CS 4803 / 7643: Deep Learning

Topics:

- Regularization
- Neural Networks
- Optimization
- Computing Gradients

Dhruv Batra Georgia Tech

Recap from last time

Parametric Approach: Linear Classifier

Error Decomposition

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recall from last time: Linear Classifier

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

<u>Cat image</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0; Car image is CC0 1.0</u> public domain; <u>Frog image i</u>s in the public domain

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \\ s_j - s_{y_i} + 1 & \text{othe} \end{cases}$
frog	-1.7	2.0	-3.1	$=\sum_{j\neq y_i}\max(0,s_j-s_{y_i}+1)$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $s = f(x_i; W)$

Want to interpret raw classifier scores as probabilities

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

cat**3.2**car5.1frog-1.7

 $s = f(x_i; W)$

Probabilities

cat car

frog

-1.7

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

cat

car

Log-Likelihood / KL-Divergence / Cross-Entropy $D = \{(x_i, y_i)\}$ mox F nox los 11 P(yilxin) log t = max

Plan for Today

- Regularization
- Neural Networks
- Optimization
- Computing Gradients

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

 λ_{\cdot} = regularization strength (hyperparameter)

should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization: Prefer Simpler Models

Polynomial Regression $y' = w_0 + W_1 X$ $W_0 + W_1 \chi + W_2 \chi^2 + \cdots$ $= \begin{bmatrix} w_0 - \cdots - w_d \end{bmatrix} \begin{pmatrix} 1 \\ x_d \\ x^2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \overline{w}^T \\ \overline{w}^T \\ \overline{w}^T \\ \overline{w}^T \end{bmatrix}$ = f (xi, yi) 4 yi-ýj $w^* = \min_{w} \frac{1}{2} \leq w$

Polynomial Regression

Polynomial Regression

- Demo:
 - <u>https://arachnoid.com/polysolve/</u>
- Data:
 - 106
 - 159
 - 20 11
 - 25 12
 - 29 13
 - 40 11
 - 50 10
 - 60 9

 λ_{\cdot} = regularization strength (hyperparameter)

should match training data

Regularization: Prevent the model from doing *too* well on training data

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples <u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

 λ_{\cdot} = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

A 7

Regularization: Prevent the model from doing *too* well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex: Dropout Batch normalization Stochastic depth, fractional pooling, etc

 λ_{\cdot} = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

λT

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap

- We have some dataset of (x,y)
- We have a score function:

$$s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$$

- We have a loss function:

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function**:

$$f' \ s = f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

- We have a loss function:

Error Decomposition

Next: Neural Networks

(Before) Linear score function: f = Wx $f = W_1 \times f = W_2 + W_2 + W_2 + W_1 \times f = W_2 + W_2 +$

(**Before**) Linear score function:

(Now) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
1
    from numpy.random import randn
2
3
    N, D_in, H, D_out = 64, 1000, 100, 10
4
    x, y = randn(N, D_in), randn(N, D_out)
5
    w1, w2 = randn(D_in, H), randn(H, D_out)
6
7
    for t in range(2000):
8
      h = 1 / (1 + np.exp(-x.dot(w1)))
9
      y \text{ pred} = h \text{.dot}(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad_h = grad_y_pred_dot(w2.T)
16
17
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
19
      w1 -= 1e-4 * grad w1
      w2 = 1e - 4 * grad w2
20
```


This image by Fotis Bobolas is licensed under CC-BY 2.0

 $f(a) = \alpha$ €y= RTZ f(a) = mon(0, a)

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Activation functions

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Multilayer Networks

- Cascade Neurons together
- The output from one layer is the input to the next
- Each Layer has its own sets of weights

Neural networks: Architectures

Demo Time

• <u>https://playground.tensorflow.org</u>

Optimization

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parts # Vanilla Gradient Descent while True:

 $w^{(0)} = init$ for t=1--- tired W(EH) = WE - NK

