CS 4803 / 7643: Deep Learning

Topics:

- Image Classification
- Supervised Learning view

– K-NN

Dhruv Batra Georgia Tech

Administrativia

- Waitlist
 - MS-ML or ML-PhD not yet in? Come talk to me.
- Canvas
 - Anybody not have access?
- Piazza
 - 70 people signed up. Please use that for questions.

HW0

- Class Webpage
 - https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/
- Theory
 - <u>https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/asse_ts/hw0.pdf</u>
- Implementation:
 - <u>https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/hw0a8/</u>

Python+Numpy Tutorial

CS231n Convolutional Neural Networks for Visual Recognition

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/pvthon-numpv-tutorial/

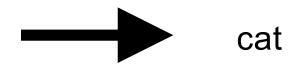
Plan for Today

- Image Classification
- Supervised Learning view
- K-NN
- Linear Classifiers

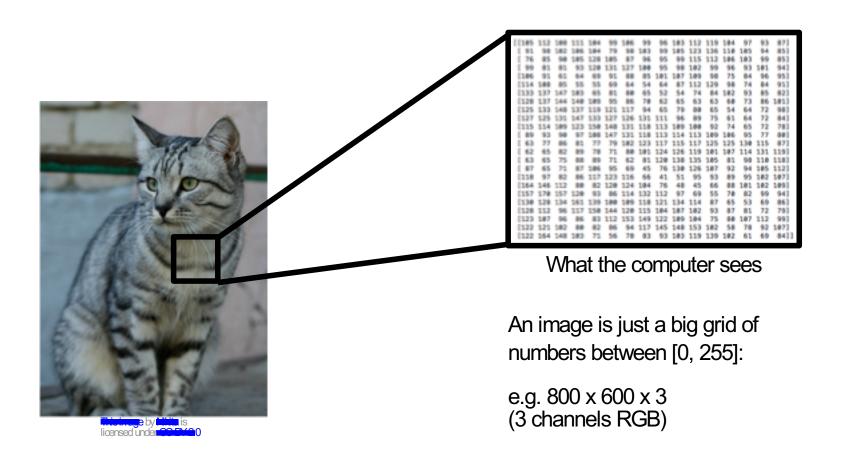
Image Classification

Image Classification: A core task in Computer Vision

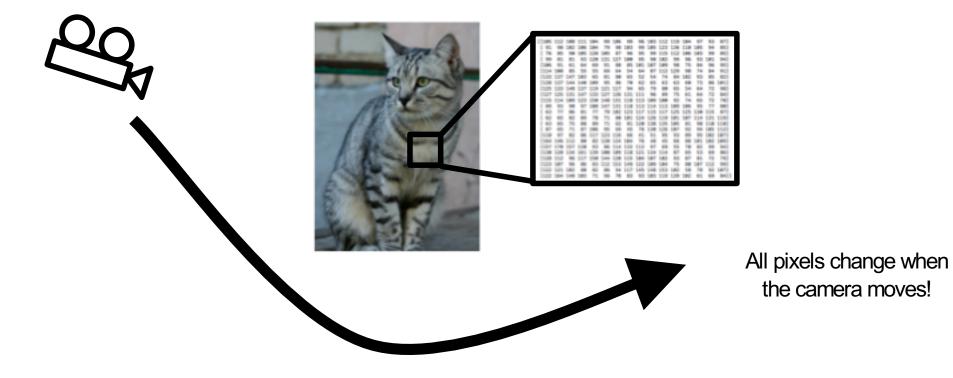
(assume given set of discrete labels) {dog, cat, truck, plane, ...}



The Problem: Semantic Gap



Challenges: Viewpoint variation



incidence by blittle is licensed under CO DVCC

Challenges: Illumination

nge is CCC 10 public domain

Contro public domain

uge is 200 fr. public domain

public domain

Challenges: Deformation

is licensed under Contraction

is licensed under **CO DVD**.0

This image by new loss r is licensed under <u>CC DVC</u>0 This is by Tan The is licensed under CODY(C)

