CS 4803/ 7643: Deep Learning

Topics:
— Regularization
— Neural Networks
— Optimization
— Computing Gradients

Dhruv Batra
Georgia Tech



Recap from last time
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Parametric Approach: Linear Classifier

3072x1
f(x,W)|=|WK +[b ] 10x1

10x1 10x3072

> f(X,W) > 10 numbers giving
class scores

Array of 32x32x3 numbers T

(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Error Decomposition

Reality

horse ™“perso

Multi-class Logistic Regression
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

‘ 56
\/ {\
ﬂpﬁuﬁﬁ. 231
24 /{
24
Input image 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx
‘h\% 0.5 | 04 | 20 ﬂ n
zf é:; 13 | 24 | 00 m + E = |43
If:fl ;ge 0.25| 0.2 | 03 E n
w b

Visual Viewpoint

One template
per class

IHI!

Geometric Viewpoint

Hyperplanes
cutting up space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Recall from last time: Linear Classifier

TODO:

1. Define a loss function
that quantifies our
unhappiness with the

0 ~0.-51 342 scores across the training
automobile . 6.04 4.064

bird 0.09 5.31 2.65 data.

cat 2.9 -4.22 5.1

P 4.48 ~4.19 2.64 1. Come up with a way of

. 232 3.58 5.55 efficiently finding the

"~ e o - parameters that minimize
ship -0.36 ~2.09 _4.79 the loss function.

truck -0.72 ~2.93 6.14 (optimization)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Softmax vs. SVM

L; = —log( gjy;j ) i = D jzy Max(0,s; — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores f(z, W) =Wz are:
“Hinge loss”
S'yi .
Sj 1'
cat 3.2 1.3 2.2
I — {O ifSinSj—Fl

car 51 4_9 25 ’ 2o 85— sy 1 otherwise
frog -1.7 2.0 -3.1 B = max(0, 8 — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) =Wz are:

Multiclass SVM loss:

“Hinge loss”
Sj 1'
cat 3.2 1.3
O 1f Syi Z Sj —+ 1
car 5 1 4_9 sj — 8y, +1 otherwise
0,8, — 8y, + 1
frog '1 7 20 ax(0,5; — sy )
delta
1 | . + <
I 1R score
scores for other classes score for correct class

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax vs. SVM

L; = —log( gjy;j ) i = D jzy Max(0,s; — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ g = f(ajz, W) P(Y — k|X = g;z) . OF Softmax

8= .
>_; €7 | Function

cat 3.2
car 5.1

frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ g = f(ajz, W) P(Y — k|X = g;z) . OF Softmax

8= .
>_; €7 | Function

Probabilities
must be >=0

cat 3.2 24.5

exp

car 51 —{164.0
frog -1.7 0.18

unnormalized
probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ g = f(ajz, W) P(Y — k|X = g;z) . OF Softmax

8= .
>_; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1
cat 3.2 24.5 0.13

exp

car 51 —|164.0|"™ 0.87
frog -17 018 OOO

unnormalized probabilities
probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
| 8= f(ajz, W) PY =k X =35} — ek __| Softmax

8= .
>_; €7 | Function

Probabilities Probabilities
must be >=0 must sum to 1
cat 3.2 24.5 0.13

exp

car 51 —164.0|"""% 0.87
frog -17 018 OOO

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
‘ g = f(ajz, W) P(Y — k|X = g;z) . OF Softmax

8= .
>_; €7 | Function

Probabilities Probabilities
must be >= 0 must sum to 1 Lo=—lopP(¥ =gl X =)
cat 3.2 24.5 0.13 | — L =-log(0.13)
exp normalize =2.04

car 5.1 —{164.0 0.87
frog -1 7 018 OOO

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
g = f(ajz, W) P(Y — k|X = g;z) . OF Softmax

8= .
>_; €7 | Function

Probabilities Probabilities
must be >= 0 must sum to 1 Li = —log P(Y = yi|X = @)
cat 24.5 0.13 | — L =-log(0.13)
exp normalize =2.04

car 51 —|164.0 0.87
frog -1.7 0.18 0.00 | Croose probaiities to manaze:

the likelihood of the observed data

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

- Want to interpret raw classifier scores as probabilities

s = f(zi; W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

PY =kl X=1z;)= <

Zj e’

Probabilities
must sum to 1

0.13

—(164.0| =" 0.87

0.18

Unnormalized log-
probabilities / logits

unnormalized
probabilities

0.00

Li = —log P(Y =

Softmax
Function

yi| X = zi)

—> compare €+——

1.00
0.00
0.00

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Correct
probs



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
B (s = f(zi; W) |P(Y = k|X = z;) = | Softmax

