CS 4803 / 7643: Deep Learning

Topics:

- Generative Adversarial Networks (GANs)
- Reinforcement Learning (RL)

Dhruv Batra Georgia Tech

Administrativia

- HW3 Grades Released
	- Max regular points: 62 (4803), 66 (7643)
	- Regrade requests close: 12/04, 11:55pm

Administrativia

- Project submission instructions released
	- Due: 12/04, 11:55pm
	- Last deliverable in the class

Can't use late days

https://piazza.com/class/jkujs03pgu75cd?cid=225

Recap from last time

Variational Auto Encoders

VAEs are a combination of the following ideas:

- 1. Auto Encoders
- 2. Variational Approximation
	- Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks

4. "Reparameterization" Trick

Basic Problem

Basic Problem

Goal

min θ $\mathbb{E}_{z\sim p_{\theta}(z)}[f(z)]$

• Need to compute:
 $\nabla_{\epsilon} \int f_{\epsilon}(2) P^{(2)}dz$
 $\nabla_{\epsilon}f_{\epsilon}(3) \cdot P^{(2)}dz$ $\sqrt{\frac{T_{0}f(x)}{T_{0}f(1)}} \cdot \frac{p(x)}{x^{2}}$
 $\frac{F_{2}}{x} \cdot \frac{V_{0}f_{0}(x)}{x^{2}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Two Options

• Score Function based Gradient Estimator aka REINFORCE (and variants)

$$
\underline{\nabla}_{\theta} \mathbb{E}_{z} \left[f(z) \right] = \underline{\mathbb{E}_{z} \left[f(z) \nabla_{\theta} \log p_{\theta}(z) \right]}
$$

• Path Derivative Gradient Estimator aka "reparameterization trick"

$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} [f(z))] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} [f(g(\theta, \epsilon))] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right]
$$

Option 1

• Score Function based Gradient Estimator aka REINFORCE (and variants)

 $P_{\sigma}(z) = \frac{1}{\sqrt{2a}} e^{-\frac{(z-\sigma)^2}{2}}$ $log p_{0}(z) = -(\frac{z}{2}-\frac{\omega}{2})^{2} - \frac{1}{2}$ /0g 2a $= 2(2-0)(4) = (2-0)$ $= E[z^{2}(z - \theta)]$ = $E\left[\frac{z^{2}(z-\theta)}{N}\right]$
 $\lambda \frac{1}{N} \sum_{i=1}^{N} (z_{i}^{2})(z_{i}-\theta)$

Two Options

• Score Function based Gradient Estimator aka REINFORCE (and variants)

$$
\nabla_{\theta} \mathbb{E}_{z} [f(z)] = \mathbb{E}_{z} [f(z) \nabla_{\theta} \log p_{\theta}(z)]
$$

• Path Derivative Gradient Estimator aka "reparameterization trick"

$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} \left[f(z) \right)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} \left[f(g(\theta, \epsilon)) \right] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right]
$$

Option 2

• Path Derivative Gradient Estimator aka "reparameterization trick"

$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z))] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}}[f(z)] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon}[f(g(\theta, \epsilon))] = \boxed{\mathbb{E}_{\epsilon \sim p_{\epsilon}}\left[\frac{\partial f}{\partial g}\frac{\partial g}{\partial \theta}\right]}
$$
\n
$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \
$$

Option 2

 $\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} [f(z))] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} [f(g(\theta, \epsilon))] = \mathbb{E}_{\epsilon \sim p_{\theta}}$

 $f(g(\theta,\epsilon))$. $p(\epsilon) d \epsilon$

 $\frac{\partial g}{\partial \theta}$. $p(\epsilon) d\epsilon$

• Path Derivative Gradient Estimator aka "reparameterization trick"

 $f(g(\theta,\epsilon))$. $g(\epsilon) d\epsilon$

 $\overline{}$

Reparameterization Intuition

(C) Dhruv Batra Figure Credit: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks6

Two Options

• Score Function based Gradient Estimator aka REINFORCE (and variants)

$$
\nabla_{\theta} \mathbb{E}_{z} [f(z)] = \mathbb{E}_{z} [f(z) \nabla_{\theta} \log p_{\theta}(z)]
$$

• Path Derivative Gradient Estimator aka "reparameterization trick"

$$
\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_\theta} \left[f(z)) \right] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} \left[f(g(\theta, \epsilon)) \right] = \mathbb{E}_{\epsilon \sim p_\epsilon} \left[\frac{\partial}{\partial \theta} \right]
$$

