CS 4803 / 7643: Deep Learning

Topics:

- Linear Classifiers
- Loss Functions

Dhruv Batra Georgia Tech

Administrativia

- Notes on class webpage
 - <u>https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/</u>

- HW0 Reminder
 - Due: 09/05

Recap from last time

Image Classification: A core task in Computer Vision

<u>This image</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

Challenges of recognition

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Supervised Learning

- Input: x
- Output: y

- (images, text, emails...) (spam or non-spam...)
- (Unknown) Target Function
 f: X → Y

(the "true" mapping / reality)

Data

 $- (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$

- Model / Hypothesis Class
 {h: X → Y}
 - e.g. y = h(x) = sign(w^Tx)
- Loss Function
 - How good is a model wrt my data D?
- Learning = Search in hypothesis space
 - Find best h in model class.

Error Decomposition

Error Decomposition

- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- Bayes Error
 - Reality just sucks

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Nearest Neighbours

Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?

Parametric vs Non-Parametric Models

- Does the capacity (size of hypothesis class) grow with size of training data?
 - Yes = Non-Parametric Models
 - No = Parametric Models

Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 - Distances become meaningless in high dimensions
 - (See proof in next lecture)

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original image is CC0 public domain (all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1

Points = 4

Curse of Dimensionality

Plan for Today

- Linear Classifiers
 - Linear scoring functions
- Loss Functions
 - Multi-class hinge loss
 - Softmax cross-entropy loss

Linear Classification

This image is CC0 1.0 public domain

Visual Question Answering

Image Embedding (VGGNet) Softmax over top K answers 4096-dim $h_{1}^{(2)}$ P(y = 0 | x)h₂⁽²⁾ P(y = 1 | x) **Convolution Laver** Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP ► P(y = 2 | x) + Non-Linearity + Non-Linearity Softmax Input (Features II) classifier Question Embedding (LSTM) this image? *"How many horses"* are in

Neural Network

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Error Decomposition

Error Decomposition

Stretch pixels into column 56 0.2 -0.5 1.1 0.1 2.0 -96.8 Cat score 56 231 231 1.3 1.5 2.1 0.0 3.2 437.9 ╋ Dog score 24 2 24 0.2 0 0.25 -0.3 -1.2 61.95 Ship score Input image 2 b

Algebraic Viewpoint

f(x,W) = Wx

Interpreting a Linear Classifier

Interpreting a Linear Classifier: <u>Visual Viewpoint</u>

airplane	چز 🚝 🛰	* 🗾 🛥					Input image		
automobil	le 🍋 🎜 🖏	6 27	i 🔁 🚰 📽				56 231		
bird	🚔 🔊 🕷	1 -	1 2 3.2				24 2		
cat	So 🦘 🎊	1							
deer	the con with	🔌 N. 📻			w	0.2 -0.5	1.5 1.3	0 .25	
dog		B. 🖉 🌍		N.	vv	0.1 2.0	2.1 0.0	0.2 -0.3	
frog	1		s 🚽 😂 🖉	3		•	•	*	
horse	Ser Ser			1	b	1.1	3.2	-1.2	
ship	÷ - 💥	2			Score	-96.8	437.9	61.95	
truck	2 C		- in the second	4	00010				
plane	car	bird	cat	deer	dog	frog	horse	ship	truck
Sec. 1	ALC: NO.	100	ALC: NO	Same P	C. Canada	A. 34	There are a	and the second	and the second
Tugo B	State of Lot	18 A.			1000	The Party of the	Contrast of the	Sec.	Section 1

Interpreting a Linear Classifier: <u>Geometric Viewpoint</u>

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under <u>CC-BY</u> 2.0

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2:

Second and fourth quadrants

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So far: Defined a (linear) score function

f(x,W) = Wx + b

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

So far: Defined a (linear) score function

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

Supervised Learning

- Input: x
- Output: y

- (images, text, emails...) (spam or non-spam...)
- (Unknown) Target Function
 f: X → Y

(the "true" mapping / reality)

Data

 $- (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$

- Model / Hypothesis Class
 {h: X → Y}
 - e.g. y = h(x) = sign(w^Tx)
- Loss Function
 - How good is a model wrt my data D?
- Learning = Search in hypothesis space
 - Find best h in model class.

