CS 4803 / 7643: Deep Learning

Topics:
— (Deep) Reinforcement Learning\
— Closing time

Dhruv Batra
Georgia Tech



-
Administrativia

« Last class today

* Project submission
— Due: 12/04, 11:55pm

— t deliverable in the class

— Can’t use late days

— https://piazza.com/class/ikuis03pqu75cd?cid=225
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https://piazza.com/class/jkujs03pgu75cd?cid=225

Recap from last time
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Types of Learning

* Supervised learning
— Learning from a “teacher”

— Training data includes desired outputs

8 Unsupervised learning
— Discover structure in data \
- Training data does not include desired outputs

(. .

« Reinforcement learning
— Learning to act under evaluative feedback (rewards)
/\ —_— e

N—
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Response, —

Control =—
—_—

Environment
(world)

e Environment m nknown, nonlinear, stochastic and@@
onment may be unknown, no :

——

e Agent learns a policy mapping states to actions

o Seeking to maximize its cumulative reward in the long run

Slide Credit: Rich Sutton



RL API

» At each step t the agent:

» Executes action a;
» Receives observation o;
» Receives scalar reward r;

@/ » The environment:

» Receives action as

m » Emits observation o0;41
» Emits scalar reward r; 1

(C) Dhruv Batra Slide Credit: David Silver 6




Signature challenges of RL |+

.So/a"’s”~ _ — ,./’
N —— c—
é Evaluative feedbacﬂreward)

> Sequentiality, ‘belayed consc&uence{)
N —— .

Need for trial and error, to explore as well as exploit
————

X tgﬂ?owAC / S\ﬁ%@u

« The fleeting nature of time and online data

\7(\1

« Non- statlonarlty

Slide Credit: Rich Sutton



Robot Locomotion

Objective: Make the robot move forward
Mere e

State: Angle and position of theioints)
Action: Torques applied on joints
Reward: 1 at each time step upright + l

forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Atari Games
T

Objective: Complete the game with the highest score
e —

~State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at ea\cme step
R —

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

A BCDETFGH ] KLMNUOPIQRST

4 / .
Objective: Win the game!

e

- on of all-ptece
Action:
Reward:

theend of the game, 0 otherwisé

[l L TR VS R S B T N I - - B -]

This i cco ) :


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

(Markov Decision Process

- Mathematical formulation of the RL problem

Defined by: @@ , . ﬁ

S . set of QOSSIb|Q states C(j
t of po

'R, dlstrlbutlon of reward given (state, action) pair _
tranS|t|on probability i.e. distribution over next state given (state, actlon) pair

2 v discount factor
——F( Eﬁ—:\ \ g—\ 0\45

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



I
Markov Decision Process

- Mathematical formulation of the RL problem
Defined by: (S, .,4, R, IP), ’y)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair
. discount factor

2FAx W0

- Life is trajectory: . °[St> At, Rev1, St4+1, At+1, Rey2, St+2» .

-  Markev—property: Current state completely characterizes the state of the
world o

St:S At:a

p(r.5'|s, a) = Prob| Re1 = r, Se1 = §

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of an RL Agent

* Policy
— How does an agent behave?

! « Value function
— How good is each state and/or state-action pair?

* Model
— Agent’s representation of the environment

(C) Dhruv Batra 13



Policy ()

e.g.

* Apolicy is how the agent acts State  Action

A 2
* Formally, map from states to actions ‘B 1
T~ C -

Deterministic poIicy:ii: f_(ﬁ)j //Cé (S> L //

Stochastic policy: 7T(a|s> = P[A; = a|S5; = 5]
_\7/ —_—l =
J—

(C) Dhruv Batra 14



The optimal policy *
What's a good policy?
Maximizes current reward? Sum of all future reward?

Dlscounted future re_w_a_rds'

f 9%,\.)\5 + é?'fj\im + @rs -
)




The optimal policy *
What's a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

Formally: B— argﬁ;r

with )30 ~ p( SOi[at ~ E'X |3t‘é Et-I—l Ni |3tsatﬂ

C\/é—,— )‘\[%{4\ §-{-,n 2M13+ 0‘{\

vv
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Components of an RL Agent

* Policy

— How does an agent behave?

« Value function
— How good is each state and/or state-action pair?

 Model

— Agent’s representation of the environment

(C) Dhruv Batra 17



Value Function

* A value function is a prediction of future reward

—————
—

)
» "State Value Function” or simply “Value Function™ %/

— How good is a state?
— Am | screwed? Am | winning this game?

