
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– (Finish) Computational Graphs

– Notation + example
– (Finish) Computing Gradients

– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs



Administrativia

• HW1 Reminder

– Due: 10/02, 11:55pm

• https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw1.pdf

• https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/hw1-q6/
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https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw1.pdf
https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/hw1-q6/


Recap from last time
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Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Matrix/Vector Derivatives Notation
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Matrix/Vector Derivatives Notation
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Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Graphical view
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Chain Rule: Cascaded
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Chain Rule: How should we multiply?
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Plan for Today
• (Finish) Computational Graphs

– Notation + example

• (Finish) Computing Gradients
– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs
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Logistic Regression Derivatives
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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x

W

hinge 
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph



Any DAG of differentiable modules is 
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 39

Computational Graph



Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 40



Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Directed Acyclic Graphs (DAGs)
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Computational Graphs
• Notation
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



HW0
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HW0 Submission by Samyak Datta



Forward mode vs Reverse Mode
• Key Computations
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g

Forward mode AD
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g

Reverse mode AD



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1



Forward Pass vs 
Forward mode AD vs Reverse Mode AD
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+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin( )

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin( )

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)



Forward mode vs Reverse Mode
• What are the differences? 
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+

sin( )

x2

*

+

sin( )

x1 x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2 w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

ẇ1 = cos(x1)ẋ1

x1



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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+

+

FPROP BPROP
SU

M
CO

PY
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Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
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g(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobian of ReLU
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g(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobian of ReLU
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g(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

g(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Q2: what does it 
look like?

g(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Jacobians of FC-Layer
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Jacobians of FC-Layer
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Jacobians of FC-Layer
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