Challenges: Occlusion

This image is **CCC-110** public domain

in the ist 200 ft D public domain

unden 20 DX 20

Challenges: Background Clutter

his in the public domain

hisinge is 660.10 public domain

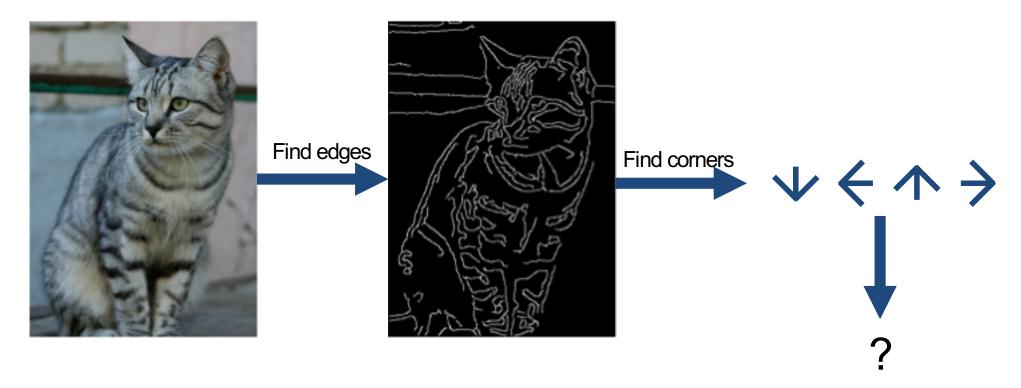
An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made



John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

ML: A Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

airplane	🎮 🎬	100		X 3	
automobile					
bird	-	1	** *	1	
cat	-		1		
deer	10 30	ath a	11.	*	

Example training set

Supervised Learning

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function

 f: X → Y
 (the "true" mapping / reality)
- Data
 - $-(x_1,y_1), (x_2,y_2), \dots, (x_N,y_N)$
- Model / Hypothesis Class
 h: X → Y
 y = h(x) = sign(w^Tx)
- Learning = Search in hypothesis space
 - Find best h in model class.

Procedural View

- Training Stage:
 - Training Data { (x,y) } → f

(Learning)

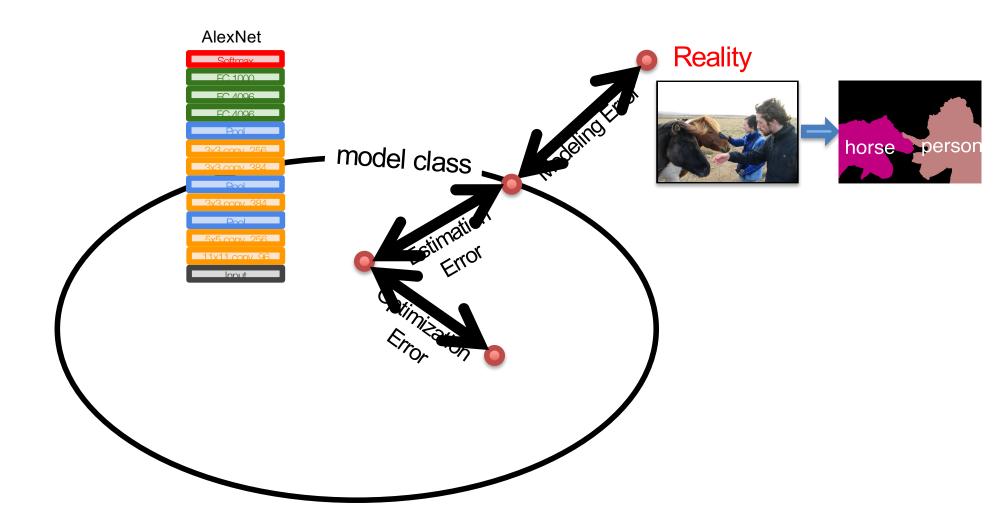
- Testing Stage
 - Test Data $x \rightarrow f(x)$

