CS 4803 / 7643: Deep Learning

Topics:
— Generative Adversarial Networks (GANSs)
— Reinforcement Learning (RL)

Dhruv Batra
Georgia Tech

-
Administrativia

« HW3 Grades Released
— Max regular points: 62 (4803), 66 (7643)
— Regrade requests close: 12/04, 11:55pm

[T T T T I
0 10 20 30 40 50 60 70 80

52.0 70.0 85.0 71.56 6.33

(C) Dhruv Batra 2

-
Administrativia

* Project submission instructions released
— Due: 12/04, 11:55pm
— Last deliverable in the class

FCa‘ﬁ‘Fuse [ate dam

—https //piazza.com/class/ikujs03pgu75cd?cid=225

(C) Dhruv Batra 3

https://piazza.com/class/jkujs03pgu75cd?cid=225

Recap from last time

(C) Dhruv Batra 4

-
\@riational Auto Encodgrs

VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
« Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

-

) 4. "Reparameterization” Trick] e

—

(C) Dhruv Batra 3)

Basic Problem

— /‘7‘\
« Goal ﬂ» O pa(2) [f(z)]j
o] | = 2
J—
Dﬁ

(C) Dhruv Batra 6

-]
Basic Problem

+ Goal m@in "1z~pL9/(z) [f\(f)]
A
- Need to(co;;pute: Vo T) L@]
2> Pz
%M o \ij{@ Py (DA
fve‘&(». F[: 2 7 —

BLBEDL | [V, (@ p
K ﬁ%ﬁiz,// ‘ i%,’zb} A PeCzBO\Z&

(C) Dhruv Batra .

Does this happen In supervised learning?

g% G ~ Pdoda [I/Qrdncnf' gée)JH]

+Z~po(2)

;’%iQ %Q((9>

~ |\ - QC '\/ACQ‘/6'>>]
QE%N@ g § &>

(C) Dhruv Batra 8

f=2 T
- (2)
m@vv\ E«z[]ﬁ] \ \/oo\(2> _ f[(Z’ @>]
i Z jzz p(>d= - E(2]-©

(C) Dhruv Batra 9

Two Options

« Score Function based Gradient Estimg’tor\
@ aka REINFORCE (and variants)

VoE. [f(2)] =E. [f(2)Velog pe(2)]

—_— jpp——
—

. Ivati lent Estimator \
aka jreparameterization trick” |

) I B df dg

(C) Dhruv Batra 10

Option 1

 Score Function based Gradient Estimator
aka REINFORCE (and variants)

 VeE. [£(2)] = E. [£(2) Vo logpo(2)

© ﬂf(z) >d2

(C) Dhruv Batra

_ Exanple

Po (2> = \/Zf_ /
(=-© _ L 52
Q (@% \75(%\: (2—7—/— 2

o _ (2-9-6 = @:e>
Z-
% Ei =(2 9|
L SEDE®

N

(C) Dhruv Batra 12

-]
Two Options

 Score Function based Gradient Estimator [
aka REINFORCE (and variants)

VoE, [f(2)] = E, [f(2)Vglogpe(2)]

 Path Derivative Gradient Estimator

aka “reparameterization trick”
5 9 _ 9f 9g
g)] = 5B (600,)] = B, | 51 501

(C) Dhruv Batra 13

Option 2

* Path Derivative Gradient Estimator
aka “reparameterization trick”

5 9 df dg
55 Ezpe f ()] = 25Ee [£(9(0; €))] 2@[375_9‘

-

= A N(O, D
> AN &) ¢ aNo /
— = ;@’ng@‘\sw R

(C) Dhruv Batra coned g 14

Option 2

« Path Derivative Gradient Estimator
aka “reparameterization trick”

50 2po [1(2))] = feﬁf(g(e o)) @g;}
P jqf((6,8)) (2 dE I?\
Jo J T TG
_ _SAD H (0.6 e dE

06

Sfaﬁ V(QBO%

(C) Dhruv Batra 15

Reparameterization Intuition

(C) Dhruv Batra Figure Credit: http://blM/ZO‘l5/10/machine—learning—trick—of—the—day—4—reparameterisation—tricl(kﬁ

-]
Two Options

 Score Function based Gradient Estimator
aka REINFORCE (and variants)

VoE, [f(2)] = E, [Ji(j)vo log pg(2)])

