CS 4803 / 7643: Deep Learning

Topics:
— Linear Classifiers
— Loss Functions

Dhruv Batra
Georgia Tech
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* Notes on class webpage
— https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/

« HWO Reminder
— Due: 09/05
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Recap from last time
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Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Challenges of recognition

Viewpoint [llumination eformation Occlusion

This image is €C0 1.0 public domain Ih.m‘m.a.q.e Zyu?mmﬂiﬂ This image by jonsson is licensed
Is licensea unaer QQ'B 2 Q under QQ'E:: Z Q

class Variation

Intra
e N B

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supervised Learning

* Input: x (images, text, emails...)
 Qutput: y (spam or non-spam...)

 (Unknown) Target Function
- . X=2>Y (the “true” mapping / reality)

 Data
= (X,¥1), (X2,¥2), -+ (XnsYN)

 Model / Hypothesis Class
— {h: X>Y)
— e.g. Yy = h(x) = sign(wTx)

* Loss Function
— How good is a model wrt my data D?

« Learning = Search in hypothesis space
— Find best h in model class.
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Error Decomposition

AlexNet
Reality

horse - ';‘;berso
— model class L
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Error Decomposition

Approximation/Modeling Error
— You approximated reality with model

Estimation Error
— You tried to learn model with finite data

Optimization Error
— You were lazy and couldn’t/didn’t optimize to completion

Bayes Error
— Reality just sucks

(C) Dhruv Batra 9
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First classifier: Nearest Neighbor

def train(images, labels): Memorize all
>
data and labels

return model

def predict(model, test_images): Predict the label
> of the most similar
training image

return test_labels

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbour

n

EENIS B2

BN EE =S
BEENIE ENLY



- 00000000000
Instance/Memory-based Learning

Four things make a memory based learner:
» A distance metric

* How many nearby neighbors to look at?
* A weighting function (optional)

* How to fit with the local points?

(C) Dhruv Batra Slide Credit: Carlos Guestrin 12
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Parametric vs Non-Parametric Models

« Does the capacity (size of hypothesis class) grow
with size of training data”?

— Yes = Non-Parametric Models
— No = Parametric Models

(C) Dhruv Batra 13
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Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Problems with Instance-Based Learning

« EXxpensive
— No Learning: most real work done during testing

— For every test sample, must search through all dataset —
very slow!

— Must use tricks like approximate nearest neighbour search

* Doesn’t work well when large number of irrelevant
features
— Distances overwhelmed by noisy features

« Curse of Dimensionality
— Distances become meaningless in high dimensions
— (See proof in next lecture)

(C) Dhruv Batra 15



k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

G0 st (all 3 images have same L2 distance to the one on the left)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/

k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
Dimensions = 2 OO OO OO OO
Points = 42 O O O O O
© 0o o o /5°
Dimensions = 1 o o o o 0O @)
Points = 4 o O @) @) OO
@)
O O O @) o o o o OOO
—-O—O0O—0 O— @)
© 0 o0 © O 0 0 o Ooo
© O @) @) o o o o @)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Curse of Dimensionality 24

ﬁz Ay -

* Consider: Sphere of radius 1 in d-dims

- | i
e Consider: an outer g-shell in this sphere ——%

. What is Shell volume 2
Sphere volume /OO( ;i 7
2

\. \

@cf@ 2’1”&
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Curse of Dimensionality
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Plan for Today

* Linear Classifiers
— Linear scoring functions

* Loss Functions
— Multi-class hinge loss
— Softmax cross-entropy loss

(C) Dhruv Batra 20



Linear Classification



Neural Network

Linear
classifiers

Ihis image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Visual Question Answering

Image Embedding (VGGNet) Neural Network

Softmax
4096-dm  over top K answers

T T T ¥ Y @
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP '
+ Non-Linearity + Non-Linearity

Question Embedding (LSTM)

‘How many horses are in this image?’

(C) Dhruv Batra 24



Recall CIFAR10

airplane ')ﬂ==-i.
automobileng!zﬁﬂﬂg
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Parametric Approach

Image
(7 L 10 numbers givin
> f(x,W) - IVing
class scores

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Parametric Approach: Linear Classifier

f(x,W) = Wx
> f(x,W) » 10 numbers giving
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric Approach: Linear Classifier

3072x1

mage f(x,W)|=|WK

10x1 10x3072 .
> f(x,W) » 10 numbers giving
class scores

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric Approach: Linear Classifier

3072x1
f(x,W)|=[WK +[b] 10x1

10x1 10x3072 .
> f(x,W) » 10 numbers giving
class scores

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Error Decomposition

AlexNet
Reality

horse - ';‘;berso
— model class L
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Error Decomposition

Reality

horse “perso

Multi-class Logistic Regression

(C) Dhruv Batra 32



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

. 56
N
ﬂ{ﬁ?@. 231
24 /
24
—2 ) A
Input image 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56

231

1.1

\ VY 02 | 05| 0.1 | 2.0
Vi |
ﬂ_é/r ' h*
:E.—“\"; 1.5 1.3 2.1 0-0
A )
S 0 (025 02 |-03
Input image

24

3.2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-96.8

437.9

61.95

Cat score

Dog score

Ship score



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

f(x,W) = Wx

Stretch pixels into column

56
\1, § 02 | 05| 01 | 2.0 1.1 -96.8 | Cat score
“{%. 231
24 ";' 15 | 1.3 | 21 | 0.0 + 32 | = | 4379 Dog score
(D 24
o 0 0.25| 0.2 | -0.3 -1.2 61.95 | Ship score
Input imag 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

f(x,W) = Wx

Stretch pixels into column

aNT i d 02 |-05| 01 | 20
Lﬁ\ifésk..
X
A »“zi_; 1.5 | 13 | 21 | 0.0
g N
= 0 |025]| 02 |-03
Input image

Input image
Liﬁ{fi?iﬁ..
B e
24 525
A
v ﬁ \
0.2 -0.5 1.5 1.3 0 .25
! W
56 0.1 2.0 21 0.0 0.2 -0.3
11 -96.8 | Cat score
231
4| 32 | = | 437.9 | Dogscore ‘ ‘ i
24
, 1.2 61.95 | Ship score b 1.1 32 -1.2
b
Score | -96.8 437.9 61.95

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Interpreting a Linear Classifier

airplane ‘ )ﬂ = - ﬁ - s . Input image
automobileﬂ!ﬂﬁ@ﬁg‘s

bird S REK] EETH

P e Y 2 B

deer .T“E!.. 0.2 | 05 15 | 1.3 0 | .25
dog iﬂk!ﬁnﬁlm W 01 | 20 24 | 00 02 | 03
g  EIENa® S E : i V
horse a7 O I I 5 R b | o2 £
ship E n ﬁ e = ' ; s E E Score -92.8 43:9 61.*95
ruck g G S i ol A o s B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



airplane
automobile
bird

cat

deer

dog

frog
horse

ship

truck

plane

Interpreting a Linear Classifier:
Vlsual Viewpoint

L ESENEEUED
' BN Oy N
SR e E kS
AN TEECY
! REAOMESENIE
TRl [0
W U e
: REND®EPEN .
B0 @AW e ¥l
F R

Score

Input image

02 | 05 15 | 13 0o | .25
01 | 20 21 | 0.0 02 | -03
v v v
1.1 32 12
v v v
-96.8 437.9 61.95

horse

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Interpreting a Linear Classifier:
Geometric Viewpoint

4

<o
= o

o
airplane classifier, «
-
..0‘0‘0“0::: .‘q
3
Sy

" :
¢ 7 deer classifier
L

Array of 32x32x3 numbers
(3072 numbers total)

Catimage by Nikita is licensed under CC-BY.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

X
Hard cases for a linear classifier

Class 1: Class 1: Class 1:

First and third quadrants 1<=L2norm <=2 Three modes

Class 2: Class 2.: Class 2_:
Everything else Everything else

Second and fourth quadrants

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint

f(x,W) = Wx

L]

v

o
£XY
timage

Stretch pi
02 |-05| 01 | 20 E n -96.8 | Cat score
15 | 1.3 | 21 | 0.0 n + = | 437.9 | Dog score
0 |025| 0.2 | -0.3 n n 61.95 | Ship score

One template
per class

plane car bird cat deer
i i
dog frog horse ship truck

Geometric Viewpoint

Hyperplanes
cutting up space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




So far: Defined a (linear) score function
f(x, W) =Wx +Db

Example class
scores for 3

- images for

automobile Some W:

deer How can we tell
dog 3.58 5.55 .

frog 3.78 4 .49 -4.34 Whether thlS W
horse 1.06 -4 .37 -1.5 1

o 36 e o IS good or bad?
truck -0.72 -2.93 6.14

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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So far: Defined a (linear) score function

TODO:

1. Define a loss function
that quantifies our
unhappiness with the

- PR ~0.->1 3-42 scores across the training
automobile -8.87 6.04 4.04

bird 0.09 5.31 2.65 data.

cat 2.9 -4.22 5.1

door 4.48 ~4.19 2.64 2. Come up with a way of

dog igg 3.58 5.55 efficiently finding the

:i .06 _44'_4397 __41'_354 parameters that minimize
ship -0.36 ~2.09 _4.79 the loss function.

truck -0.72 -2.93 6.14 (Optimization)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Supervised Learning

* Input: x (images, text, emails...)
 Qutput: y (spam or non-spam...)

 (Unknown) Target Function
- . X=2>Y (the “true” mapping / reality)

 Data
= (X,¥1), (X2,¥2), -+ (XnsYN)

 Model / Hypothesis Class
— {h: X>Y)
— e.g. Yy = h(x) = sign(wTx)

* Loss Function
— How good is a model wrt my data D?

« Learning = Search in hypothesis space
— Find best h in model class.

(C) Dhruv Batra 44
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.

A loss function tells how
With some W the scores f(z,W) =Wz are:

good our current classifier is
Given a dataset of examples

(@i, yi) 521

Where x; is image and

cat 3.2 1.3 292 Y; is (integer) label
car 5 1 49 25 Loss over the dataset is a

sum of loss over examples:
frog 1.7 20 -3.1 |
L= 2 Lilf(zi, W), y)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Cci, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:

cat 3.2 1.3 2.2

0 ifs, >s:.+1
Li = - _’y% — J
car 51 4.9 25 {Sj[\syi + otherwise
frog -1.7 20 -3.1 = > max(0,s; — sy, + 1)

JF#Yi

e—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Multiclass SVM loss:

“Hinge loss”

lf Sy > Sj —|— ]_
— 8y, +1 otherwise

0 SJ Sy'i + 1)

n,
2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

“Hinge loss”

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

- S
== :

score

Z lf Sy > Sj —|— ].
iz — 8y, +1 otherwise
jAy

L; =

max(0,s; — Sy, + 1)

scores for other classes score for correct class
. Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

ca 32 13 22 pEEemmen o
car 5.1 4.9 2.5 B |
tog <17 20  -3.1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:
cat
1.3 2.2 Li =3, ., max(0,s; — sy, + 1)
_g’
car 4.9 2.5 = max(0,5.1 - 3.2 + 1)
+max(0, -1.7-3.2 + 1)
frog 2.0 -3.1 = max(0, 2. 9) + max(O 3 9)
Losses: ~23% )
; =29 z

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training

examples, 3 classes.