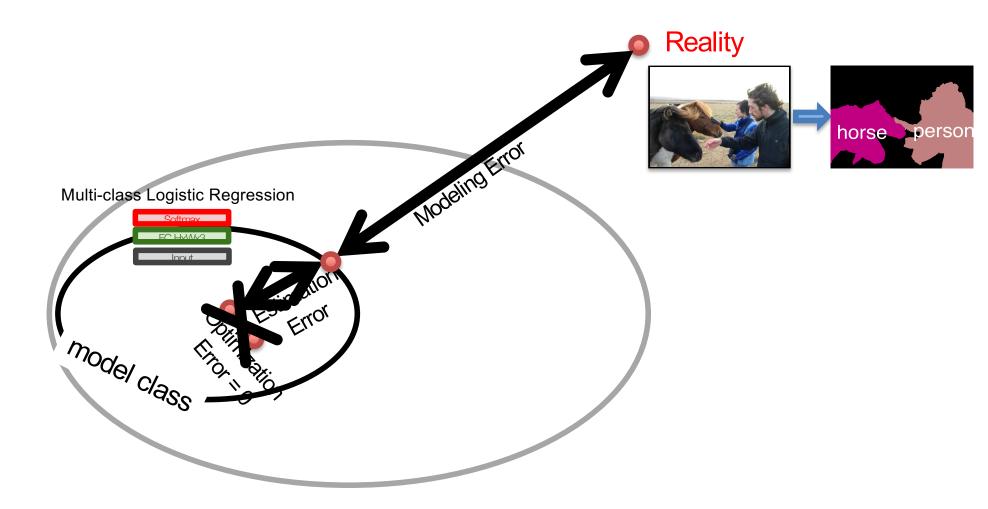
(Apply function, Evaluate error)

Statistical Estimation View

- Probabilities to rescue:
 - X and Y are random variables
 - $D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$
- IID: Independent Identically Distributed
 - Both training & testing data sampled IID from P(X,Y)
 - Learn on training set
 - Have some hope of *generalizing* to test set

Reality







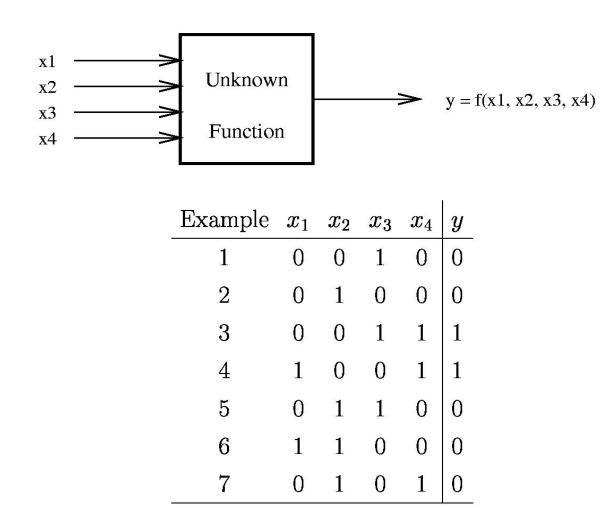
- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- Bayes Error
 - Reality just sucks

Guarantees

- 20 years of research in Learning Theory oversimplified:
- If you have:
 - Enough training data D
 - and H is not too complex
 - then *probably* we can generalize to unseen test data

Learning is hard!

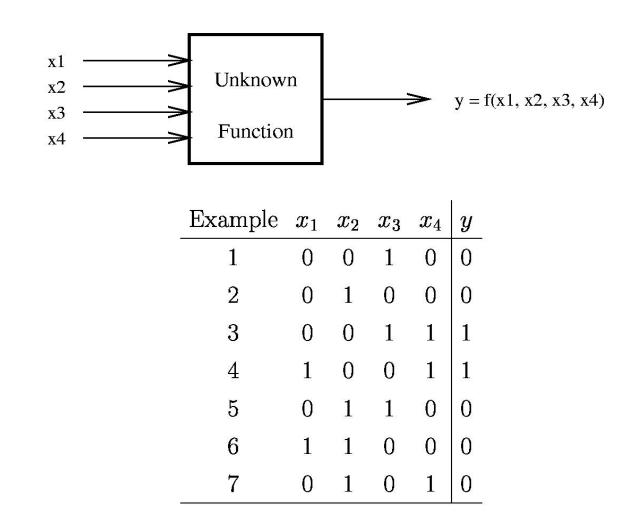
A Learning Problem



Learning is hard!

No assumptions = No learning

A Learning Problem



First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images

airplane	×. 🏴	1759 ar	-	S. 19	1
automobil	e 🚮 😹		22		1
bird		1	** *	12	1.
cat	in 🐂	AL	100		÷ 8
deer	1 3	-	11.	•	1
dog	~) ¥	P 3	10	1. 1	A St
frog	1	3 C	6	Э , 🚽	30
horse	-		N M	4	<u>1</u>
ship		1 2	الله الم	- 18 18	
truck	<u>م</u>	i 🛄 🖻	ent to	- CO	10

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Nearest Neighbours

Nearest Neighbours

Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?

