
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Linear Classifiers
– Loss Functions



Administrativia
• Notes on class webpage

– https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

• HW0 Reminder
– Due: 09/05
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Recap from last time
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Image Classification: A core task in Computer Vision

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Challenges of recognition
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This image is CC0 1.0 public domain This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by jonsson is licensed 
under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en


An image classifier
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Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised Learning
• Input: x   (images, text, emails…)
• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X à Y (the “true” mapping / reality)

• Data  
– (x1,y1), (x2,y2), …, (xN,yN)

• Model / Hypothesis Class
– {h: X à Y}
– e.g. y = h(x) = sign(wTx)

• Loss Function
– How good is a model wrt my data D?

• Learning = Search in hypothesis space
– Find best h in model class. 
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Error Decomposition
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Error Decomposition
• Approximation/Modeling Error

– You approximated reality with model

• Estimation Error
– You tried to learn model with finite data

• Optimization Error
– You were lazy and couldn’t/didn’t optimize to completion

• Bayes Error
– Reality just sucks
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First classifier: Nearest Neighbor
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Memorize all 
data and labels

Predict the label 
of the most similar 
training image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbours



Instance/Memory-based Learning
Four things make a memory based learner:
• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?

(C) Dhruv Batra 12Slide Credit: Carlos Guestrin



Parametric vs Non-Parametric Models
• Does the capacity (size of hypothesis class) grow 

with size of training data?
– Yes = Non-Parametric Models
– No = Parametric Models
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Hyperparameters
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Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, 
try each fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but not used too frequently in deep learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Problems with Instance-Based Learning
• Expensive

– No Learning: most real work done during testing
– For every test sample, must search through all dataset –

very slow!
– Must use tricks like approximate nearest neighbour search

• Doesn’t work well when large number of irrelevant 
features
– Distances overwhelmed by noisy features

• Curse of Dimensionality
– Distances become meaningless in high dimensions
– (See proof in next lecture)
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k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
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k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 3
Points = 43

Dimensions = 2
Points = 42

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Curse of Dimensionality
• Consider: Sphere of radius 1 in d-dims

• Consider: an outer ε-shell in this sphere

• What is                      ?
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shell volume
sphere volume



Curse of Dimensionality
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Plan for Today
• Linear Classifiers

– Linear scoring functions

• Loss Functions
– Multi-class hinge loss
– Softmax cross-entropy loss
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Linear Classification



This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Visual Question Answering
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How   many   horses    are      in       this     image?”

Neural Network 
Softmax

over top K answers



50,000 training images
each image is 32x32x3

10,000 test images.

Recall CIFAR10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

parameters
or weights

W

Parametric Approach

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx

Parametric Approach: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
10x1 10x3072

3072x1

Parametric Approach: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1

Parametric Approach: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Error Decomposition
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Error Decomposition
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

f(x,W) = Wx

Algebraic Viewpoint

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



36

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Interpreting a Linear Classifier 
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Interpreting a Linear Classifier: 
Visual Viewpoint
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Interpreting a Linear Classifier: 
Geometric Viewpoint
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f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 
2.0

Plot created using Wolfram Cloud

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8


Hard cases for a linear classifier
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Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Linear Classifier: Three Viewpoints

41

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

So far: Defined a (linear) score function
f(x,W) = Wx + b

Example class 
scores for 3 
images for 
some W:

How can we tell 
whether this W 
is good or bad?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


1. Define a loss function
that quantifies our 
unhappiness with the 
scores across the training 
data.

2. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

So far: Defined a (linear) score function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


Supervised Learning
• Input: x   (images, text, emails…)
• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X à Y (the “true” mapping / reality)

• Data  
– (x1,y1), (x2,y2), …, (xN,yN)

• Model / Hypothesis Class
– {h: X à Y}
– e.g. y = h(x) = sign(wTx)

• Loss Function
– How good is a model wrt my data D?

• Learning = Search in hypothesis space
– Find best h in model class. 
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Loss Functions



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how 
good our current classifier is

Given a dataset of examples

Where       is image and 
is (integer) label

Loss over the dataset is a 
sum of loss over examples:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1) 
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Losses: 2.9

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 002.9

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Losses:

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.912.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Loss over full dataset is average:

Losses: 12.92.9 0 L = (2.9 + 0 + 12.9)/3 
= 5.27

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q: What happens to 
loss if car image 
scores change a bit?Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q2: what is the 
min/max possible 
loss?Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q3: At initialization W 
is small so all s ≈ 0.
What is the loss?Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q4: What if the sum 
was over all classes? 
(including j = y_i)Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q5: What if we used 
mean instead of 
sum?Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

Q6: What if we used

Losses: 12.92.9 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Multiclass SVM Loss: Example code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



E.g. Suppose that we found a W such that L = 0. 
Is this W unique? 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 

+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

exp

unnormalized 
probabilities

Probabilities 
must be >= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1

-1.7

Want to interpret raw classifier scores as probabilities
Softmax 

Function

24.5
164.0

0.18

0.13
0.87

0.00

exp
normalize

unnormalized 

probabilities

Probabilities 

must be >= 0

Probabilities 

must sum to 1

probabilitiesUnnormalized log-

probabilities / logits

Li = -log(0.13)

= 0.89

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose probabilities to maximize 
the likelihood of the observed data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 73



Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 74



Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 75
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Kullback–Leibler 
divergence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Cross Entropy

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q: What is the min/max 
possible loss L_i?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q: What is the min/max 
possible loss L_i?
A: min 0, max infinity

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1

-1.7

Want to interpret raw classifier scores as probabilities
Softmax 

Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 

approximately equal; what is the loss?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1

-1.7

Want to interpret raw classifier scores as probabilities
Softmax 

Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 

approximately equal; what is the loss?

A: log(C), eg log(10) ≈ 2.3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap


