
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Optimization
– Computing Gradients



Administrativia
• HW0 Reminder

– Due: 09/05, 11:55pm

• A note on expectations
– Act like a responsible adult

• Thursday 09/06
– Guest Lecture by Peter Anderson

• No class next week
– 09/11, 09/13

• HW1 out next week (09/11)
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Recap from last time
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Regularization

4

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347



Regularization

5

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Stochastic depth, fractional pooling, etc

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Before) Linear score function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff
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(Before) Linear score function:

(Now) 2-layer Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff
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x hW1 sW2
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Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Before) Linear score function:

(Now) 2-layer Neural Network
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(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions



Activation Functions
• sigmoid vs tanh
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Multilayer Networks
• Cascade Neurons together
• The output from one layer is the input to the next
• Each Layer has its own sets of weights

(C) Dhruv Batra 14Image Credit: Andrej Karpathy, CS231n



Plan for Today
• (Finish) Optimization
• Computing Gradients
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Optimization



Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In 1-dimension, the derivative of a function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



original W

negative gradient direction
W_1

W_2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)
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How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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(C) Dhruv Batra 32By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Matrix/Vector Derivatives Notation
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Matrix/Vector Derivatives Notation

(C) Dhruv Batra 43



Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Graphical view
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Logistic Regression Derivatives
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Logistic Regression Derivatives
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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x

W

hinge 
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph



Computational Graphs
• Notation
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Logistic Regression as a Cascade
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Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w|x

◆

w
|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Any DAG of differentiable modules is 
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 62

Computational Graph



Key Computation: Forward-Prop

(C) Dhruv Batra 63Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Back-Prop

(C) Dhruv Batra 64Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 65Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 66Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]

(C) Dhruv Batra 67Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 68Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 69Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

• Step 1: Compute Loss on mini-batch [F-Pass]

• Step 2: Compute gradients wrt parameters [B-Pass]

(C) Dhruv Batra 70Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training
• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
• Step 3: Use gradient to update parameters

(C) Dhruv Batra 71Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



82

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Upstream 
gradient

Local
gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Upstream 
gradient

Local
gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Upstream 
gradient

Local
gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Upstream 
gradient

Local
gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Another example:

[upstream gradient] x [local gradient]
x0: [0.2] x [2] = 0.4
w0: [0.2] x [-1] = -0.2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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sigmoid function

sigmoid gate

Computational graph representation may not 
be unique. Choose one where local gradients 
at each node can be easily expressed!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



sigmoid gate
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[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)]= 0.2

sigmoid function

Computational graph representation may not 
be unique. Choose one where local gradients 
at each node can be easily expressed!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