S—
* "Action Value Function” or Q-function 8 (

— How good is a state action-pair?
— Should | do this now?

(C) Dhruv Batra 18



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ag, ro, S¢, a4, 4, ...

How good is a state?
The value function at state s, is the expected cumulative reward from state s

(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, ag, ro, S¢, a4, 4, ...

How good is a state?
The value function at state s, is the expected cumulative reward from state s

(and following the policy thereafter):

VT(s) =E Z'yt'rt|30 = 8,

t>0

—

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s (and following the policy thereafter):

E f)/t'rtsozs,ao:afr
— |t>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Components of an RL Agent

* Policy

— How does an agent behave?

« Value function
— How good is each state and/or state-action pair?

 Model

— A,Qent’s representation ﬂhe environment

(C) Dhruv Batra 21



observation / 9
"-4 e

(C) Dhruv Batra

reward

ry

action

Model)

a;

Slide Credit: David Silver

22



-
Model

* Model predicts what the world will do next

observation action

% Model is learnt from experience

Acts as proxy for environment
reward I,t Planner interacts with model

e.g. using lookahead search
o ‘ < i
L S,

(C) Dhruv Batra ) Slide Credit: David Silver — 23




Plan for Today

_.\_/_/_\

 (Deep) Reinforcement Learning
— Policy gradients

* Closing the loop

(C) Dhruv Batra 24



- 0000000000000
Components of an RL Agent

* Policy

— How does an agent behave?

« Value function
— How good is each state and/or state-action pair?

 Model

— Agent’s representation of the environment

(C) Dhruv Batra 25



-]
Maze Example

St —
’ J m Rewards:|-1 per time-step:)

[ —_—

m States: Agent's location

(C) Dhruv Batra Slide Credit: David Silver 26
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Maze Example: Policy

Start |=—»

1

-Eg_ Goal

m Arrows represent policy m(s) for each state s

(C) Dhruv Batra Slide Credit: David Silver 27



-]
Maze Example: Value

m Numbers represent value ﬂs) of each state s
ol

(C) Dhruv Batra Slide Credit: David Silver 28



Maze Example: Model

model of the environment

.---.! m Agent may have an internal
A

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m [ he model may be imperfect

m Grid layout represents transition model] o

m Numbers represent immediate reward{ §jfrom each state s
(same for all a)

(C) Dhruv Batra Slide Credit: David Silver 29
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Components of an RL Agent

[- Value function
— How good is each state and/or state-action pair?

* Policy

— How does an agent behave?

/  Model

— Agent’s representation of the environment

(C) Dhruv Batra 30



Approaches to RL
* Value-based RL
— Estimate the optimal action-value functionm

- Policy-based RL j
— Search directly for the optimal policy/ ﬂ'*

« Model - Lfédc@ R
— Build a model of the world

« State transition, reward probabilities
— Plan (e.g. by look-ahead) using model

V

(C) Dhruv Batra 31



Deep RL

. ﬁlue-based RL

— Use neural nets to represent Q function \ S, Q; 9

(s,a;0%) #Q (s,a)
. Policy-based RL ”1— >

— Use neural nets to represent policy | g @’d?
%k
Model \

X? — Use neural nets to represent and, learn the model

s e
[l ”/NVU“

—

(C) Dhruv Batra 32



Deep RL

ﬁgPolic_gg-based RL J

— Use neural nets to represent policy 7y

Kﬁ’é‘&jﬁww 5 =~

(REmrrer] A o€

(C) Dhruv Batra 33
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Policy Gradients
S~ )

Formally, let’s define a class of parameterized policies: II = {[@9 c ]Rm}

For each policy, define its value:

@:’E {Z a @} mo% Ez f\—?o&b_ﬁ.@]

tg——zo = \_jﬁ_

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Policy Gradients

Formally, let's define a class of parameterized policies: II = {my,0 € R™}

For each policy, define its value:

J(G Zf}/ | 7o

t>0

We want to find the optimal policy 6* = arg max J(6)
P _—‘—9’____

How can we do this?