1-Nearest Neighbour

Four things make a memory based learner:

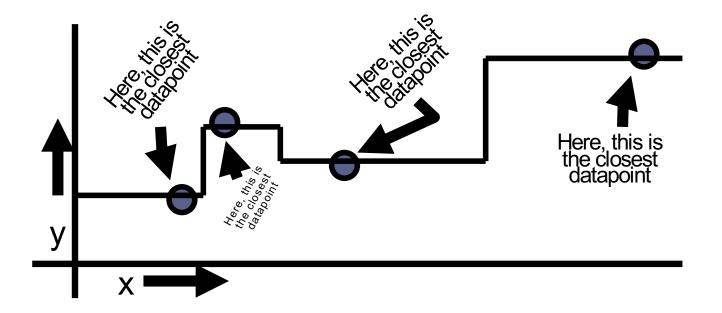
- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 1
- A weighting function (optional)
 unused
- How to fit with the local points?
 - Just predict the same output as the nearest neighbour.

k-Nearest Neighbour

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 k
- A weighting function (optional)
 unused
- How to fit with the local points?
 - Just predict the average output among the nearest neighbours.

1-NN for Regression



Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

test image					
56	32	10	18		
90	23	128	133		
24	26	178	200		
2	0	255	220		

training image

pixel-wise absolute value differences

	46	12	14	1	
_	82	13	39	33	add
=	12	10	0	30	→ 456
	2	32	22	108	

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
   self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

import numpy as np
<pre>class NearestNeighbor: definit(self): pass</pre>
<pre>def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y</pre>
<pre>def predict(self, X): """ X is N x D where each row is an example we wish to predict label for """ num_test = X.shape[0] # lets make sure that the output type matches the input type Ypred = np.zeros(num_test, dtype = self.ytr.dtype)</pre>
<pre># loop over all test rows for i in xrange(num_test): # find the nearest training image to the i'th test image # using the Ll distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example</pre>
return Ypred

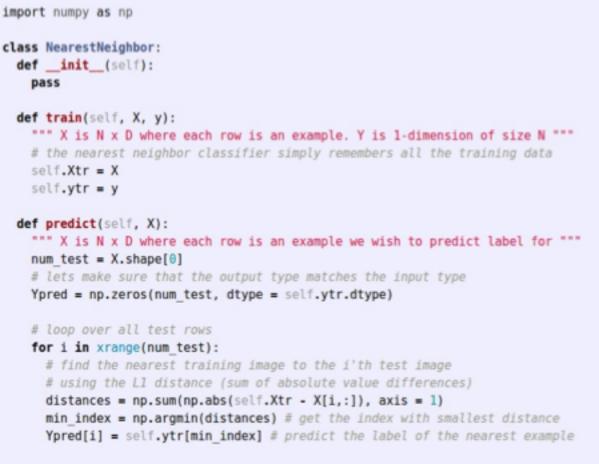
Nearest Neighbor classifier

Memorize training data

<pre>import numpy as np class NearestNeighbor: definit(self): pass</pre>
<pre>def train(self, X, y): """ X is N x D where each row is an example. Y is 1-dimension of size N """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y</pre>
<pre>def predict(self, X): """ X is N x D where each row is an example we wish to predict label for """ num_test = X.shape[0] # lets make sure that the output type matches the input type Ypred = np.zeros(num_test, dtype = self.ytr.dtype)</pre>
<pre># loop over all test rows for i in xrange(num_test): # find the nearest training image to the i'th test image # using the Ll distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min_index] # predict the label of the nearest example</pre>

Nearest Neighbor classifier

For each test image: Find closest train image Predict label of nearest image



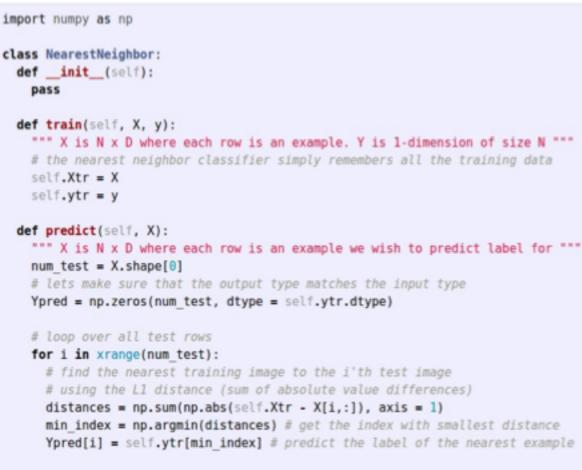
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)