8= .
>_; €7 | Function

Probabilities Probabilities
must be >= 0 must sum to 1 L =—logP (¥ =pa X ==i)
cat 3.2 24.5 0.13 [ compere— 1,00

exp

normalize Kullback—Leibl
car 5 1 — 1 640 g 087 udi\fecrgenecle 7 OOO

Dgr(P|Q) =
g | -1.7 | |0.18 0.00 | =] 0.00
Unnormalized log- unnormalized probabilities QW) Correct
probabilities / logits probabilities probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

- Want to interpret raw classifier scores as probabilities

s = f(zi; W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

P(Y = k|X = z;)

e’k

Zj e’

Probabilities

must sum to 1

0.13

164.0

0.18

Unnormalized log-
probabilities / logits

unnormalized
probabilities

normalize

0.87
0.00

Li = —log P(Y =

Softmax
Function

yi| X = zi)

—> compare €+——

Cross Entropy
H (P ) ) —

H(p) + Dk (P|Q)

1.00
0.00
0.00

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Correct
probs



hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—»{ | 0.86 max(0, 0.86 - 0.28 + 1)
0.01 | -0.05 | 0.1 | 0.05 15 0.0 =
0.28 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 | -045 | -0.2 | 0.03 44 0.3 cross-entropy loss (Softmax)
-2.85 0.058 0.016
|44 56 b
ex normalize
—» | 0.86 _p, 236 | — 5 | 0.631 | -1009(0.353)
"'CZ (to sum =
to one) 0.452
0.28 1.32 0.353
Yi | 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Plan for Today

Regularization

Neural Networks
Optimization
Computing Gradients
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Regularization

Data loss: Model predictions
should match training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- 000000000000
Regularization

N

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Regularization

.= regularization strength
(hyperparameter)

N

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Regularization: Prefer Simpler Models

O
O
© @

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression

A
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Polynomial Regression
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Polynomial Regression

s

f o

A__
y (‘j/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Polynomial Regression

« Demo:
— https://arachnoid.com/polysolve/

 Data:
— 106
- 159
— 20 11
— 2512
— 2913
— 40 11
— 5010
- 609

(C) Dhruv Batra 32


https://arachnoid.com/polysolve/
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Regularization

.= regularization strength
(hyperparameter)

N

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

.= regularization strength

(hyperparameter)
N
1
L(W) = N > " Li(f(zi, W), ) +|A _(/M_/_)

—
N J @
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples ’
L2 reqularization: R(W) = >, ﬂr@

L1 regularization: BIW) = D0 W E—
Elastic net (L1 + L2): R(W) =3, >, W, + [Wiy|

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

.= regularization strength
(hyperparameter)

N

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

— )

More complex:

Simple examples
L2 regularization: R(W) = 32, >, Wy, Dropout\

L1 regularization: R(W) = >, >, [Wi| Batch normalization |
Elastic net (L1 + L2): R(W) = >, >, 8W;, + |[Wi,| \ Stochastic depth, fractional pooling, etc(

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Regularization

.= regularization strength
(hyperparameter)

LW) ==Y Li(f(z:;, W), y;) + AR(W)

N - —
1=1

\ J W_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?

- _EXxpress preferences overweights

- Make the model simple so it works on test data
- Improve optimization by adding curvature

I~

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

- We have some dataset of (x,y) eq.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

sy, SOftmax
= — log(=—
( J €+ ) SVM regularization loss

. e— ) T W_ l ;
z ’_ zj#yz maX(O, Sj Syz —|— 1) score functnonzuf(mi, W)] data loss & L
el % Zfil L; —|-_R(W) Full loss :;z

U

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

How do we find the best W? l

[ ins

We have some dataset of (x,y)

/f R

s = f(z; W) ZWe

We have a score function:
We have a loss function:

., Softmax

Zj e’

— log(

regularization loss

D isy, max(0, 85 — sy, + 1)

score function

—

uf(m”W) data loss =L

P \%Z/JL\L/ + R(W) Full loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Error Decomposition

horse ™“perso

Multi-class Logisfic Regression
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Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Neural networks: without the brain stuff

(Before) Linear score function: f = _W:L’

’99[\); E)\)C

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

(Before) Linear score function: f =Wz [?