I
o ———

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Policy Gradients

Formally, let's define a class of parameterized policies: II = {my,0 € R™}

For each policy, define its value:

J(0) = Zf}/ | 7o

t>0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Mathematically, we can write:

J(6) = r(7)]
2/7'(7')29(7'; 0)dr
A ”AWAQ
Where r(7) is the reward of a trajectoryHE (so, ag, To, Sl,CX(.) _ S_L\h(
AT

?(Z; @B; f(gwao’?‘o L ">
ey & ﬁ o Sy At | S)c-\,o\_{-s
kcl’

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Mathematically, we can write:
J(0) = Ernp(rig) (7))
2/7'(7')39(7'; 0)dr

e —

Where r(7) is the reward of a trajectory 7 = (30, ag, 7o, S1, - - )
o,
sl P

TG =] (St+1]s¢, as 9atls77

t>0

log p(7;0) Zlogp(st+1|st, ﬁ—/log'n'g (at|st)
tio/’/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




REINFORCE algorithm

Expected reward:  J(6) = Erp(r0) (7))

r(7)p(T;0)dr
IO~ EfA Yol @2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Expected reward:  J(6) = Erp(r0) (7))

_ / r(r)p(r; 0)dr

T

Now let's differentiate this: V¢.J(6) :fr('r)ve;p('r; 6)dr

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Expected reward:  J(6) = Erp(r0) (7))

= /TT(T)p(T; 6)dr

is problematic when p depends on

Now let’s differentiate this: VgJ(O) :/T(T)Vep('r; G)d'r Intractable! Expectation of gradient
T
0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Expected reward:  J(6) = Erp(r0) (7))
~ [ rrIw(r0par

is problematic when p depends on

Now let’s differentiate this: VgJ(O) :/T(T)Vep('r; G)d'r Intractable! Expectation of gradient
T
0

However, we can use a nice trick: v p(7; ) = = p(1;0) Vg log p(7; 6)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Expected reward:  J(6) = Erp(r0) (7))

= /TT(T)p(T; 6)dr

ST - . _ . Intractable! Expectation of gradient
Now | ifferenti his: —
ow let’s differentiate this: V4.J(9) /T(T)Vep(’r, 0)dr s problematio when p depends on

4 6
However, we can use a nice trick: o) — oy VOP(T0) :
ver, we - Vop(7;0) = p(7;0) — 5~ = p(7;0) Vg log p(7; 0)
If we inject this back: p(7;0)
V0J(6) = [ ((r) Vo logp(r;0)) p(r; O)dr
i Can estimate with
= Erp(r;0) [1(7) Vo log p(7; 0)] Monte Carlo sampling
— B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

\?H«ob
We have Hp St+1|St,ati (at|8t

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have ( Hp St+1|St,at e at|8t)

t>0
b Thus: 10gP F(m + log mg (at|st) ‘
/

Z\p t>0 —/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(T; 9) = HP(St—|—1|St, at)7rg(at|st)

>0
Thus: logp(7;0) = Zlogp(st+1|st, at) + log mg(az|st)
£20 Doesn’t depend on
And when differentiating: Ve logp 75 0) = Zve 10g£9(at|8t) transition probabilities!
>0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 0000000000
REINFORCE algorithm

VoJ(6) = [ (r(r)Vologp(r;0) p(r; )7
— ]ETNp(T;H) [T(T)VG logp(77 6)]

Can we compute those quantities without knowing the transition probabilities?

We have: p(’l‘; 9) = HP(St+1|St, at)7r9(at|st)
t>0
Thus: logp(;6) = > _log p(st11|st, ar) + log mp(ax|s:)

t>0 Doesn’t depend on

And when differentiating: Vologp(7;0) = )  Velogma(asls)) i ansition probabilities!
t>0

Therefore when sampling a trajectory 7, we can estimate J(6) with

ﬁog mo(at|st)

2T

t>0

———————

—_—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



—
Intuition @(

/A -
Gradient estimator: Vg J (6 E SE T!Vg log g ( at|.§’£/l
t>0

Interpretation: B
- If r(7) is high, push up the probabilities of the actions seen
- Ifr(z) is low, push down the probabilities of the actions seen

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Intuition

Gradient estimator: ~ VJ(6) ~ Z

t>0

Interpretation: =
- If r(z) is high, push up the probabilities of the actions seen

- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Pong from pixels

/ Image Credit: http://karpathy.github.io/2016/05/31/r|/lk
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Pong from pixels

raw pixels R hidden layer
probability of
moving UP
i
U

%

O¢ g O | 2

Image Credit: http://karpathy.github.io/2016/05/31/rl/
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Pong from pixels

P

Supervised Learnin
(correct label is provided)

Reinforcement Learning

—— | sample an action\
J ;

forward pass
» log probabilities
{ -1.2 | -0.36
: block of differentiable compute —
image (e.g. neural net) gradients
1.0 0
backward pass
forward pass
» log probabilities
-1.2 | -0.36
image block of differentiable compute lionts