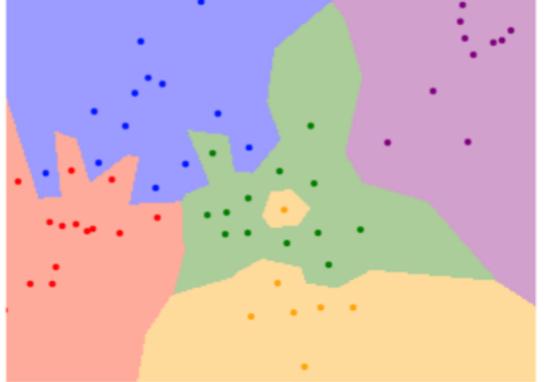
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

What does this look like?



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Nearest Neighbour

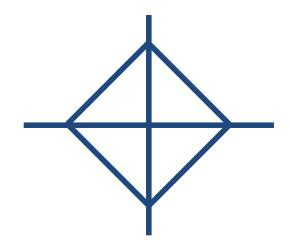
- Demo 1
 - <u>http://vision.stanford.edu/teaching/cs231n-demos/knn/</u>
- Demo 2
 - <u>http://www.cs.technion.ac.il/~rani/LocBoost/</u>

Parametric vs Non-Parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
 - Yes = Non-Parametric Models
 - No = Parametric Models

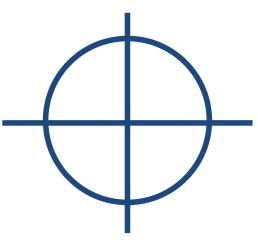
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$



L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent. Must try them all out and see what works best.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

test

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

	BAD : K = 1 always works perfectly on training data		
Your Dataset			
•	BAD : No idea how algorithm will perform on new data		
train	test		

Idea #1: Choose hyperparameters that work best on the data		= 1 always wo on training da			
Your Dataset]		
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		BAD : No idea how algorithm will perform on new data			
train		test			
Idea #3: Split data into train, val, and test; choose Better! hyperparameters on val and evaluate on test					
train	validation	test	1		

Your Dataset

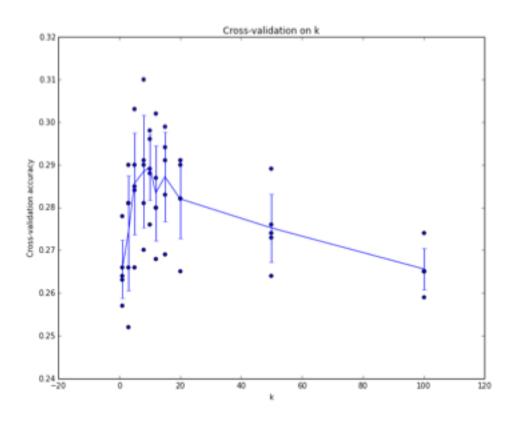
Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test	1
fold 1	fold 2	fold 3	fold 4	fold 5	test	
fold 1	fold 2	fold 3	fold 4	fold 5	test	

Useful for small datasets, but not used too frequently in deep learning

Setting Hyperparameters



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

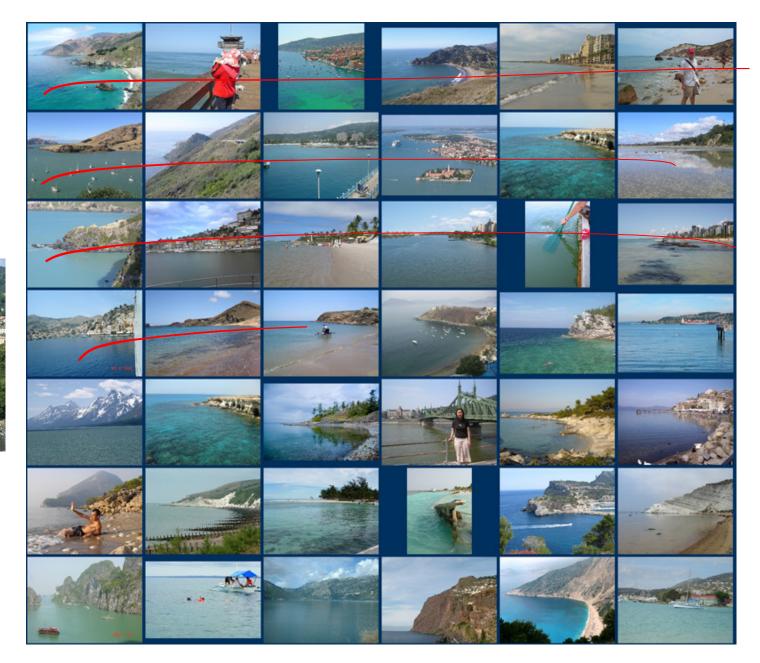
(Seems that $k \sim = 7$ works best for this data)

