CS 4803 / 7643: Deep Learning

Topics:

- Regularization
- Neural Networks
- Optimization
- Computing Gradients

Dhruv Batra Georgia Tech

Recap from last time

Parametric Approach: Linear Classifier

Error Decomposition

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Linear Classifier: Three Viewpoints

 $f(x,W) = Wx$

One template per class

Algebraic Viewpoint | Visual Viewpoint | Geometric Viewpoint

Hyperplanes cutting up space

Recall from last time: Linear Classifier

Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- 1. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}}) \hspace{1cm} L_i = \textstyle \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}}) \hspace{1cm} L_i = \textstyle \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

 $s = f(x_i;$

Want to interpret raw classifier scores as **probabilities**

$$
\boxed{W]} \qquad \boxed{P(Y=k|X=x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \begin{array}{l} \text{Softmax} \\ \text{Function} \end{array}}
$$

 $s = f(x_i;W)$

cat car

frog

Want to interpret raw classifier scores as **probabilities**

$$
\left| P(Y=k|X=x_i) = \tfrac{e^{s_k}}{\sum_j e^{s_j}} \right| \text{ Softmax}_{\text{Function}}
$$

cat

car

Want to interpret raw classifier scores as **probabilities**

Want to interpret raw classifier scores as **probabilities**

Log-Likelihood// KL-Divergence //Cross-Entropy $D = \{ (x_i, y_i) \}$ mox P
mox log \sum log P (yi) xi) $\equiv m\omega$ \mathcal{L}

Plan for Today

- Regularization
- Neural Networks
- Optimization
- Computing Gradients

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)
$$

Data loss: Model predictions should match training data

from doing *too* well on training data

 λ = regularization strength

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization: Prefer Simpler Models

Polynomial Regression $y' = w_0 + w_1 x$ $W_0 + W_1 \times + W_2 \times^2 + \cdots$ = $W_0 + W_1 X + W_2 X + \cdots$ $=2(x,y)$ $y_i - \hat{y}_i$ $w^* = \frac{m m}{2}$

Polynomial Regression

Polynomial Regression

- Demo:
	- https://arachnoid.com/polysolve/
- Data:
	- 10 6
	- -159
	- -2011
	- -2512
	- -2913
	- -4011
	- -5010
	- 60 9

 λ = regularization strength

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples L2 regularization: $R(W) = \sum_{k} \sum_{k} W_{k,k}^2$ L1 regularization: $R(W) = \sum_k \sum_l [\widetilde{W_{k,l}}]$ Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2): $\overline{R(W)} = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex: Dropout \ Batch normalization \ Stochastic depth, fracti<u>onal pooling, e</u>tq

 λ = regularization strength (hyperparameter)

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

 \overline{N}

Regularization: Prevent the model from doing *too* well on training data

 $\mathbf{1}^{\mathcal{N}}$

Why regularize?

- **Express preferences over weights**
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\overset{\mathtt{e.g.}}{=}Wx
$$

- We have a **loss function**:

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\overset{\mathtt{e.g.}}{=} Wx
$$

- We have a **loss function**:

Error Decomposition

Next: Neural Networks

(**Before**) Linear score function: $f = \underline{Wx}$

 $f = W_2 W_1 x$

(**Before**) Linear score function:

(**Now**) 2-layer Neural Network

$$
f = Wx
$$

$$
f = W_2 \underbrace{\overbrace{\max} (0, \overline{W_1x})}_{W_2}
$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(**Before**) Linear score function: $f = Wx$ (Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
 \mathbf{1}from numpy.random import randn
 \overline{2}3
    N, D_in, H, D_out = 64, 1000, 100, 10
 \overline{4}x, y = \text{randn}(N, D_in), \text{randn}(N, D.out)5
    w1, w2 = \text{randn}(D_in, H), randn(H, D_out)
 6
 \overline{7}for t in range(2000):
8
       h = 1 / (1 + np.exp(-x.dot(w1)))9
      y pred = h.dot(w2)
10
      loss = np.sqrt(y_pred - y).sum()11print(t, loss)
1213
14
       grad_y_pred = 2.0 * (y_pred - y)grad_w2 = h.T.dot(grad_y pred)15<sub>1</sub>grad_h = grad_y pred.dot(w2.T)
16
       grad_w1 = x.T.dot(grad_h * h * (1 - h))17
18
      w1 - 1e-4 * grad_w119
20
      w2 = 1e-4 * grad_w2
```


This image by Fotis Bobolas is licensed under CC-BY 2.0

Impulses carried toward cell body

 $f(a) = a$ $f = \vec{k}$ $f(\alpha) = m\alpha x(0,\alpha)$

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Activation functions

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh(\frac{2}{3}x)$.

Rectified Linear Units (ReLU)

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Multilayer Networks

- Cascade Neurons together
- The output from one layer is the input to the next
- Each Layer has its own sets of weights

Neural networks: Architectures

Demo Time

• https://playground.tensorflow.org

Optimization

Strategy: **Follow the slope**

In 1-dimension, the derivative of a function;

$$
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

While True:

While True:

(weights_grad = evaluate_gradient(loss_fun, data, weights)

weights += - step_size * weights_grad # perform parameter update # Vanilla Gradient Descent while True:

 $J^{(o)}$ = init $A = mv$
 $f = t = 1 - \frac{1}{2}$

