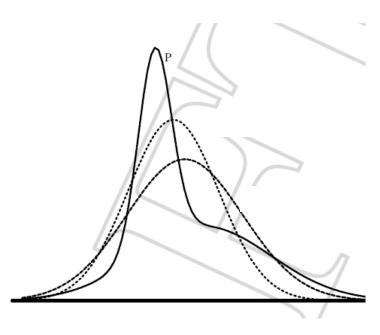
KL divergence: Distance between distributions

• Given two distributions *p* and *q* KL divergence:

- D(p||q) = 0 iff p=q
- Not symmetric p determines where difference is important

Find simple approximate distribution

- Suppose p is intractable posterior
- Want to find simple q that approximates p
- KL divergence not symmetric
- _D(p||q)
 - true distribution p defines support of diff.
 - the "correct" direction
 - will be intractable to compute
- D(q||p)
 - approximate distribution defines support
 - tends to give overconfident results
 - will be tractable



Example 1

- p = 2D Gaussian with arbitrary co-variance
- q = 2D Gaussian with diagonal co-variance