Scene Completion [Hayes & Efros, SIGGRAPH07]

(C)

Dhr

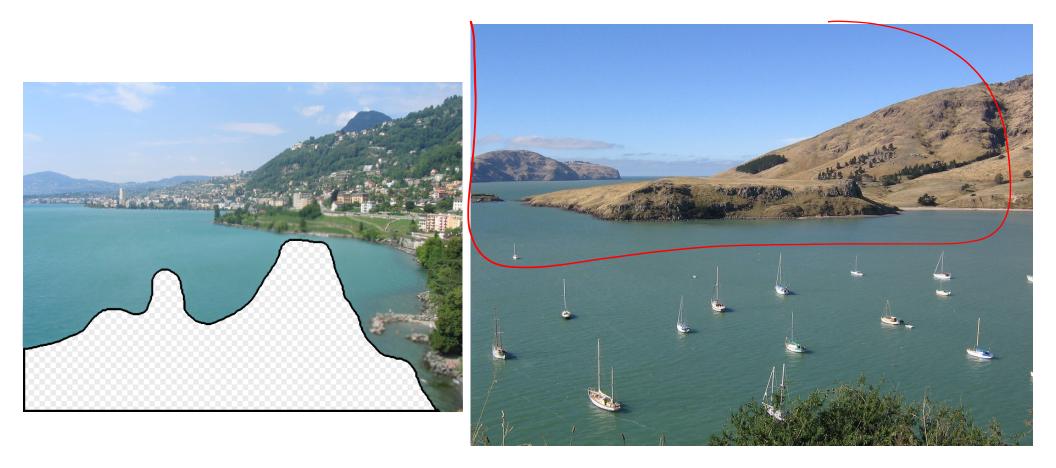




... 200 total

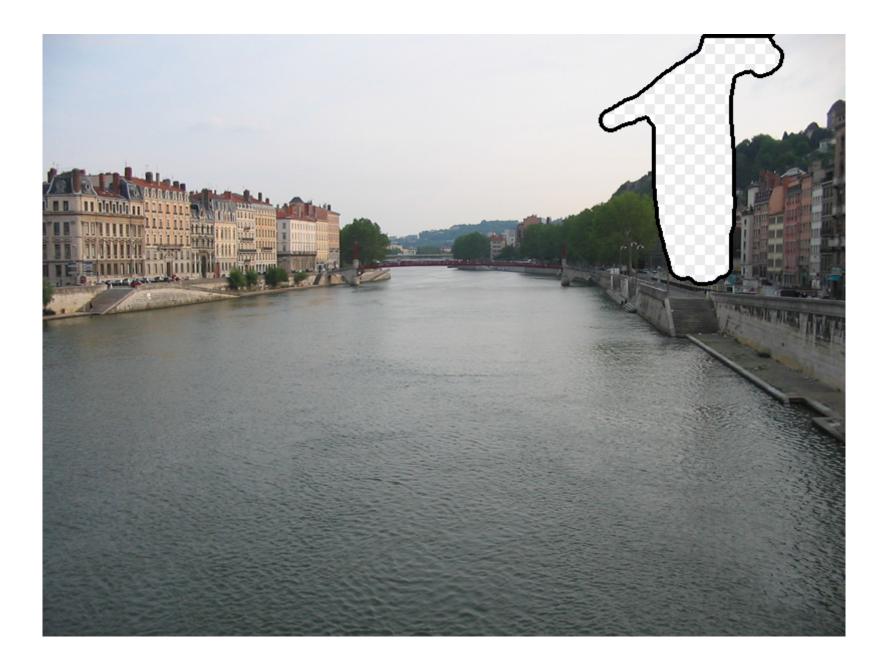
Hays and Efros, SIGGRAPH 2007

Context Matching



Hays and Efros, SIGGRAPH 2007



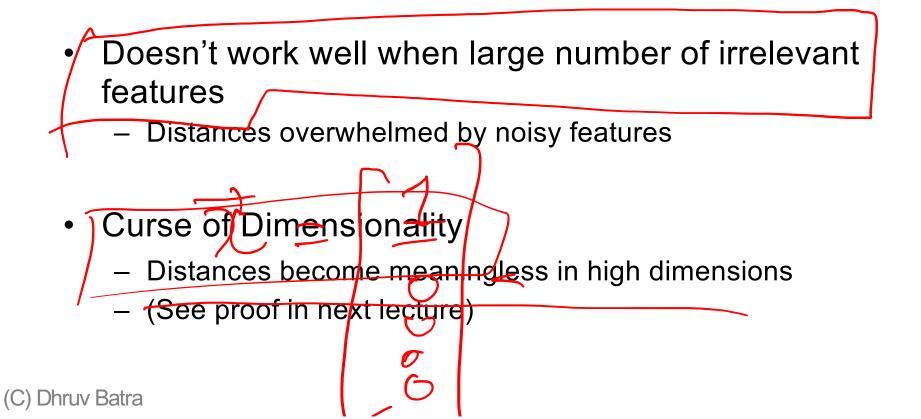


Problems with Instance-Based Learning