(e.g. neural net)

4

a—

backward pass

-1.0 ) |
=7} %
: Teventual reward -11)

Image Credit: http://karpathy.github.io/2016/05/31/rl/



Intuition

DOWN o DOWN o DOWN o UP_

P 1 -® ;

MN’. UP »® UP -®

_WN»,DOWN». DOWN>’ UP »®
-0— @
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REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the 3
-

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]
_/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

image, to predict class
- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

Take a sequence of “glimpses” selectively focusing on regions of the 3
-

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

(X1, Y1

Input

.
=

/ i [Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

(X1, y1) (X2, ¥2) }j‘é

"y

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

(X1, Y1) \ (X2, ¥2) (X3, Y3)

Input

image i

[Mnih et al. 2014]

- .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

(X1, ¥1) \ (X2, ¥2) (X3, ¥3) (X4, ya)

Input

image i

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

(X1, Y1) (X2, ¥2) (X3, Y3) (X4, Ya) (Xs, Ys)
Softmax }\
)

o

Input

—

F

image i

2

- .

-~
P8
[Mnih et al. 2014]

e (& (Op)

r

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

g -
> 4

Has also been used in many other tasks including fine-grained image recognition,
image captioning, and visual question-answering!

Figures copyright Daniel Levy, 2017. Reproduced with permission. [Mnlh et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



. Visual Dialog .

—————————

)

cat drinking water out of a coffee mug.

What color is the mug?

White and red

————

Are there any pictures on it? x
Is the mug and cat on a table? x
Are there other items on the table? x

e

No, something is there can't tell what it is

— —

)

Yes, they are

Yes, magazines, books, toaster and basket, and a plate

8-

Q

"a Start typing question here ... —



Learning Cooperative Visual Dialog Agents

with Deep Reinforcement Learning
[ICCV “17]

Abhishek Das* Satwik Kottur*
(Georgia Tech) (CMU)

José Moura Stefan Lee Dhruv Batra
(CMU) (Virginia Tech) (Georgia Tech)



Image Guessing Game

(C) Dhruv Batra Slide Credit: Abhishek Das 64



Image Guessing Game

Q-Bot asks questions

(C) Dhruv Batra 66



Image Guessing Game

Q-Bot is blindfolded

(C) Dhruv Batra 67



Image Guessing Game

A-Bot answers questions

(C) Dhruv Batra 68



Image Guessing Game

A

A-Bot sees an image

(C) Dhruv Batra 69



Image Guessing Game

(C) Dhruv Batra Slide Credit: Abhishek Das 70



Image Guessing Game

[ ® TWo zebra are wa l(mgw their pen at the zoo.@

g .
~ Q1: Any people in the shot? \
3 ) LS. { ’

S . o &
‘1 ol AT1: No, there aren't any:.
-—

Q2: Any other animal? \

[ A2: No, just zebras.

Q3: Are they facing each other? ‘

[ A3: They aren't.

-

(C) Dhruv Batra Slide Credit: Abhishek Das 71
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RL for Cooperative Dialog Agents
« Agents: (Q-bot, A-bot)

* Environment: Image

* Action:
\Rr ‘((/ [ I _!/
— Q-bot: question (symbol sequence)  gq: Any people in the shot?

— A-bot: answer (symbol sequence) No, there aren’t any.
— Q-bot: image regressign ;Lé@

» State
_ ,Qia_o—t S? — [C7£L17a’17"‘7Qt—17a't—1]
— A-bot: 3;54:mﬁlyala---aQt—lvat—la%]

(C) Dhruv Batra 73



RL for Cooperative Dialog Agents

* Action:
— Q-bot: question (symbol sequence) qg; Any people in the shot?
— A-bot: answer (symbol sequence) a; No, there aren’t any.
— Q-bot: image regression i, € R4096

« State
— Q-bot: S? = [C, d1,a1,-..,4t—1, at—l]
- A-bOt 824 — [Ia C) Q17a17---;Qt—17at—17Qt]

(C) Dhruv Batra 74



RL for Cooperative Dialog Agents
 Action: . -

— Q-bot: question (symbol sequence) g, Any people in the shot?
— A-bot: answer (symbol sequence) a; No, there aren't any.
— Q-bot: image regression i, € R10%