« Path Derivative Gradient Estimator
aka “reparameterization trick”
0 0 [8 f a_g]

gg e~ L[] = 5B [f(9(6,€)] = Ecny, | (7155

(C) Dhruv Batra 18

-]
Example

import numpy as np
N = 1000~

ﬁlgpeta = 2.0)
5’x)= np.random.randn(N) + theta
eps = np.random.randn(N) =

__>_gradl = lambda x: np.sum(np.square(x)*(x-theta)) / x.size
grad2 = lambda eps: np.sum(Z2*(theta + eps)) / x.size

= ————

—

 —

print gradl(x)
print grad2(eps)

446239612174
4.1840532024 PEAS)

—

(C) Dhruv Batra Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 19

Example

Ns = [10, 100, 1000, 10000, 100000]
reps = 100

meansl = np.zeros(len(Ns))
varsl = np.zeros(len(Ns))
means2 = np.zeros(len(Ns))
vars2 = np.zeros(len(Ns))

estl = np.zeros(reps)
est2 = np.zeros(reps)
for i, N in enumerate(Ns):
for r in range(reps):
X = np.random.randn(N) + theta
estl[r] = gradl(x)
eps = np.random.randn(N)
est2[r] = grad2(eps)
meansl1l[i] = np.mean(estl)
means2[i] = np.mean(est2)
varsi[i] np.var(estl)
vars2[i] np.var(est2)

print meansl
print means2
print

print varsl

print vars2

[3.8409546 3.97298803 4.03007634 3.98531095 3.99579423]
[3.97775271 4.00232825 3.99894536 4.00353734 3.99995899]

[6.45307927e+00 6.80227241e-01 8.69226368e-02 1.00489791e-02

8.62396526e-04]

[4.59767676e-01 4.26567475e-02 3.33699503e-03 5.17148975e-04

4.65338152e-05]

(C) Dhruv Batra

REIN-ORCE
/

Wy
(-
—
ol

J
)

L)

i

Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 20

-
Variational Auto Encoders

Putting it all together: maximizing the

likelihood lo et)

»yYIY Y

_E;z{lm \ Z)] — Dicr(qs(z | 21) || pa(2))
/] () g _J Decoder netwark

Po(Z

Make approximate
posterior distribution
close to prior

Encoder network
q4(2|z)
Input Data

Hzx|z

Yolz \

2)

-——'\

VA

Sample z frorr‘ z

/

Hz|x

~ N(u’zlwa Zzlsc)

~_

>

A

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial
Networks (GAN)

PixelCNNs defin% tractable density function, optimize likelihood of training data:

p@(x) —_ Hpe(iBiliEl, ceay £Ez'_1)
=1

2, 2)
VAEs define intractable density function with latent z: w
po(a) = [po(2)pa(ale)d:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So far...

PixelCNNs defin% tractable density function, optimize likelihood of training data:

pg(:c) —_ Hpg(:cﬂacl, ceey CEz'_l)
=1

VAEs define intractable density function with latent z:

po(a) = [po(2)pa(ale)d:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

—_—
GANSs: don’t work with any explicit density function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Networks (GANSs)

GANs are a combination of the following ideas:

——

S (\ Learning to Sample) 7
. ?

Connection to Inverse Transform Sampling

/

\

(2. Adversarial Traini&] & ’

)/ 3. “Reparameterization” Tricﬁ j

-

(C) Dhruv Batra 25

Easy Interview Question

—

| . | give you u ~ U(0,1)

1

L- Produce a sample fron')kIrBern(a) P(j) - O

(C) Dhruv Batra 26

Slightly Harder Interview Question

* | give you/ ~ U(0,1) 2
~
 Produce a sample from@

\[4)
/i P
'3! \l L/'L
L T 1
/’(\"ﬂ» T'
2

(C) Dhruv Batra 27

arder Interview Question

| give youuu/~ U(0,1)
* Produce a sample fromB Fy(X)

(C) Dhruv Batra 28

fgenerative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this! o

training distribution.

