CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Computing Gradients
 - Backprop in FC+ReLU NNs

Convolutional Neural Networks

Dhruv Batra Georgia Tech

Administrativia

- HW1 Reminder
 - Due: 10/02, 11:55pm
- HW0 grades
 - Out week of 10/01

Project

- Goal
 - Chance to try Deep Learning
 - Combine with other classes / research / credits / anything
 - You have our blanket permission
 - Extra credit for shooting for a publication
 - Get permission from other instructors; delineate different parts
 - Encouraged to apply to your research (computer vision, NLP, robotics,...)
 - Must be done this semester.

Groups of 3-4

- Main categories
 - Application/Survey
 - Compare a bunch of existing algorithms on a new application domain of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing algorithm

Computing

- Major bottleneck
 - GPUs
- Options

- Your own / group / advisor's resources

Google Cloud Credits

• \$50 credits to every registered student courtesy Google

<u>https://colab.research.google.com</u>

– Minsky cluster in IC

Administrativia

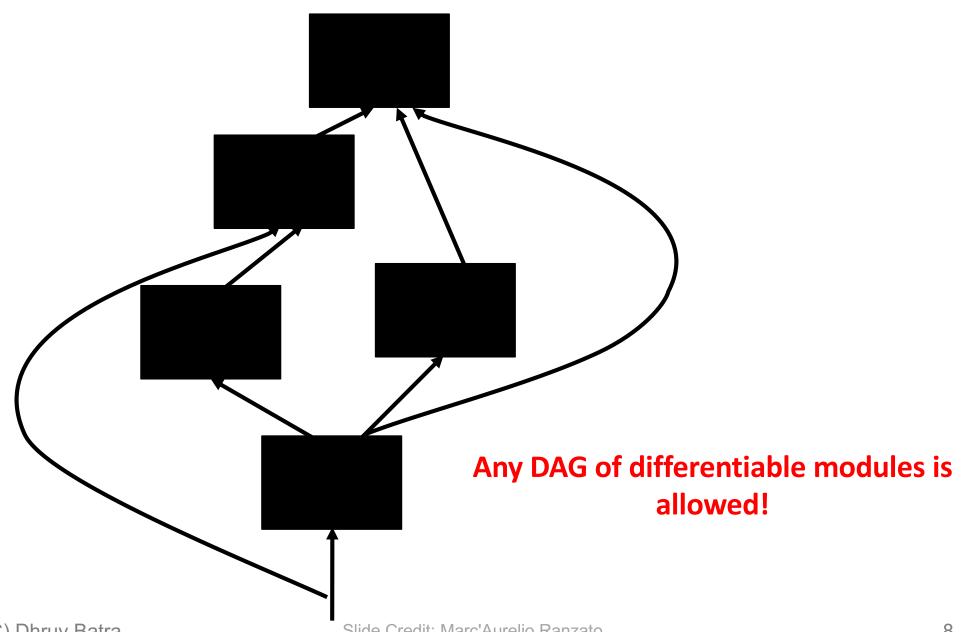
- Project Teams Google Doc
 - <u>https://docs.google.com/spreadsheets/d/1BipWLvvWb7Fu6</u>
 <u>OSDd-uOCF1Lr_4drKOCRVdhxm_eSHc/edit#gid=0</u>
 - Project Title
 - 1-3 sentence project summary TL;DR
 - Team member names

Recap from last time

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

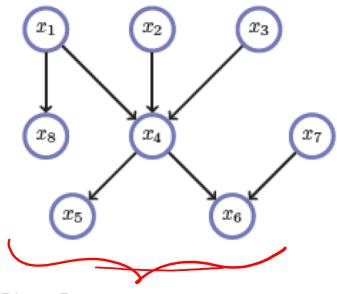
Computational Graph

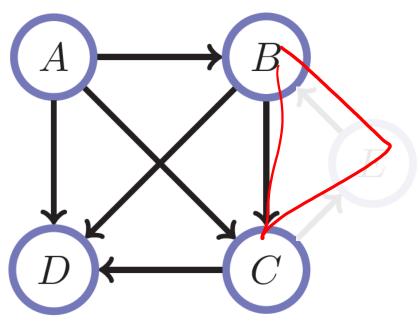


Directed Acyclic Graphs (DAGs)