Example

Example

 $Ns = \lceil 10, 100, 1000, 10000, 100000 \rceil$ $reps = 100$

```
means1 = np{\text{-}zeros(len(Ns))}vars1 = np \cdot zeros(len(Ns))means2 = np{\text{-}zeros(len(Ns))}vars2 = np \cdot zeros(len(Ns))
```

```
est1 = np \cdot zeros(reps)est2 = np \cdot zeros(reps)for i, N in enumerate(Ns):
for r in range(reps):
    x = np.random.random(N) + thetaest1[r] = grad1(x)eps = np.random.random(N)est2[r] = grad2(eps)means1[i] = np_mean(est1)means2[i] = np_mean(est2)vars1[i] = np-var(est1)vars2[i] = np-var(est2)
```
print means1 print means2 print print vars1 print vars2

Variational Auto Encoders

Generative Adversarial Networks (GAN)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$
p_{\theta}(x) = \prod_{i=1} p_{\theta}(x_i | x_1, ..., x_{i-1})
$$

VAEs define intractable density function with latent **z**:

$$
p_\theta(x) = \int p_\theta(z) p_\theta(x|z) dz
$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$
p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})
$$

VAEs define intractable density function with latent **z**:

$$
p_\theta(x) = \int p_\theta(z) p_\theta(x|z) dz
$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don't work with any explicit density function!

Generative Adversarial Networks (GANs)

GANs are a combination of the following ideas:

Easy Interview Question

Slightly Harder Interview Question

- I give you $u \sim U(0,1)$
- Produce a sample from $\text{Cat}(\pi)$

Harder Interview Question

- \cdot I give you μ $\sqrt{\frac{1}{1 U(0, 1)}}$
- Produce a sample from $F_X(x)$

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Plan for Today

- (Finish) Generative Adversarial Networks (GANs)
- Reinforcement Learning

Generative Adversarial Networks (GANs)

GANs are a combination of the following ideas:

- 1. Learning to Sample
	- Connection to Inverse Transform Sampling
- 2. Adversarial Training
- 3. "Reparameterization" Trick

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game** Minimax objective function: $\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log \frac{D_{\theta_d}(x)}{2} + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)) \right]$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game**

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)) \right]
$$
\n
$$
\sum_{\text{Discriminator output}} \text{Discriminator output for general data x} \n\min_{\text{general data } x} \text{subject to the general data } G(z)
$$
Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

 \blacksquare

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game**

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z)) \right]
$$
\nDiscriminator output

\nDiscurvinator output for general data x

\nGeneral data x

- Discriminator (θ_d) wants to **maximize objective** such that $D(x)$ is close to 1 (real) and $D(G(z))$ is close to 0 (fake)
- Generator (θ_a) wants to **minimize objective** such that $D(G(z))$ is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

Alternate between:
 1. Gradient ascent on discriminator
 $\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{da}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$ **1. Gradient ascent** on discriminator Od consil **2. Gradient descent** on generator $\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Gradient signal

dominated by region

Minimax objective function:

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

Alternate between:

1. Gradient ascent on discriminator

$$
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

2. Gradient descent on generator

$$
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(\underbrace{1 - D_{\theta_d}(G_{\theta_g}(z))})
$$

In practice, optimizing this generator objective does not work well!

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

Alternate between:

1. Gradient ascent on discriminator

$$
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

2. Instead: Gradient ascent on generator, different objective $\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(\underline{D}_{\theta_d}(G_{\theta_g}(z)))$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

п,

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$
\nAside: Jointly training two

Alternate between:

1. Gradient ascent on discriminator

$$
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
$$

networks is challenging, can be unstable. Choosing objectives with better loss landscapes helps training, is an active area of research.

2. Instead: Gradient ascent on generator, different objective $\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

GANs

• Demo

– https://poloclub.github.io/ganlab/

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generative Adversarial Nets

Generated samples

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generative Adversarial Nets

Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Samples from the model look much better!

Radford et al, ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

BigGAN

52 Large Scale GAN Training for High Fidelity Natural Image Synthesis Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096

BigGAN

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class leakage in a partially trained model (d).

BigGAN

(C) Dhruv Batra https://gist.github.com/phillipi/d2921f2d4726d7e3cdac7a4780c6050a 54

2017: Explosion of GANs

"The GAN Zoo"

- GAN Generative Adversarial Networks
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
• 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
• acGAN Face Aging With Con
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks
- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
-
-
-
-
- DTN Unsupervised Cross-Domain Image Generation
- DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- GAWWN Learning What and Where to Draw
- GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN Geometric GAN
- GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- IAN Neural Photo Editing with Introspective Adversarial Networks
- iGAN Generative Visual Manipulation on the Natural Image Manifold
- IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics **Synthesis**
- LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

2017: Explosion of GANs

See also: https://github.com/soumith/ganhacks for tips and tricks for trainings GANs

"The GAN Zoo"

- GAN Generative Adversarial Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- . AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks
- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
- C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- DTN Unsupervised Cross-Domain Image Generation
- DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- GAWWN Learning What and Where to Draw
- GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN Geometric GAN
- GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- IAN Neural Photo Editing with Introspective Adversarial Networks
- iGAN Generative Visual Manipulation on the Natural Image Manifold
- IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics **Synthesis**
- LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

GANs

Don't work with an explicit density function

Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:

- Beautiful, state-of-the-art samples!