With some W the scores f(z,W) =Wz are:

cat 3.2
car 5.1

frog -1.7
Losses: 2.9

1.3 22

2.5

2.0 -3.1
0

Multiclass SVM loss:
Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,
and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

Li =), max(0,s; — sy, +1)

=max(0,1.3-4.9+ 1)
+max(0,2.0-4.9+ 1)

= max(0, -2.6) + max(0, -1.9)

=0+0 T

=0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Di, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:

cat 3.2 1.3 L I T e P
car 51 49 25 = max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5-(-3.1) + 1)

frog -1.7 2.0 ;3J = max(0, 6.3) + max(0, 6.6)
Losses: 2.9 0 12.9 AN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

cat 3.2 1.3 2.2
car 5.1 4.9 2.5 Loss over full dataset is average:
frog -1.7 20 -3.1 b= 0
Losses: 2.9 0 12.9 - L-9+O+ 129)/3

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:
Li =, max(0,s; — sy +1

cat 3.2 '<71 32 2.2

. 9+

car 5.1 4.9+2 2.5 Q: What happens to
frog -1.7 2.0 -3.1 loss if car image
Llosses: 2.9 0 12 .9 scores change a bit?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:
Li =), max(0,s; — sy, +1)

cat 3.2 1.3 2.2
car 5.1 4.9 2.9 Q2: what is the

frog -1.7 2.0 -3.1 min/max possible
Losses: 2.9 0 12.9 loss”?
6 0D

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

cat 3.2 1.3 2.2

Multiclass SVM loss:
Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,
and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

Lg = Eﬁéyzmax (0 s] sy —|—()

car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

.

Q3: At initialization W
IS small so 5|I§ = O.]
What is the loss?

(-

fazsas, — | )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:
cat 3.2 13 2.2 T #E#yilﬂlaX(O,fﬂ_’——?yi _‘_’1)
\—¢
car 5.1 4.9 2.5 Qa: What if the sur
frog -1.7 2.0 -3.1 was over all classes?
Losses: 2.9 0 12.9 (including j = y_I)

—_—
—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:Ui, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

Cat 3 .2 1 . 3 2 . 2 \ Lz the SVM loss has the form:

= E#yi ax(0,s; — sy, + 1)

=
car 5.1 4.9 2.5 K Q5: What if we used

frog -1.7 2.0 -3.1 mean instead of
Losses: 2.9 0 12.9 sum’?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (Cci, yz)
where I; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:

cat 3.2 1.3 2. L;, = Z.# max(0,s; — sy. + 1)

car 5.1 4.9 2.5 Q6: What if we used
frog -1.7 2.0 -3.1 L :Z#yirw,sj—syitl)a

Losses: 2.9 0 12. N\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-]
Multiclass SVM Loss: Example code

Li — Zﬁéyi IIlaX(O, S5 — Sy, -+ 1)

def L i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(©®, scores - scores[y] + 1)
margins[y] = © -
loss i = np.sum(margins)

return loss 1
—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



L =. ity ax(0, f(zi; W); — f(zi; W)y, +}_)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



flx, W) =Wz
L==5Y0 Y, max(0, f(z;W); — f(zis W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. b = Z#y, max(0, s; — sy, + 1)
With some W the scores f(z, W) =Wz are: z

Before:

=max(0,1.3-49 + 1)
+max(0,2.0-49+1)
max(0, -2.6) + max(0, -1.9)

Z 040

=0
cat 3.2 1.3 2.2 With W twice as large:
ar 51| 49y 25 | TR
frog -1.7 2.0 -3.1 - BniXéO, -6.2) + max(0, -4.8)
Losses: 2.9 0 =0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



§o\ftmax Classifier (Multinomial Logistic R_e_iessign)

- Want to interpret raw classifier scores as probabilities

car

frog

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Wantto interpret raw classifier scores as probabiljties

s = fles; W) |PL=k|X = zi) o 5 Softmex
/ —

cat 3.2
car 5.1

frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

g = FleesW) [P =&X—mm)= Eﬂj’;sj

Probabilities
must be >=0

cat [ 3.2 24.5
car 5.1 . 4.0
frog -1.7 0.18

unnormalized
probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

== Wantto interpret raw classifier scores as probabilities

Softmax
Function




Softmax Classifier (Multinomial Logistic Regression)