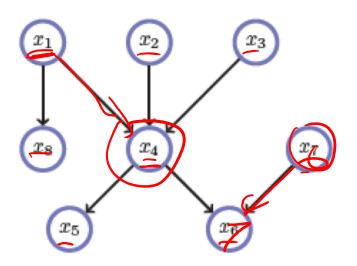
- Exactly what the name suggests $G = (V, E) \in V_1$ $\rightarrow \text{Directed edges}$ $F = f(EV_1, V_2) V_1, V_2$ ullet

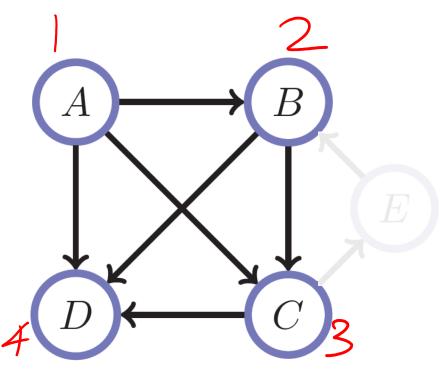
 - No (directed) cycles
 - Underlying undirected cycles okay



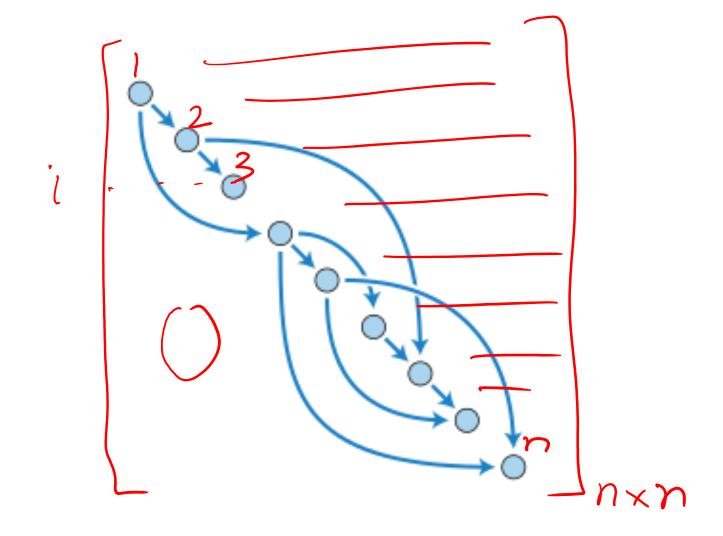


Directed Acyclic Graphs (DAGs) $\exists \epsilon: v \rightarrow [n] = f_{1, \dots, n}$ - Topological Ordering S-t $\forall (v_i, v_i) \in \mathcal{E} \circ (v_i) < \sigma(v_i)$



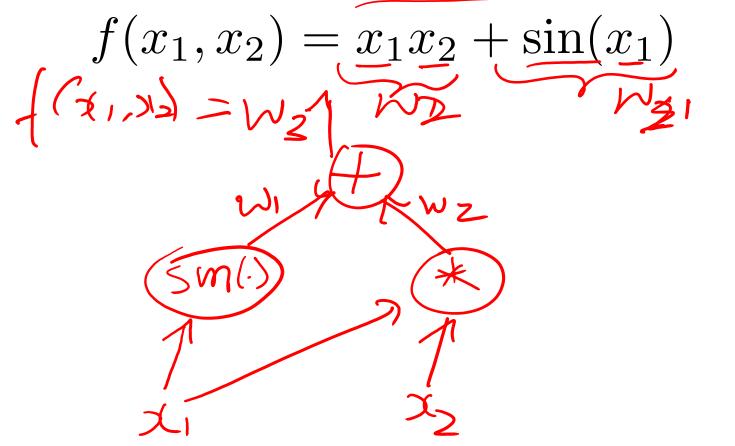


Directed Acyclic Graphs (DAGs)