« State
— Q-bot: S? — [Ca q1,01,...,4t—1, at—l]
— A-bot: 5;54 =|I,c,q1,01, -, qQt—1,0:_1, q¢]

o |:>0|iCy Q-bot A-bot

mo(@lS71)  ma(alSity)

« Reward _ﬁ(&q_t’ ag, th) = exgt—l _?j_g_t) — f@]’&@,

state action distance at t-1 distance at ¢

=)
—_—

(C) Dhruv Batra 75
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Policy Networks

Q-Bot A-Bot
Q A

7TQ(Qt|5t—1) 7TA(aft‘St—l)
= ( ______ Any people inthe shot?
[a)
5| 19 qt
2| e No, there aren'tany.
&3 ,m-, a’t

LQ-BOT

/ =

(C) Dhruv Batra 76



Rounds of Dialog

Policy Networks

[0.1,-2,0,..,0.57]

Q
E;t——l
Question
Decoder
® -
‘ 2 Q
[ — =) History Fy Fact qt
. Encoder Embedding Q¢
Feature
Regression
-BOT Network
Q J
Q A
v St yt

No, there aren't any.

g MRy

at

Reward
Function

A-Bot
ma(ay ‘ 524—1 )

y_Fy St

Question

Encoder

Answer

History
Encoder

Decoder

Fact

Embedding

F oS



Policy Networks

qesion 1 Any people inthe shot? )

Decoder
] qt

Rounds of Dialog

(C) Dhruv Batra h



Policy Networks

Rounds of Dialog

Q-Bot
WQ(QAStQ_l) g9 ——| LsTm
t—1
StQ—l / <START>
i )
Question Any people in the shot?
Decoder [~~~ "1 "~~~ """ "TTTooommmmommsmmmmmmoes >
2 qt
r—
Ty
LQ-BOT y

(C) Dhruv Batra .



Policy Networks

any
Q-Bot T
Q
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks
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Policy Networks

Q-Bot A-Bot
Q A
TQ(qt| S 1) 7TA(at‘St—l)
Q
Si-1 y _F tél 524—1
= Queston | ___ | Any people in the shot? Question History
(=) Decoder Encoder Encoder
5 © o qt
%) . 0 - F ’
Sl ey e e ed _Notherearen'tany. v
&3 ai—] a’t Decoder
Feature
Regression Fact.
Q-BOT Network Embedding —l A-BOT
! 1
Reward

(C) Dhruv Batra 96



-]
Policy Networks

Q-Bot A-Bot
0 A
ro(alSe ) ma(a]Si)
2 ( A
5
5 ? 0
2l s—— History | £ Fact qt
S _ Encoder Embedding a¢
2| i
L Feature
Regression
i Network
Q-BOT o Y,
— Reward
StQ / 7 [0.1,-2,0, ..., 0.57] Function

SP—| FC |~

512 —> 4096

(C) Dhruv Batra v



Policy Networks
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Policy Gradients
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Turing Test

How old is this man?
Does he have short hair or long hair?
What color is his hair?
Is he wearing glasses?
/-I Does he have facial hair?
How is he dressed?
Is he larger man or is he skinny?
Is this picture taken outside?
Can you tell if it’s daytime?

{

Eing the live

—

A man ma long and prosper sign from star trek.

\) Where is man located?

iS man wearing?

Are er people in picture?
What color is table?

Is there anything else on table?
What are other people doing?

Are there any windows?

What color are walls?

What time of day do you think it is?
What is man wearing?
’-\__

(C) Dhruv Batra

Can you tell what room he is standing in?

He looks like late teens
Medium

Brown

No

No

He’s white dress shirt with red tie . .. school uniform

He’s skinny
Inside

I’m not sure
He’s in hallway

Looks like classroom of some sort

ack t shirt and jeans

Yes, quite few people in background

Picture is black and white, but it’s wood table
Not that I can see

They are standing in front of him, but I don’t ...
Not that I can see

I can’t see walls

I can’t tell

Black t shirt and jeans

_— B—

100



How old is man? I can’t see his face, I don’t know
What is he wearing? - shorts and T shirt
What color is his shirt? —— white
what color are his pants? black

at color are his shoes?
at color are his shoes?

SL Agents

(C) Dhruv Batra

What color is skateboard? It is hard to tell but I think !f'é)lack

Is it day or night?
Is it sunny?

Ts he wearing helmet? Yes
Is he wearing knee pads? No, no knee pads
Is it day or night? It is daytime
Is it sunny? It is bright out, but I see no shadows, so I can not
Can you see any other people? There are 2 other people in background

It is daytime
Yes, it is sunny

‘What color is skateboard? It is hard to tell but I think it’s black

Is he wearing helmet?