Cons:

- Trickier / more unstable to train
- Can't solve inference queries such as $p(x)$, $p(z|x)$

Active areas of research:

- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Plan for Today

- (Finish) Generative Adversarial Networks (GANs)
- Reinforcement Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc. 2-d density estimation

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density images left an are CCO public domain

Types of Learning

- Supervised learning
	- Learning from a "teacher"
	- Training data includes desired outputs
- Unsupervised learning
	- Discover structure in data |
	- Training data does not include desired outputs
- Reinforcement learning

– Learning to act under evaluative feedback (rewards)

What is Reinforcement Learning?

- Agent-oriented learning—learning by interacting with an environment to achieve a goal
	- more realistic and ambitious than other kinds of machine learning
- Learning by trial and error, with only delayed evaluative feedback \bullet (reward)
	- the kind of machine learning most like natural learning
	- learning that can tell for itself when it is right or wrong

Example: Hajime Kimura's RL Robots

Before After

Backward Slide Credit: New LtRobot, Same algorithm

- Environment may be unknown, nonlinear, stochastic and complex
- Agent learns a policy mapping states to actions
	- \circ Seeking to maximize its cumulative reward in the long run

RL API

- At each step t the agent:
	- Executes action a_t
	- Receives observation o_t
	- Receives scalar reward r_t
- \blacktriangleright The environment:
	- Receives action a_t
	- Emits observation o_{t+1}
	- Emits scalar reward r_{t+1}

 $l(y^*, \frac{3}{2})$

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the jointsl **Action:** Torques applied on joints Reward: 1 at each time step upright + forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Atari Games

000044 α_{μ} Δ

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state **Action:** Game controls e.g. Left, Right, Up, Down **Reward:** Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Go

This image is CC0 public domain

Demo

- http://projects.rajivshah.com/rldemo/
- https://cs.stanford.edu/people/karpathy/convnetjs/de mo/rldemo.html

Markov Decision Process

Mathematical formulation of the RL problem

Defined by: 医八 : set of possible states : set of possible actions, \mathcal{R} : distribution of reward given (state, action) pair : transition probability i.e. distribution over next state given (state, action) pair : discount factor γ $P(S_{t+1} | S_t, \mathcal{A}_t)$

Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- \mathcal{S} : set of possible states
- $A:$ set of possible actions
- \mathcal{R} : distribution of reward given (state, action) pair
- : transition probability i.e. distribution over next state given (state, action) pair
- γ : discount factor
- Life is trajectory: $\dots S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}/R_{t+2}, S_{t+2}, \dots$

Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- $S:$ set of possible states
- $\mathcal A$: set of possible actions
- \mathcal{R} : distribution of reward given (state, action) pair
- : transition probability i.e. distribution over next state given (state, action) pair
- γ : discount factor
- Life is trajectory: ..

$$
\left\{S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}, R_{t+2}, S_{t+2}, \right\}.
$$

- **Markov property**: Current state completely characterizes the state of the world

$$
p(\underline{r},\underline{s}'|s,a) = Prob\Big[R_{t+1} = r, S_{t+1} = s' \mid S_t = \underline{s}, A_t = \underline{a}\Big]
$$

Components of an RL Agent

• Policy

– How does an agent behave?

• Value function

– How good is each state and/or state-action pair?

Model

– Agent's representation of the environment
Policy

- A policy is how the agent acts
- Formally, map from states to actions $T_{\bigodot}(s)$ Deterministic policy: $\boxed{a = \pi(s)}$ Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

What's a good policy?

What's a good policy?

Maximizes current reward?) Sum of all future reward?

 $+$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

What's a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

What's a good policy?

Maximizes current reward? Sum of all future reward?

Value Function

- A value function is a prediction of future reward
- "State Value Function" or simply "Value Function"
	- How good is a state?
	- Am I screwed? Am I winning this game?
- "Action Value Function" or Q-function
	- How good is a state action-pair?
	- Should I do this now?

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ...

How good is a state?

 Ω

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]
$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$
\text{max} \qquad \boxed{Q^{\pi}(s, d)} = \mathbb{E}\left[\sum_{t \geq 0} \gamma^{t} r_{t} | s_{0} = s, a_{0} = a, \pi\right]
$$

Model

• Model predicts what the world will do next

Model is learnt from experience Acts as proxy for environment Planner interacts with model e.g. using lookahead search

