
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Generative Adversarial Networks (GANs)
– Reinforcement Learning (RL)



Administrativia
• HW3 Grades Released

– Max regular points: 62 (4803), 66 (7643)
– Regrade requests close: 12/04, 11:55pm
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Administrativia
• Project submission instructions released

– Due: 12/04, 11:55pm
– Last deliverable in the class
– Can’t use late days
– https://piazza.com/class/jkujs03pgu75cd?cid=225
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Recap from last time
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Basic Problem

• Goal
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min
✓

Ez⇠p✓(z)[f(z)]



Basic Problem

• Goal

• Need to compute: 
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min
✓

Ez⇠p✓(z)[f(z)]

r✓ Ez⇠p✓(z)[f(z)]



Does this happen in supervised learning?

• Goal
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min
✓

Ez⇠p✓(z)[f(z)]



Example
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Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 

• Path Derivative Gradient Estimator 
aka “reparameterization trick”
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Option 1
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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Example
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Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Option 2
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Option 2
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Reparameterization Intuition
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z = µ+ �2✏i

✏i ⇠ p(✏)

�2

Figure Credit: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/



Example
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Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Example

(C) Dhruv Batra 19Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/



Example
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Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial 
Networks (GAN)



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks (GANs)

GANs are a combination of the following ideas:

1. Learning to Sample
• Connection to Inverse Transform Sampling

2. Adversarial Training 

3. “Reparameterization” Trick
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Easy Interview Question
• I give you u ~ U(0,1)

• Produce a sample from Bern(!)

(C) Dhruv Batra 26



Slightly Harder Interview Question
• I give you u ~ U(0,1)

• Produce a sample from Cat(π)
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Harder Interview Question
• I give you u ~ U(0,1)

• Produce a sample from FX(x)
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Generative Adversarial Networks
Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Q: What can we use to 
represent this complex 
transformation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Generative Adversarial Networks

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution

Q: What can we use to 
represent this complex 
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Generative Adversarial Networks (GANs)

• Reinforcement Learning
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Generative Adversarial Networks (GANs)

GANs are a combination of the following ideas:

1. Learning to Sample
• Connection to Inverse Transform Sampling

2. Adversarial Training 

3. “Reparameterization” Trick
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Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 

Aside: Jointly training two 
networks is challenging, 
can be unstable.  
Choosing objectives with 
better loss landscapes 
helps training, is an active 
area of research.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game
Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



GANs
• Demo

– https://poloclub.github.io/ganlab/

45

https://poloclub.github.io/ganlab/


Generative Adversarial Nets

Nearest neighbor from training set

Generated samples

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Generative Adversarial Nets

Nearest neighbor from training set

Generated samples (CIFAR-10)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Samples 
from the 
model look 
much 
better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Interpolating 
between 
random 
points in 
latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



BigGAN

52
Large Scale GAN Training for High Fidelity Natural Image Synthesis

Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



BigGAN

53
Large Scale GAN Training for High Fidelity Natural Image Synthesis

Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



BigGAN
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“The GAN Zoo”

2017: Explosion of GANs

“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

See also: https://github.com/soumith/ganhacks for tips 
and tricks for trainings GANs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2017: Explosion of GANs

https://github.com/soumith/ganhacks


GANs
Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Generative Adversarial Networks (GANs)

• Reinforcement Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc. 2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Unsupervised learning
– Discover structure in data
– Training data does not include desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)
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What is Reinforcement Learning?

Agent-oriented learning—learning by interacting with an 
environment to achieve a goal 

• more realistic and ambitious than other kinds of machine 
learning

Learning by trial and error, with only delayed evaluative feedback 
(reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

Slide Credit: Rich Sutton



David Silver 2015



Example: Hajime Kimura’s RL Robots

Before After

Backward New Robot, Same algorithmSlide Credit: Rich Sutton



● Environment may be unknown, nonlinear, stochastic and complex

● Agent learns a policy mapping states to actions

○ Seeking to maximize its cumulative reward in the long run

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Slide Credit: Rich Sutton

RL API



RL API
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Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Slide Credit: Rich Sutton



Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Demo
• http://projects.rajivshah.com/rldemo/
• https://cs.stanford.edu/people/karpathy/convnetjs/de

mo/rldemo.html
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Markov Decision Process
- Mathematical formulation of the RL problem

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory: 

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory: 

- Markov property: Current state completely characterizes the state of the 
world

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment
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Policy
• A policy is how the agent acts

• Formally, map from states to actions
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What’s a good policy? 

The optimal policy !*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

The optimal policy !*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

The optimal policy !*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

Formally:

with 

The optimal policy !*



Value Function
• A value function is a prediction of future reward

• “State Value Function” or simply “Value Function”
– How good is a state? 
– Am I screwed? Am I winning this game?

• “Action Value Function” or Q-function
– How good is a state action-pair? 
– Should I do this now?
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Model
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Model
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• Model predicts what the world will do next

Slide Credit: David Silver