Q: What can we use to
epresent this complex
ransformation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from &

represent this complex training distribution <

transformation? A

A: A neural network! Generator \
Network

— T]
Input: Random noise z

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Plan for Today

* (Finish) Generative Adversarial Networks (GANS) [

« Reinforcement Learning

(C) Dhruv Batra 31

Generative Adversarial Networks (GANSs)

GANs are a combination of the following ideas:

1. Learning to Sample
Connection to Inverse Transform Sampling
2. Adversarial Training) &

3. “Reparameterization” Trick

(C) Dhruv Batra 32

- 00000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

ork: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game
lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake 0? 0/ i}
*
Discriminator Network 9(@

Fake Images ~ Real Images
(from generator) | | - (from training set)
Generator Network %j

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function: @

minfmax [EMW lod Dy E(mﬁ + Eop(z) log(1 — Dy, (Go. (2)))
g d _— —

=

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:
min max

1in X | Eprpayy, 108 Do, () + Earpie) log(1 — Doy (Go, (2))]
g d |_|_l []

e
~—

|
Discriminator output Discriminator output for
for real data x

generated fake data G(z)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [anpdm log Do, () + E.np(z) log(1 — Do, (Go, (Z)))]
0, 6a I []

|
Discriminator output Discriminator output for
for real data x generated fake data G(z)

Discriminator (84) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

Generator (85) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 00000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min 0 |Epnpyq., 108 Doy (7) + Eanpz) 10g(1 — Do, (Go, (2)))]

0, 6g |
O 6a

Alternate between: -, M‘-’J
1. Gradient ascent on discriminator Oﬁ
’_/mja;FEmNPda log Dy, (x)|+ E, p(z) log(1 — Dy, (Ggg (z)))]
9,1, -~ L ——

i

2. Gradient descent on generator 60((9’143/'([

minE, ., log(1 — Dy, (G, (2)))

0, .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min 0 |Epnpyq., 108 Doy (7) + Eanpz) 10g(1 — Do, (Go, (2)))]

0, 64

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

n%ax [Emfvpdam log Dy, (z) + Eznp(2) log(1 — D, (G9g (z)))} dominated by region
d —~ where sample is
already go\od

2. Gradient descent on generator 4
minE, ;) log(1 — Dy, (G, (2))) i

Oq ~ When sample is likely:|

fake, want to learn &

In practice, optimizing this generator objective from it to improve T
does not work well! generator. But

gradient in this regio N *
is relatively flat! O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 00000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min 0 |Epnpyq., 108 Doy (7) + Eanpz) 10g(1 — Do, (Go, (2)))]

0, 64

Alternate between:
1. Gradient ascent on discriminator

I%&X []Emdiata log D9d (:U) + EZNP(z) log(l o ng (G99 (Z))):|
d

— log(1-D(G(2))) |
— —logD(G(2))

2. Instead: Gradient ascent on generator, different
objective 1
| max E. p(z) 10g(Do (G, ()

Instead of minimizing likelihood of discriminator being correct, now High gradié-nt signal
maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient . |
signal for bad samples => works much better! Standard in practice.

Low gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 00000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min 0 |Epnpyq., 108 Doy (7) + Eanpz) 10g(1 — Do, (Go, (2)))]

0, 0Oa
Aside: Jointly training two

] networks is challenging,
Alternate between: can be unstable.

1. Gradient ascent on discriminator Choosing objectives with
n%ax [wavpdam log ng (g;) + Ezwp(z) log(l — Ded (Geg (z)))} better loss landscapes
d

helps training, is an active
area of research.

2. Instead: Gradient ascent on generator, different
objective

— log(1 —D(G(z))) |
— —logD(G(2))

Instead of minimizing likelihood of discriminator being correct, now High gradié-nt signal
maximize likelihood of discriminator being wrong. -l
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

X B, 108(Dy (G, ()

I
0.0 0.2

Low gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

-

Real or Fake

Discriminator Network
~ Real Images
~ (from training set)
Generator Network

= After training, use generator network to
generate new images

Fake Images
(from generator) |

7

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

GANSs

« Demo
— https://poloclub.github.io/ganlab/

https://poloclub.github.io/ganlab/

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

- S
i%*ﬁl

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10) gl

.