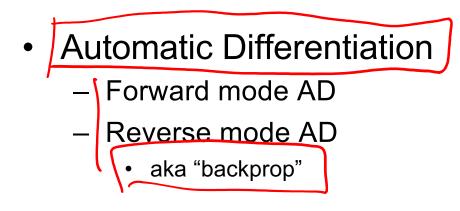
Computational Graphs

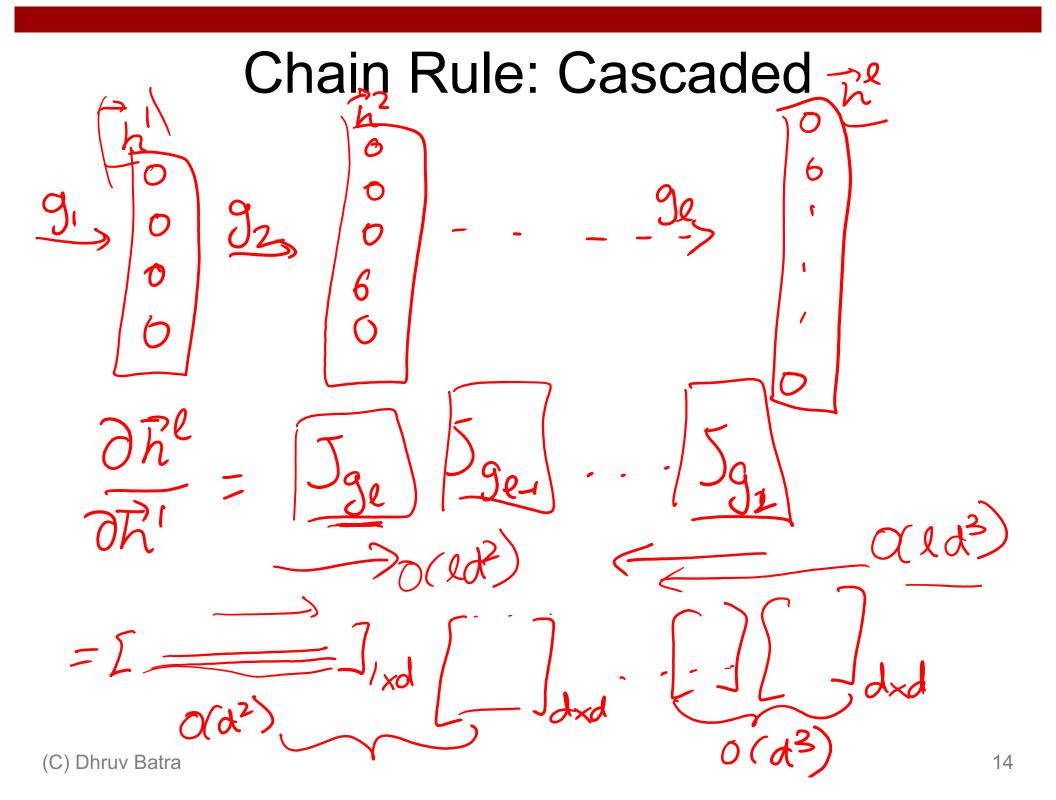
Notation