No Learning: most real work done during testing

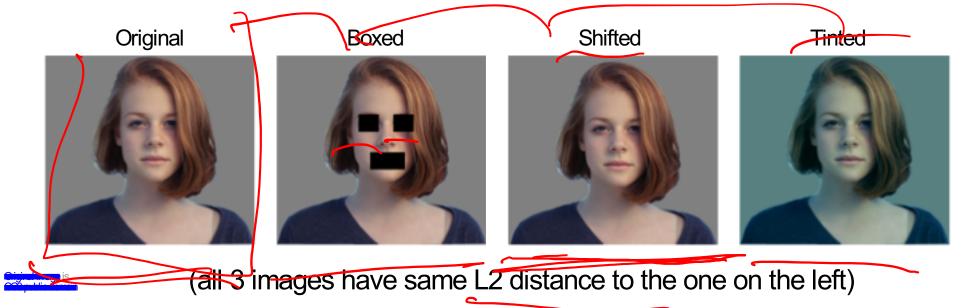
 For every test sample, must search through all dataset – very slow!

– Must use tricks like approximate nearest neighbour search



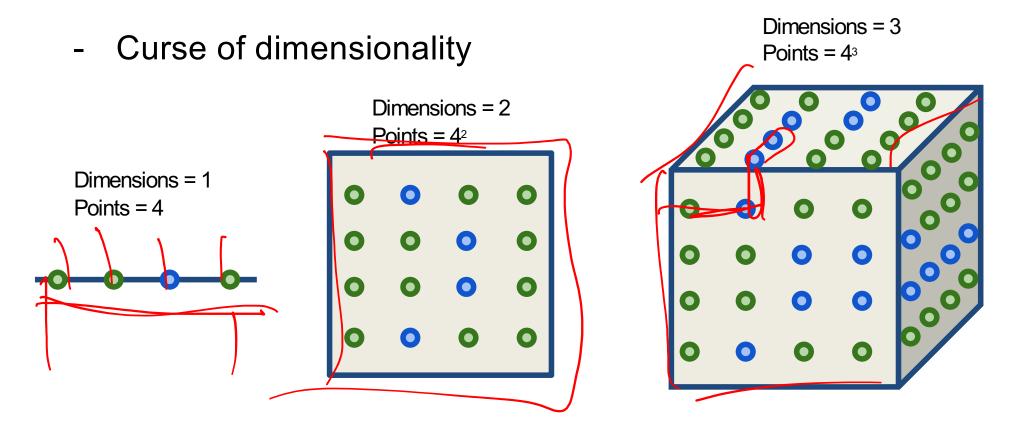
k-Nearest Neighbor on images never used.