== Wantto interpret raw classifier scores as probabilities
) 8 = f(:l:z, W) PLY = RX —g5) — ¢* | Softmax

. Y€ ) Function

Probabilities Probabilities
must be >=0 must sum to 1

cat 3.2 24.5 ‘P 0.13

car 51 —164.0|=™" 0.87

frog :L? 018 OO

o O

— — TR P —
unnormalized obabillities
probabilities —

————

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Wantto interpret raw classifier scores as probabilities
) 8 = f(:l:z, W) PLY = RX —g5) — ¢* | Softmax

Sj .
Ej € Function

Probabilities Probabilities
must be >=0 must sum to 1

cat 3.2 24.5 0.13
a— (_—

exp

car 51 ——164.0~™=| 0.87
frog -1.7 018 OOO

Unnormalized log unnormalized probabilities
probabilities @ probabilities - '

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

=== Want to interpret raw classifier scores as probabilities
. — f(ajz, W) P(Y = le — :L'z) . G Softmax

Sj .
Ej € Function

Probabilities Probabilities  , _ T
" must be >= 0 must sum to 1 ,l-lé__.leP(Y___ il X ___.w’)
2 24.5 0.13] - Li=-og(0.13%—
eXp normalize 0.89

car 51 -164.0 1087 _
frog -1.7 018 OOO

— ——
‘ Unnormalized log- unnormalized probabilities
probabilities / logits probabilities .

o .
~ QGZ)@» é} %

=
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

|

__JZ%(D
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Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
. . — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Probabilities Probabilities L Y —
must be >= 0 must sum to 1 Li = —log P(Y =yl X = =)
cat 3.2 24.5 0.13 | — Li=-log(0.13)
exp normalize = 2.04
car 51 ——{164.0 - 0.87 | - -
Maximum Likelihood Estimation
frO - 1 . 7 O . 1 8 O . OO Choose probabilities to maximize
g the likelihood of the observed data
Unnormalized log- unnormalized probabilities \.
prObabiIitieS / |Og|tS probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(rEog-LikeIihood?/ KL-Divergence //Cfross-Entropy}

D :{(7(1,) Ija)j @ "~ ’>’<

\ VSMLE: e EC-P-)N>
— leg VDI

(C) Dhruv Batra 73



Log-Likelihood / KL-Divergence / Cross-Entropy
i
fre] red R
0 ; o j A
Z@ j 7(3—4«)96549‘)/ - % ?bcp % Oa [)’(ﬂ’)

J
- =P U @*@ 2&*@ Y

(C) Dhruv Batra = ﬂ'CF’S — H'Cﬁ 'é} 74




-
Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 75



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ . — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Probabilities Probabilities
must be >=0 must sum to 1 Lo=—log P(¥' =g X =)
cat 3.2 24.5 0.13 [ compare— 1,00

exp

car 51 ——164.0~™=| 0.87 0.00
frog -17 018 OOO OOO

A— s —au
Unnormalized log- unnormalized probabilities Correct

probabilities / logits probabilities probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

probabilities / logits

= FldasW)

3.2
5.1
-1.7

exp

Unnormalized log-

unnormalized
probabilities

Probabilities

must be >=

0

24.5
164.0
0.18

normalize

== Want to interpret raw classifier scores as probabilities

P(Y = k|X = z)

Ej e

Softmax
Function

Probabilities

must sum to 1

0.13

0.87
0.00

Kullback—Leibler
__divergence

—> compare +—

probabilities

P(y)
Qy)

N

> P(y)log

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

|Dxcr(PQ) =)

L; = —log P(Y = y;i| X = z;)