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

100 z

Stride 2

Stride 2 16 -
Project and reshape O 32~ | Stride 2
il CONV 3 64
———__ CONv4 -
Generator @)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016
— e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

terpolating(S

etween T

random :
oints in
tent space

Radford et al,
ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Large Scale GAN Training for High Fideljt trage Synihesis
Andrew Brock, Jeff Donahue, Karen Simonyan Rhttps://arxiv.org/abs/1809.11096

(a) 128 % 128 (b) 256x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class

leakage in a partially trained model (d). —
N —

Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096

(C) Dhruv Batra https://gist.github.com/phillipi/d2921f2d4726d7e3cdac7a4780c6050a 54

-]
2017: Explosion of GANs

“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« acGAN - Face Aging With Conditional Generative Adversarial Networks

+ AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

+ AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
+ AffGAN - Amortised MAP Inference for Image Super-resolution 9

X . . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
s ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw
e . . GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks)) 9 &) 9 P P
. . . . Geometric GAN - Geometric GAN
+ Bayesian GAN - Deep and Hierarchical Implicit Models

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning

IAN - Neural Photo Editing with Introspective Adversarial Networks

* BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. * ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters ¢ N ¢

. . . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks P P ; N

. InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-]
2017: Explosion of GANs

See also: https://github.com/soumith/ganhacks for tips
and tricks for trainings GANs

“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

+ AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
+ AffGAN - Amortised MAP Inference for Image Super-resolution 9

i . . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
e ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw
e . . GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
* b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks)) 9 &) 9 P P
. . . . Geometric GAN - Geometric GAN
+ Bayesian GAN - Deep and Hierarchical Implicit Models

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning

IAN - Neural Photo Editing with Introspective Adversarial Networks

* BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. * ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters ¢ N ¢

. . . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks P P ; N

. InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/soumith/ganhacks

GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can'’t solve inference queries such as p(x), p(z|x)

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

Active areas of research:
- Conditional GANs, GANSs for all kinds of applications [

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Plan for Today

* (Finish) Generative Adversarial Networks (GANS)

« Reinforcement Learning (

(C) Dhruv Batra 58

Supervised Learning

&)

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image Classification
captioning, etc.

This i s CCO) .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised Learning

Data: x v+ e (PR TI

Just data, no labels!

1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature RS
learning, density estimation, etc. 2-d density estimation

left and right

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Types of Learning

* Supervised learning

— Learning from a "teacher”
— Training data includes desired outputs

* Unsupervised learning
— Discover structure in data |
— Training data does not include desired outputs

« Reinforcement learning
— Learning to act under evaluative feedback (rewards)
=ear 10T

(C) Dhruv Batra 61

-
What is Reinforcement Learning?

> ent-oriented learning—Ilearning by interacting with an
environment to achieve a goal -

_

more and than other kinds of machine)
learning

» Learning by trial and error, with only delayed evaluative feedback
(reward)

the kind of machine learning most like natural learning l

learning that can tell for itself when it is right or wrong

/

Slide Credit: Rich Sutton

Computer Science

Engineering

@

.. e
Y .
PDperations 8 .

Silver 2015

Example: Hajime Kimura’'s RL Robots

Backward side creditN@WuRobot, Same algorithm

—

Environment
(world)

e Environment may be unknown, nonlinear, stochastic and complex_

e

e Agent learns a policy mapping states to actions

o Seeking to maximize its cumulative reward in the long run

Slide Credit: Rich Sutton

RL API

» At each step t the agent:

» Executes action a;
» Receives observation oy

» Receives scalar reward r;

» The environment:

» Receives action a;
» Emits observation o;1

’L_K(%'Q—:b » Emits scalar reward r;.4
L QL=
S 5 A\ gy,
A, = Je 7
67

Slide Credit: David Silver

(C) Dhruv Batra

Signature challenges of RL
So, @ /S, /

A — /

— [Evaluative feedbacﬂreward)

=

% Sequentiality, delayed consequences

e

» Need for trial and error, to explore as well as exploit

Te—— =

» Non-stationarity > /ts gV ?&N‘A C >

» The fleeting nature of time and online data

Slide Credit: Rich Sutton

Robot Locomotion

Objective: Make the robot move forward
~— e

State: Angle and paosition of the joints)
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

o
I

Objective: Complete the game with the highest score

\

~State: Raw pixel inputs of the game state
Action: Gar_rlw_trdseg\.Left, Right, Up, Down

Reward: Score increase/decrease at each time step
num
_

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Go

=N W AR SN e 0

A BCDEFGH)] KLMNUOPIQRST

B me the game!
s (Oblecte

e

- ate=—E0
10 =

Action: Wh

ANAITC meiLna S

D L.'

