
CS 4803 / 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– (Finish) Computational Graphs

– Notation + example
– (Finish) Computing Gradients

– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs

Administrativia

• HW1 Reminder

– Due: 10/02, 11:55pm

• https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw1.pdf

• https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/hw1-q6/

(C) Dhruv Batra 2

https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/assets/hw1.pdf
https://www.cc.gatech.edu/classes/AY2019/cs7643_fall/hw1-q6/

Recap from last time

(C) Dhruv Batra 3

Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 7

(C) Dhruv Batra 8

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 9

(C) Dhruv Batra 10By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 19

Matrix/Vector Derivatives Notation

(C) Dhruv Batra 20

Matrix/Vector Derivatives Notation

(C) Dhruv Batra 21

Vector Derivative Example

(C) Dhruv Batra 22

Extension to Tensors

(C) Dhruv Batra 23

Chain Rule: Composite Functions

(C) Dhruv Batra 24

Chain Rule: Scalar Case

(C) Dhruv Batra 25

Chain Rule: Vector Case

(C) Dhruv Batra 26

Chain Rule: Jacobian view

(C) Dhruv Batra 27

Chain Rule: Graphical view

(C) Dhruv Batra 28

Chain Rule: Cascaded

(C) Dhruv Batra 29

Chain Rule: How should we multiply?

(C) Dhruv Batra 30

Plan for Today
• (Finish) Computational Graphs

– Notation + example

• (Finish) Computing Gradients
– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs

(C) Dhruv Batra 31

(C) Dhruv Batra 33

Logistic Regression Derivatives

(C) Dhruv Batra 34

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 37

x

W

hinge
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph

Any DAG of differentiable modules is
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 39

Computational Graph

Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 40

Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering

(C) Dhruv Batra 41

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 42

Computational Graphs
• Notation

(C) Dhruv Batra 43

f(x1, x2) = x1x2 + sin(x1)

Example

(C) Dhruv Batra 44

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

HW0

(C) Dhruv Batra 45

(C) Dhruv Batra 46

HW0 Submission by Samyak Datta

Forward mode vs Reverse Mode
• Key Computations

(C) Dhruv Batra 48

49

g

Forward mode AD

50

g

Reverse mode AD

Example: Forward mode AD

(C) Dhruv Batra 51

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Example: Forward mode AD

(C) Dhruv Batra 52

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Example: Forward mode AD

(C) Dhruv Batra 53

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 54

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

(C) Dhruv Batra 55

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

Example: Reverse mode AD

(C) Dhruv Batra 56

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Example: Reverse mode AD

(C) Dhruv Batra 57

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 58

Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1

Forward Pass vs
Forward mode AD vs Reverse Mode AD

(C) Dhruv Batra 59

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin()

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin()

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)

Forward mode vs Reverse Mode
• What are the differences?

(C) Dhruv Batra 60

+

sin()

x2

*

+

sin()

x1 x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2 w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

ẇ1 = cos(x1)ẋ1

x1

Forward mode vs Reverse Mode
• What are the differences?

• Which one is faster to compute?
– Forward or backward?

(C) Dhruv Batra 61

Forward mode vs Reverse Mode
• What are the differences?

• Which one is faster to compute?
– Forward or backward?

• Which one is more memory efficient (less storage)?
– Forward or backward?

(C) Dhruv Batra 62

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 71

+

+

FPROP BPROP
SU

M
CO

PY

72

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

73

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

74

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

75

Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

76

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

(C) Dhruv Batra 77Figure Credit: Andrea Vedaldi

g(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobian of ReLU

80

g(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobian of ReLU

81

g(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

g(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

in practice we process an
entire minibatch (e.g. 100)
of examples at one time:

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Q2: what does it
look like?

g(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobians of FC-Layer

(C) Dhruv Batra 84

Jacobians of FC-Layer

(C) Dhruv Batra 85

Jacobians of FC-Layer

(C) Dhruv Batra 86