Yes, he is wearing helmet

RL Agents

101



Plan for Today
[

* (Deep) Reinforcement Learning
— Policy gradients

J

* Closing the loop

—_—
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality

— Cascade of non-linear transformationgd
— Multiple layers of representations

* End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

* Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together

(C) Dhruv Batra 103



Building A Complicated Function

Given a library of simple functions

ldea 2: Compositions
Compose into a

—_—

complicate function
« Scattering transforms...

 Deep Learning

e Grammar models

F(x) = g1(g2(. - (an(z)...))

/ ——

—p | —p| | —| — | —| — | f— | —
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Differentiable Computation Graph

Any DAG of differentialble modules is
allowed!
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality

— Cascade of non-linear transformations
— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

* Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together
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“Shallow” vs Deep Learning

e “Shallow” models

hand-crafted

Feature Extractor

—F

Deep models

Trainable
Feature-
Transform /
Classifier

“Simple” Trainable

fixed -

Classifier
learned
Trainable Trainable
Feature- Feature-
— —

> Transform /

Classifier

T Transform /
Classifier

1

é tearned Internal Representations
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Key Computation: Forward-Prop

: 0
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Key Computation: Back-Prop
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So what is Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality

— Cascade of non-linear transformations
— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

* Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together
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e
Distributed Representations Toy Example

« Can we interpret each dimension?

~
(a) () & 5 Qé\v k2
no pattern O O O O no pattern O O O O
@000 [| @0@O0
o) JOJO o X 1O

) coceo () ecoOe
< 0000 © 00 e
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Power of distributed representations!

Local “O‘:VR+HR+HE:?
Distributed “ O’=V+H+E:O
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-
What is this class about?
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-
What is this class about?

* Introduction to Deep Learning

e Goal:

— After finishing this class, you should be ready to get started
on your first DL research project.

- CNNs

* RNNs

« Deep Reinforcement Learning

» Generative Models (VAEs, GANs)

« Target Audience:
— Senior undergrads, MS-ML, and new PhD students
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-
What did we learn?

« Background & Basics
* Neural Networks, Backprop, Optimization (SGD)

* Module 1: Convolutional Neural Networks (CNNs)

» Architectures, Pre-training, Fine-tuning
» Visualizations, Fooling CNSS, Adversarial examples
» Different tasks: detection CNNs, segmentation CNNs

* Module 2: Recurrent Neural Networks (RNNSs)
+ Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU
* RNNs for Sequence-to-Sequence (machine translation & image captioning, VQA, Visual Dialog)

 Module 3: Deep Reinforcement Learning

* Overview, policy gradients
» Optimizing Neural Sequence Models for goal-driven rewards

 Module 4: Deep Structured Prediction
» Crash course on Bayes Nets, Variational Inference
» Variational Auto Encoders (VAES)

 Module 5: Advanced Topics

* GANSs, Adversarial Learning
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Arxiv Fire Hose

PhD Student

Deep
Learning
papers

arXiv.org
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Feedback

CIOS Help £5 Inbox - GT ~ November 26, 2018 at 1:37 AM
GT Course Instructor Opinion Survey (CIOS) now open
To: Batra, Dhruy,

Reply-To: cioshelp@gatech.edu
‘ Siri found new contact info in this email: Help Cios evaluations@smartevals.com add to Contacts... &

Dear Dhruy,

Good morning. The Course/Instructor Opinion Survey (CIOS) is now available for the following courses. Your courses, their survey start and end dates, and your current response rate are shown in the table below.

Eval Course Prefix Course Number Sec Type Name Begin End Not Resp. Resp. Tot.
Preview Cs 4803 DL A Special Topics 11-26 12-16 20 0 20
Preview Cs 7643 A A Deep Learning 11-26 12-16 84 0 84

Students have received an announcement indicating that surveys have begun, and they will continue to receive periodic reminder emails with all of the necessary information to complete the survey. However, you can ALSO set up additional reminders
within the system that would come from you. Simply login at the link below, click the "Not Set" button near the left of the table, and follow the directions to set up auto-email reminders for your all of your courses.

Reports with your results will be available 5 days after full semester grades are due and you will receive an email with report access information at that time.information at that time.
If you would like to view your response rates at any time, you can log in with your GT account here: hitp://b.gatech.edu/cios

If you have any problems with the survey system, please email cioshelp@gatech.edu.
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Thanks!
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