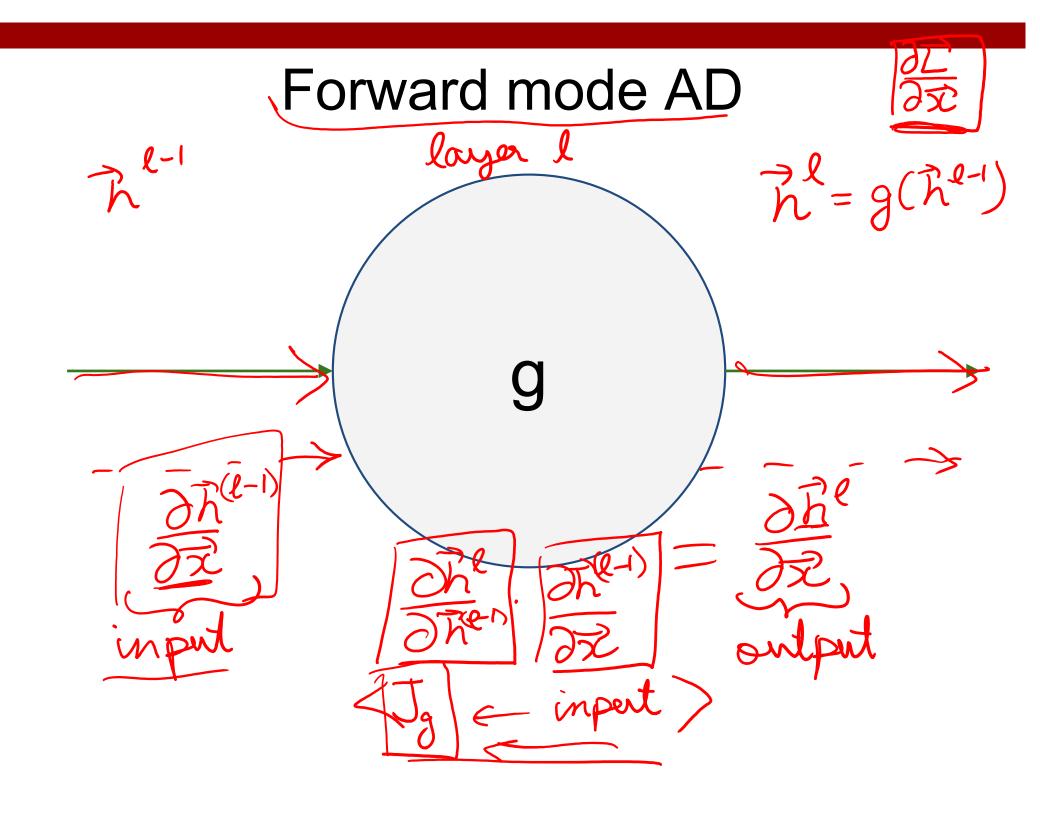


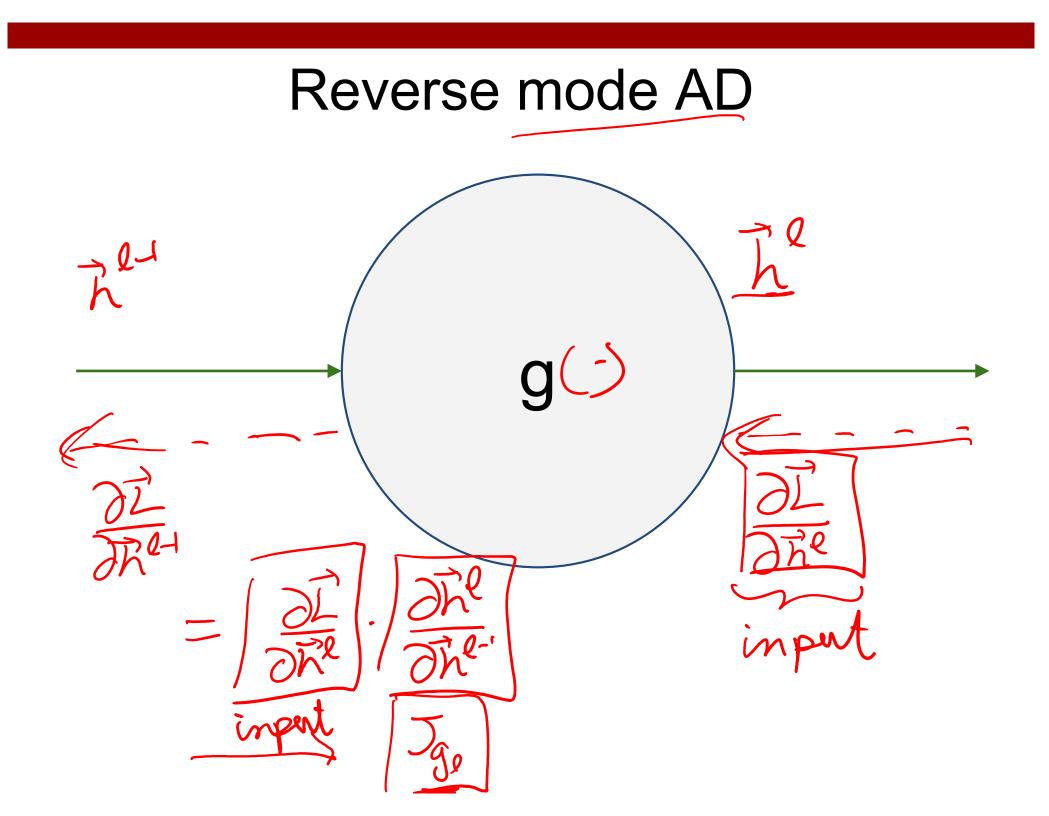
How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation

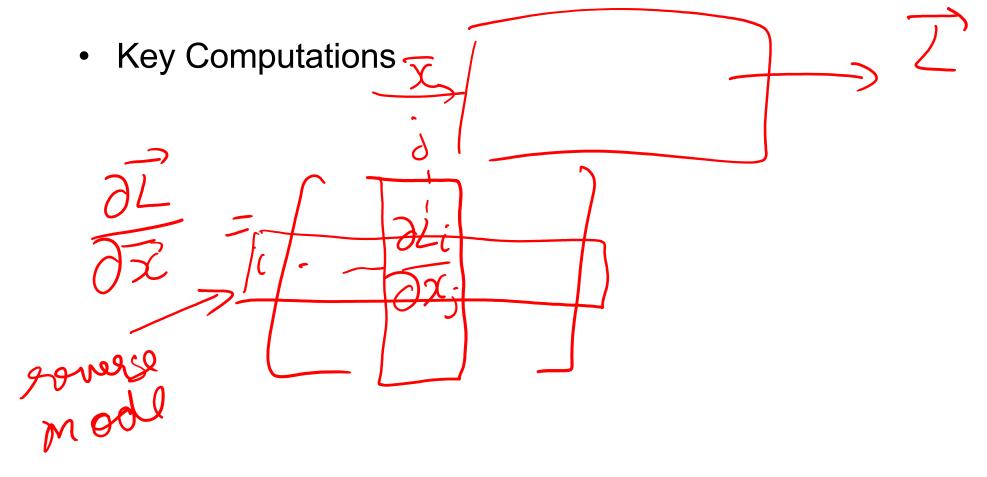


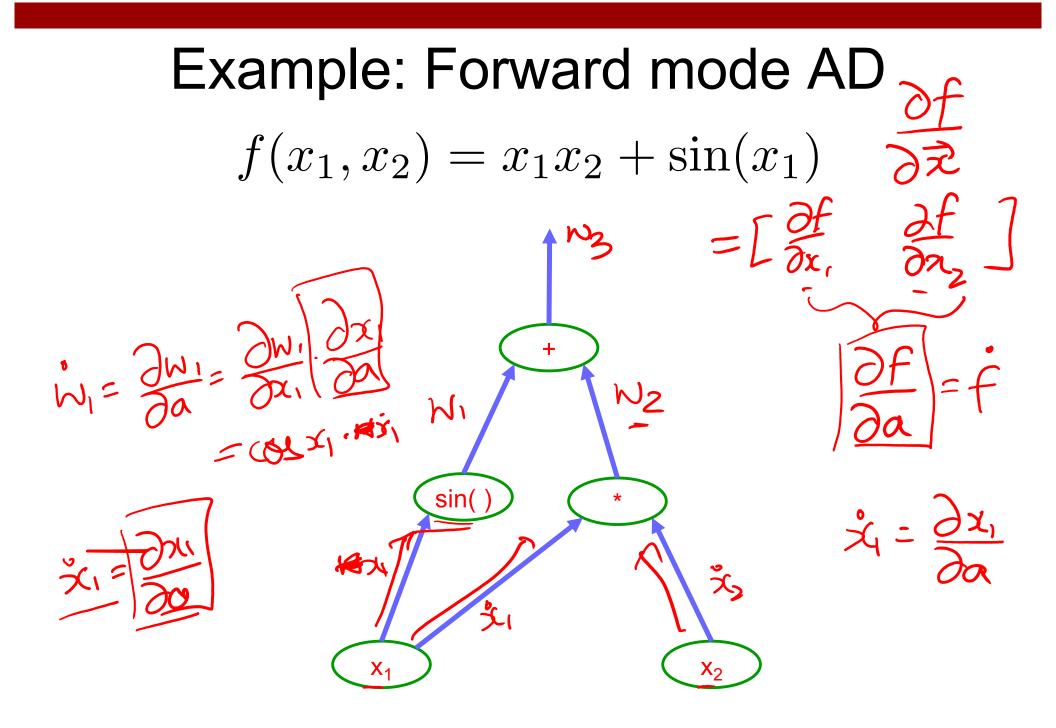


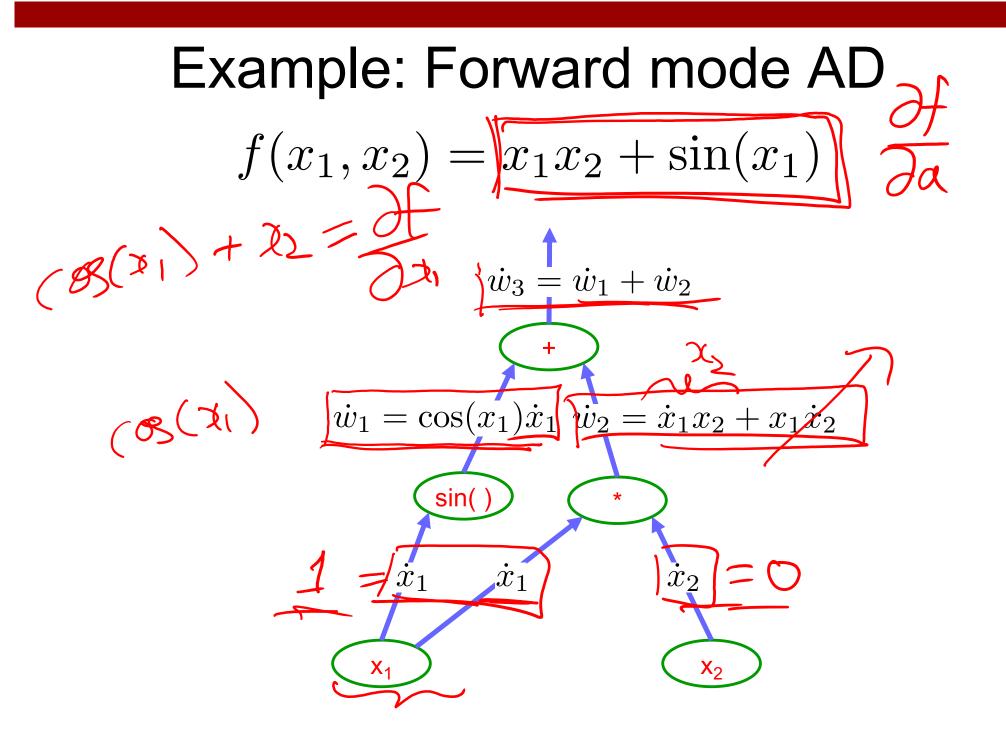