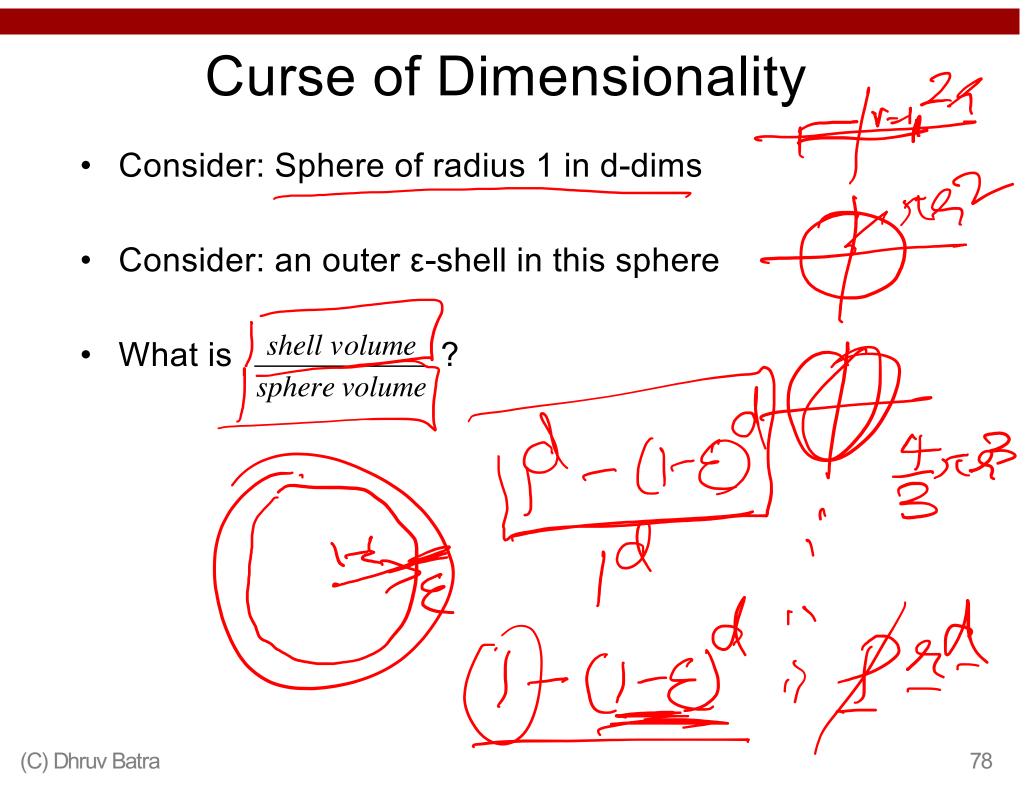
- Very slow at test time
- Distance metrics on pixels are not informative



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

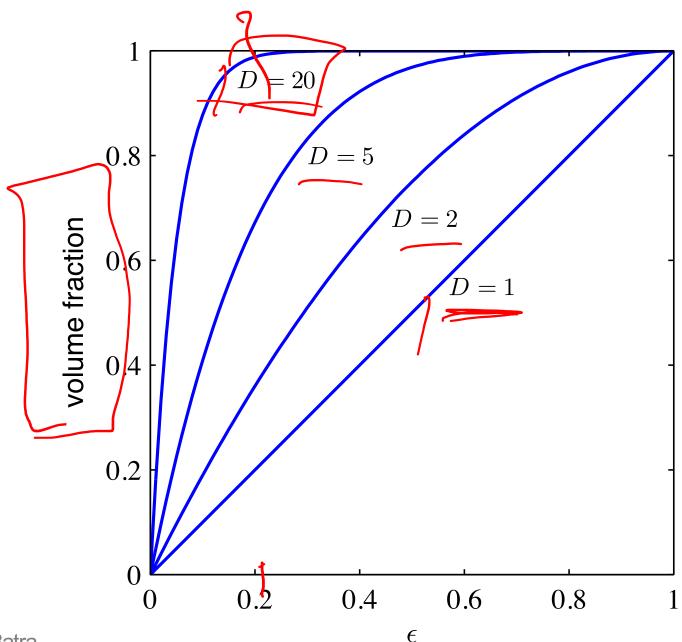
k-Nearest Neighbor on images never used.





(C) Dhruv Batra

Curse of Dimensionality



(C) Dhruv Batra

K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!