1.00
0.00
0.00

Correct
probs




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
. — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Probabilities Probabilities
must be >=0 must sum to 1 T =—logiP(¥ =X =)
cat 3.2 24.5 0.13 [ compare —1 41 .00
exp :
car 5.1 —{164.0|=™=% 0.87 | cossemoy | 0.00
H(P,Q) =
frog -1 .7 0.18 O-OO H(p)+DKL(P||Q) O-OO
Unnormalized log- unnormalized probabilities Correct
probabilities / logits probabilities probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ . — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Maximize probability of correct class Putting it all together:
Li — — log P(Y — y’1,|X = a‘;z) Lz . log( esyiS. )
cat 3.2 — >, €’

e

car 5.1
frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
. s f(ﬂ;’z, W) P(Y — k|X — xz) — esks_ Softmax

>_; €7 | Function

Maximize probability of correct class Putting it all together:

L; = —log P(Y = 4| X = z;) _lc;’ _ —10g(2y;])

cat 3.2

——— -

car 5 1 Q: What is the min/max
' possible loss L_i?
frog -1.7 - - '

—

1
—_ 263(@

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
S = f(LUz, W) P(Y = k|X = g;z) = esks_ Softmax

>_; €7 | Function

Maximize probability of correct class Putting it all together:

Li=—logP(Y =yi|X=2i) [.=_1 AL
- 3.9 og(3=7)

5 1 Q: What is the min/max
' possible loss L _i?

frog -1.7 | A: min 0, max infinity

car

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ . — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Maximize probability of correct class Putting it all together:
o e L 5Y;
L; ——logP(Y—yz|X—:Ez) Lz s _log(ze zS.)&—
g o

Q2_At initialization all s will be
approximately equal; what is the loss?

~

~ley( 25 - leg 8

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
. — f(g}z, W) P(Y = k|X — xz) . G Softmax

Sj .
Ej € Function

Maximize probability of correct class Putting it all together:
Li=—logP(Y=%|X=2:) [.=_—_1o ( Vi )
(I g S
cat 3.2 €’

5 1 Q2: At initialization all s will be

car approximately equal; what is the loss?
frog -1.7  |A'log(C), eg log(10) = 2.3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax vs. SVM

ﬁ
matrix multiply + bias offset
0.01 | -0.05 0.1 0.05 -15 0.0
0.7 0.2 0.05 | 0.16 22 0.2
00 | -045 | -0.2 | 0.038 44 -0.3
44 56 b
[ —_—
\ 2
Yi

] sl

hinge lo VM
-2.85
max(0, -2.85-0.28 + 1) +
0.86 max(0, 0.86 - 0.28 + 1)
1.58
0.28 it
[ Eri)ss-entropy Io§s (Softmax)
-2.85 0.058 0.016
ex| normalize
0.86 _p, 236 | —— 5. | 0.631 | -109(0.353)
(to sum =
to one) 0.452
0.28 1.32 0353 | _—=—

O3 edcve

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax vs. SVM

L; = —log( ijea ) Li =) ;. max(0,s; — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

E}ﬁ = —log(==- Zg ) ]Li — Z#yz_ r?zc(g, Sj — 8y, + 1)
assume scores: Q: Suppose_L take a datapoint
10, ;2, 3] and | jiggle a bit (changing its
- score sli gjly) What happens to
__1__0\,;9, 9] the loss in both cases?
10, -100, -100]
and 1y, =0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

- We have some dataset of (x,y)
- We have a score function: s = f(z;WW) =Wz
-  We have a loss function:

Softmax

LZ o log( Z_y esj ) SVM regularization loss

=
>

LZ — - ImMax O S; — 8. —I_ ]. W_ score function - &
Z]#yz ( Hep'< Yi ) =uf(wi,,w) data loss ol T

L= % SV Li + ROW) Ful loss =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

How do we find the best W?

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z;WW) =Wz
- We have a loss function:

Softmax

LZ o log( Z_y esj ) SVM regularization loss

g s . i dm :
L’I, - Z]?’éyz maX(O, SJ — Syz —I_ ].) scorefunctaoluf(xi,w)u i }-r;

=
>

4

L= % SV Li + ROW) Ful loss =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