Forward mode vs Reverse Mode

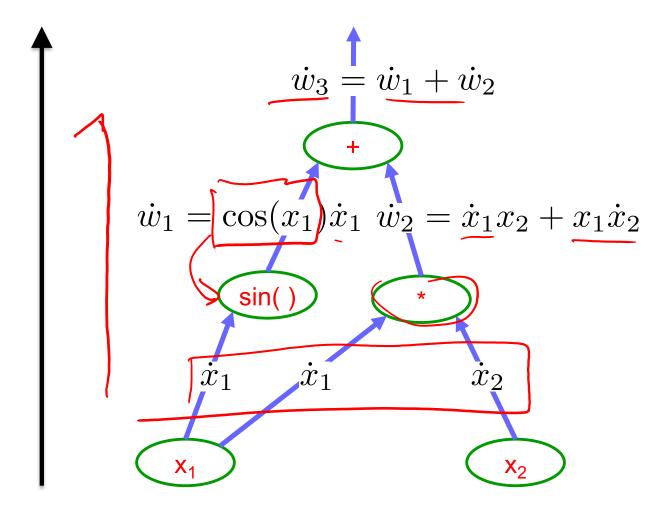




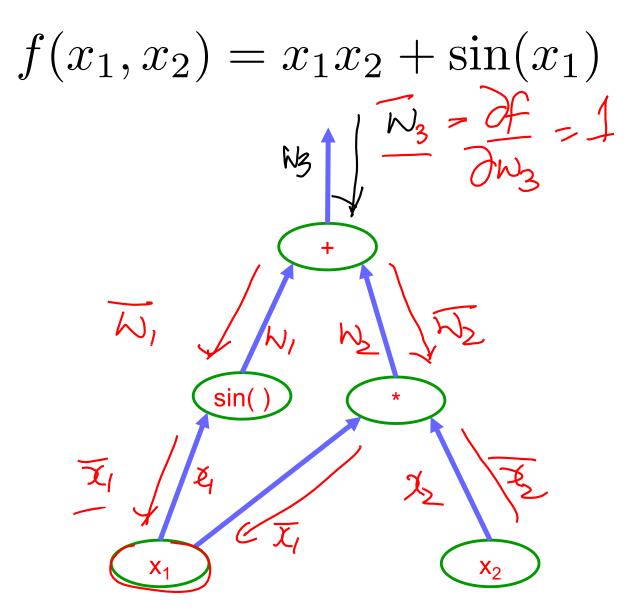


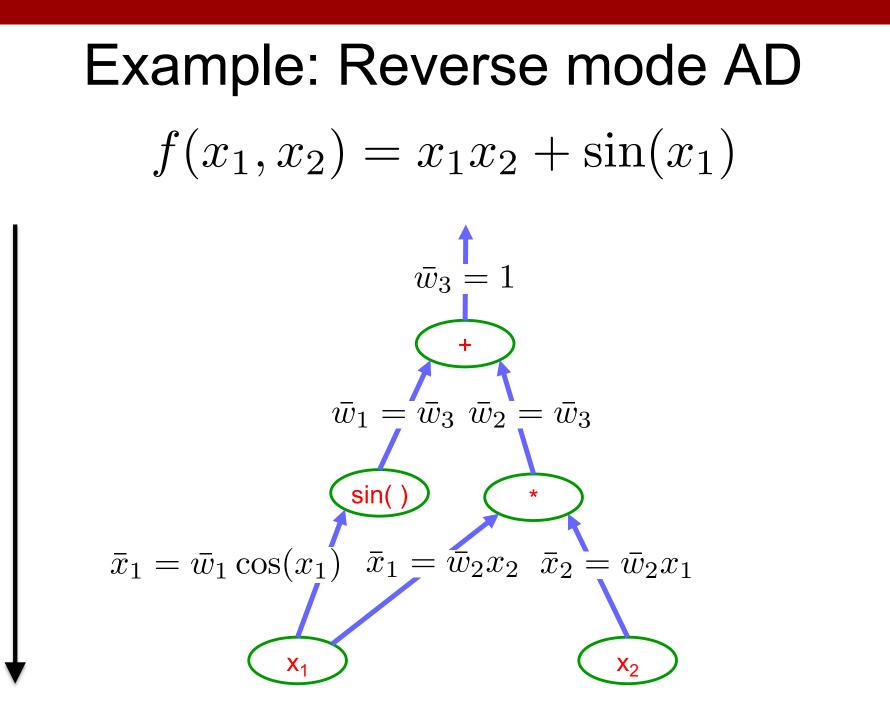
