
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Variational Auto-Encoders (VAEs)
– Key Ideas

– AEs, Variational Inference, ELBO, 
Reparameterization



Administrativia
• HW2 Grades Released

– Max regular points: 54 (4803), 78 (7643)
– Regrade requests close: 11/20, 11:55pm
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Recap from last time
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Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational 
Autoencoders (VAE)



So far...

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



GMM
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Gaussian Mixture Model
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GMM
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Gaussian Mixture Model
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Key problem
• P(z|x)
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What is Variational Inference?
• Key idea

– Reality is complex
– Can we approximate it with something “simple”?
– Just need to make sure the simple thing is “close” to the 

complex thing. 
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Intuition
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Find simple approximate distribution

• Suppose p is intractable posterior
• Want to find simple q that approximates p
• KL divergence not symmetric

• D(p||q)
– true distribution p defines support of diff. 
– the “correct” direction
– will be intractable to compute

• D(q||p)
– approximate distribution defines support
– tends to give overconfident results
– will be tractable

(C) Dhruv Batra 19Slide Credit: Carlos Guestrin



Example 1
• p = 2D Gaussian with arbitrary co-variance
• q = 2D Gaussian with diagonal co-variance
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p = Green; q = Red

argmin_q KL (q || p) 



Example 2
• p = Mixture of Two Gaussians
• q = Single Gaussian
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argmin_q KL (p || q) 

p = Blue; q = Red

argmin_q KL (q || p) 



Plan for Today
• VAEs

– Variational Inference à Evidence Based Lower Bound
– Reparameterization trick
– Putting it all together

• Generative Adversarial Networks
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• Marginal likelihood – x is observed, z is missing:

The general learning problem with missing data

23(C) Dhruv Batra 

ll(� : D) = log
NY

i=1

P (xi | �)

=
NX

i=1

logP (xi | �)

=
NX

i=1

log
X

z

P (xi, z | �)



Applying Jensen’s inequality

• Use:  log åz P(z) g(z) ≥ åz P(z) log g(z) 
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Applying Jensen’s inequality
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Applying Jensen’s inequality

• Use:  log åz P(z) g(z) ≥ åz P(z) log g(z) 
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Evidence Lower Bound

• Define potential function F(q,Q):
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ELBO: Factorization #1
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ELBO: Factorization #1
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Evidence Lower Bound

• Define potential function F(q,Q):

• EM corresponds to coordinate ascent on F
– Thus, maximizes lower bound on marginal log likelihood
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GMM
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EM for Learning GMMs
• Simple Update Rules

– E-Step: estimate Qi(z) = Pr(z = j | xi)
– M-Step: maximize expected likelihood under Qi(z)
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Gaussian Mixture Example: Start

36(C) Dhruv Batra Slide Credit: Carlos Guestrin



After 1st iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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Evidence Lower Bound

• Define potential function F(q,Q):
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Amortized Inference Neural Networks
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Amortized Inference Neural Networks
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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VAEs

(C) Dhruv Batra 51Image Credit: https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder



Putting it all together: maximizing the 
likelihood lower bound

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input Data

Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the bound 
(forward pass) for a given minibatch of 
input data

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Sample z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

For every minibatch of input 
data: compute this forward 
pass, and then backprop!

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary 
z1

Vary 
z2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vary 
z1

Vary 
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vary 
z1

Vary 
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 

Variational Auto Encoders: Generating Data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound
Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian
- Incorporating structure in latent variables 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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