(Now) 2-layer Neural Network  f = W Eax!(g, Wiz)

=
7

\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Neural networks: without the brain stuff

(Before) Linear score function: f — W
(Now) 2-layer Neural Network  f = Wy max(0, Wix)

oV ) - N
Hz%* n= [ 2 7 = Z—Z j
"“[oox%cf?z

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Neural networks: without the brain stuff

(Before) Linear score function: f = _V[_/CE

(Now) 2-layer Neural Network  f = Wy max(0, Wix)

O

0 0 -

ﬁ W1 yg W2 St
3072 100 10

a—
car bird cat deer dog frog horse ship truck
— b —

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Neural networks: vﬂthout the brain stuff

——

(Before) Linear score function: f — W

(Now) 2-layer Neural Network  f = Wy max(0, Wix)
or 3-layer Neural Network

f = Wymax(0, WamaxiV, W)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/(1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h x h % (1 - h))

wl —= le-4 % grad_wl
w2 —= le-4 * grad_w2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



his image by Fotis Bobolas is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrit
presynaptic
terrm ,_;L- qi'
=\ —

cell
body

Impulses carried away
from cell body

Ihis image by Felipe Perucho
is licensed under CC-BY 3.0

=

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cel —
body

Impulses carried away

from cell body o wo
axon from a neurorn. i
WoIo

Ihis image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

g (Z w;T; + b)
j{:1uimi-+-b :

output axon

activation
function

w1

\

W22

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite
presynaptic
terminal

axon

cel —
body

Impulses carried away
from cell body

i) Wy

@

axon from a neuron . P00
WwoTo

Ihis image by Felipe Perucho
is licensed under CC-BY 3.0

\
N e — -
cell body f (Z w;z; +b
0.8 w11 '
0.6 _ _ o _ output axon
0.4 /L sigmoid activation function activation
¢ T function
0.2 I Wa T2
0.0 l+8™*
— -5 5 10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/




Impulses carried toward cell body

\ dendrite
presynaptic

terminal

cel —
body

Impulses carried away

from cell body o wo
axon from a neurorn. i
WoIo

Ihis image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

g (Z w; T; + b)
Zwimi +b :

output axon

activation
function

w11

class Neuron:

Y

def neuron_tick(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number
cell body sum = np.sum(inputs * f.weights) + T.bias W99
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # si tivation func
return firing rate

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Be very careful with your brain analogies!

—_

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical
system
e Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sigmoid

1+e—2=

tanh
tanh(x)

RelLU
max((, z)

Activation functions

-10

V Maxout

-10 ﬂ
10

ELU

{a(e‘” —1)

1 Leaky ReLU
max(0.1z, z)

max(w{ = + by, wi 'z + bs)
\—’E/_W

x>0
x <0

NS

Slide Credit: Fei-Fei Li, Justin Johnson, Se®ena Yeung, CS 231n
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Activation Functions o
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A quick note

1t
08
0.6
04+
02}
6 4 2 —2 4 s
—_——— _ - —
(a)

Fig. 4. (a) Not recommended: the standard logistic function, f(z) =1/(1 +e ). (b)
Hyperbolic tangent, f(x) = 1.7159 tanh (%:r)

= < 2 —=

(C) Dhruv Batra Image Credit: LeCun et al. ‘98 60



0.6

Rectified Linear Units (RelLU)

/!

—RelU |
— Logistic |

'raining error rate

A "
T f 7 J o v &\
- 1.5 -1 0.5 05 1.5 2

[Krizhevsky et al., NIPS12]

>
fCg) 1\ (o
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e
Limitation

« Asingle "neuron’ is still a linear decision boundary

« What to do?

« ldea: Stack a bunch of them together!

(C) Dhruv Batra 62



Multilayer Networks

« Cascade Neurons together
« The output from one layer is the input to the next
« [Each Layer has its own sets of weights

put layer

=3 c

input layer
hidden layer hidden layer 1 hidden layer 2

}’ELP -fK—Vj[,TX>

(C) Dhruv Batra 63

input layer
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Neural networks: Architectures

)

DN
<
e

v
5
®

Va
C

output layer
oytput layer

input laye input layer
_—  hid er hidden layer 1 hidden layer 2

i

- \/ ,

“3-layer Neural Net”,_or
_“2-layer Neural Net”, or “hidden-fayer Neura@
“1-hidden-layer Neural Net” —

“Fully-connected” layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Demo Time

 https://playground.tensorflow.org



https://playground.tensorflow.org/

Optimization



vvxq;\fj‘ LC B}) D)

Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In(tdimension, the de\rivative of a function:

-

df@) _ . f@+h) - f(@)
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along

each dimension

The slope in any direction is the dot product of the direction with the gradient

The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Qradient DesceDt

- b@@w

while
Cwelghts grad = evaluate gradient(loss fun, data, welghts)
weights += - step size * weights grad # perform parametér update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



original W

/\—/

—~ LW_1
negative gradient direction

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