Example: Forward mode AD

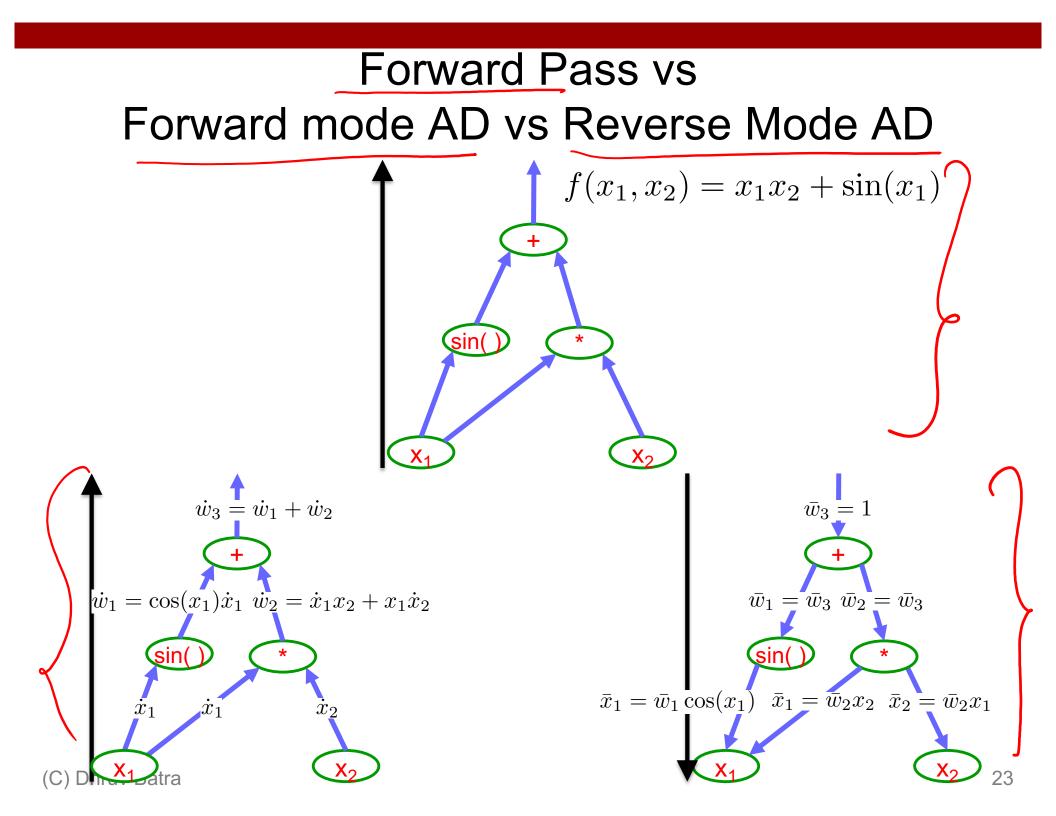
$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