———

y

N
R

Reward:[T1fwin at the end of the game, 0 otherwisé

)

=N W AR SN e 0

A BCDEFGH]J]KLMNUOPIQRST

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

This i cCo) .

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

X
Demo

* http://projects.rajivshah.com/rldemo/

o https://cs.stanford.edu/people/karpathy/convnetjs/de
mo/ridemo.html

(C) Dhruv Batra 73

http://projects.rajivshah.com/rldemo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

-
Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: (S, .A, R,]P), ’7)
= JL

S : set of possible states Clj
_. set of possible-actions-,

R : distribution of reward given (state, action) pair —
— P : transition probability i.e. distribution over next state given (stateLa’ct’ion) pair
2 7Y : discount factor o
——F(S«é—-\-\ \ g—\ /0\45

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: (S, .A, R, IP), ’7)

. set of possible states
. set of possible actions
. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

L2LEAX 0

- Lifeis trajectory: ... 5S¢, Aty Rev, Ser1, Arsa ,/IQ St+2y- -

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e
Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: (S, .A, R, IP), ’7)

. set of possible states
. set of possible actions
. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

L2LEAX 0

- Life is trajectory: .. [51'7 Ata Rt+17 5t+1: At+17 Rt+23 5t+27\ X

- Markov property: Current state completely characterizes the state of the
world o

TE—

p(r,s'|s,a) = Prob[fjtﬂ =r,S5t41 = s’

St:iAtZﬁ]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Components of an RL Agent

Policy

— How does an agent behave?

— How good is each state and/or state-action pair?

i Value function

Model [

— Agent’s representation of the environment

(C) Dhruv Batra 77

Policy ()

- A policy is how the agent acts o9

A 2
* Formally, map from states to actions ‘B :)

Deterministigi_cﬂky:ig ://_(;ﬁ ;/Cé (S> L //

Stochastic policy: m(als) = P[A; = a|S; = 5]
—_— — -

(C) Dhruv Batra 78

-]
The optimal policy t*

What's a good policy?

- 00000000000
The optimal policy *

What's a good policy?

J Maximizes current reward?&Sum of all future reward?
)L AT UTE TeWaTud

The optimal policy *

What's a good policy?
Maximizes current reward? Sum of all future reward?

Dlscounted future rewards!

f 9%+jﬂ 4 éaf/ym R

The optimal policy *
What's a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

e

Formally:

with] so ~ p(SOi[t"’ﬂ' |3t‘éét+1 N@ |3tsat

A= f\[%{_\ St © ?M{S.e o‘rt\

vv

Value Function

* A value function is a prediction of future reward

e —

)
« "State Value Function” or simply “Value Function®

— How good is a state?
— Am | screwed? Am | winning this game?

)
- “Action Value Function” or Q-function (X (

— How good is a state action-pair?
— Should | do this now?

(C) Dhruv Batra 84

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ag, ro, S1, a4, 1, ...

T ——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ag, ro, S1, a4, 1, ...

How good is a state?
The value function at state s, is the expected cumulative reward from state s

(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ag, ro, S1, a4, 1, ...

How good is a state?
The value function at state s, is the expected cumulative reward from state s

(and following the policy thereafter):

VT(s)=E Z7trt|so = 8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s (and following the policy thereafter):

E Yiry|so = 8,00 = Q, T

£>0 f]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2220 N Y Y R T I“If .
A7 NNy v ! K ;:b‘
observation / e R WAYEPTL,
W O e, ()
ﬁ ‘J \ \ \ > l/,/
| 5 WlRa AR 4
°t (71 A e T
| . 4 " f’
;\\.' e —— /
2 Afv-‘r—-!_ 77 e

reward

ry

action

(C) Dhruv Batra

Model)

Slide Credit: David Silver

-]
Model

* Model predicts what the world will do next

S
— y :

SO Tb
’f\(‘ S8 K VA
observation / o ke E Nl e action
I 7 RSy o € o0 o Model is learnt from experience
O ,7_-*/ .
G Acts as proxy for environment
&
ward T) Planner interacts with model
t
e.g. using lookahead search
—— <
S,, de —™ S, -
—
— 89

(C) Dhruv Batra) Slide Credit: David Silver