Loss Functions

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

3.2

5.1

-1.7

cat

car

frog

1.3

4.9

2.0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_{i} = \sum_{\substack{j \neq y_{i} \\ j \neq y_{i}}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{\substack{j \neq y_{i} \\ j \neq y_{i}}} \max(0, s_{j} - s_{y_{i}} + 1)$$

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes. **Multiclass SVM loss:** With some W the scores f(x, W) = Wx are: "Hinge loss" s_{y_i} (000) s_j 3.2 1.3 2.2 cat $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car $=\sum \max(0, s_j - s_{y_i} + 1)$ 2.0 -3.1 -1.7 frog $j \neq y_i$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

= $\max(0, 5.1 - 3.2 + 1)$
+ $\max(0, -1.7 - 3.2 + 1)$
= $\max(0, 2.9) + \max(0, -3.9)$
= $2.9 + 0$
= 2.9

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where $\, x_i \,$ is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 1.3 - 4.9 + 1) \\ &+ \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{split}$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 6.3) + \max(0, 6.6) \\ &= 6.3 + 6.6 \\ &= 12.9 \end{aligned}$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

L = (2.9 + 0 + 12.9)/3
= **5.27**)

3.2

5.1

cat

car

frog

1.3-2

4.9≁₹

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car image scores change a bit?

2.2

2.5

2
.5
.1
2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what is the min/max possible loss?

3.2

5.1

-1.7

2.9

cat

car

frog

Losses:

1.3

4.9

2.0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

Q3: At initialization W
is small so all $s \approx 0$.
What is the loss?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2.2

2.5

-3.1

12.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Multiclass SVM loss:

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x,W) = Wx \ L = \underbrace{ rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i}^{N} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) }$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

 $= \max(0, 1.3 - 4.9 + 1)$ $+ \max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0

With W twice as large: = max(0, 2.6 - 9.8 + 1)+max(0, 4.0 - 9.8 + 1)= max(0, -6.2) + max(0, -4.8)= 0 + 0 = 0

Want to interpret raw classifier scores as **probabilities**

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

 \boldsymbol{s}

Want to interpret raw classifier scores as **probabilities**

$$=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

$$s = f(x_i; W)$$

Probabilities
must be >= 0

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax **Function**

Want to interpret raw classifier scores as **probabilities**

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Log-Likelihood / KL-Divergence / Cross-Entropy P(y=1)xi/w) Elo7 = -2 (y` - - log P (yet) Jim) Z pot (y) log ~ ~ 5 L H/ At J. -(C) Dhruv Batra 74

Log-Likelihood / KL-Divergence / Cross-Entropy

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2** car 5.1 frog -1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

<u>3.2</u> 5.1 -1.7

Q: What is the min/max possible loss L_i?

3.2

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

car

frog

cat

5.1 -1.7 Q: What is the min/max possible loss L_i? A: min_0, max infinity

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

 $L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$

cat
$$0$$
 3.2
car 0 5.1
frog 0 -1.7 $L_i = -\log P(Y = y_i | X = x_i)$
Q2: At initialization all s value of the second sec

22: At initialization all s will be pproximately equal; what is the loss?

 $-\log(\frac{e_1}{2}) - \log(\frac{e_1}{2})$

-1.7

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$
 $P(Y=$

 $k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$

Putting it all together:

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

Softmax Function

 $L_i = -\log P(Y = y_i | X = x_i)$ 3.2 5.1

Q2: At initialization all s will be approximately equal; what is the loss? A: log(C), eg log(10) ≈ 2.3

Maximize probability of correct class

frog

cat

car

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Softmax vs. SVM

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, $_{\overline{2}}$ 2, 3] [10, 9, 9] [10, -100, -100] and $y_i = 0$

 $-\log($

 $L_i =$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

1

Recap

- We have some dataset of (x,y)
- We have a **score function**: *s* =

$$s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$$

- We have a loss function:

$$egin{aligned} & ext{Softmax} \ L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) & ext{SVM} \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) ext{ Full loss} \end{aligned}$$

Recap

How do we find the best W?

- We have some dataset of (x,y)

$$s=f(x;W) \mathop{\stackrel{\mathrm{e.g.}}{=}} Wx$$

- We have a loss function:

$$egin{aligned} & ext{Softmax} \ L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) & ext{SVM} \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) ext{ Full loss} \end{aligned}$$