Example: Reverse mode AD







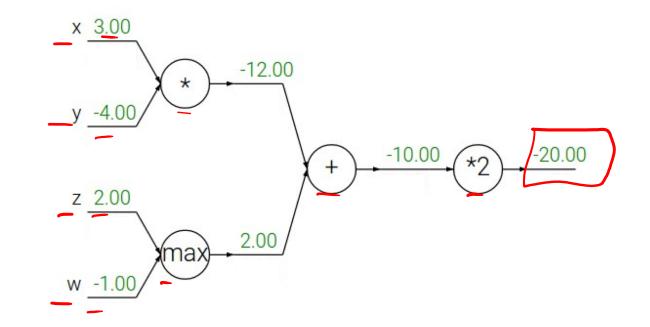
Forward mode vs Reverse Mode

- What are the differences?
- Which one is faster to compute?
 - Forward or backward?

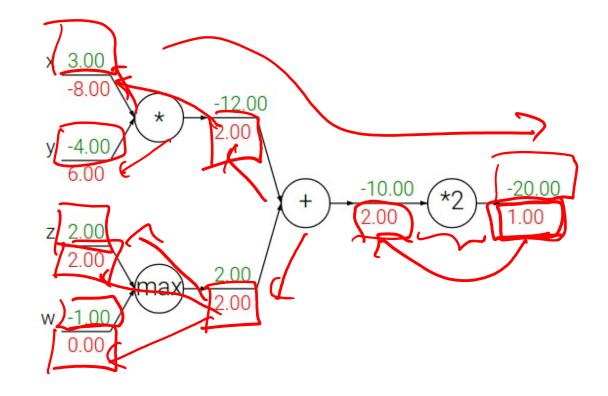
Forward mode vs Reverse Mode

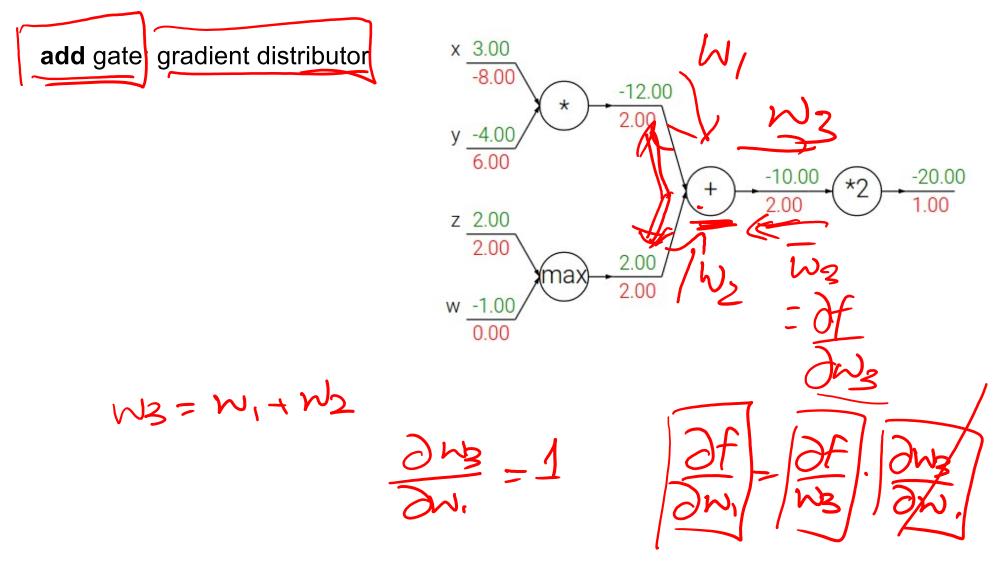
- What are the differences?
- Which one is faster to compute?
 - Forward or backward?
- Which one is more memory efficient (less storage)?
 - Forward or backward?

f(...) Patterns in backward flow f(...)



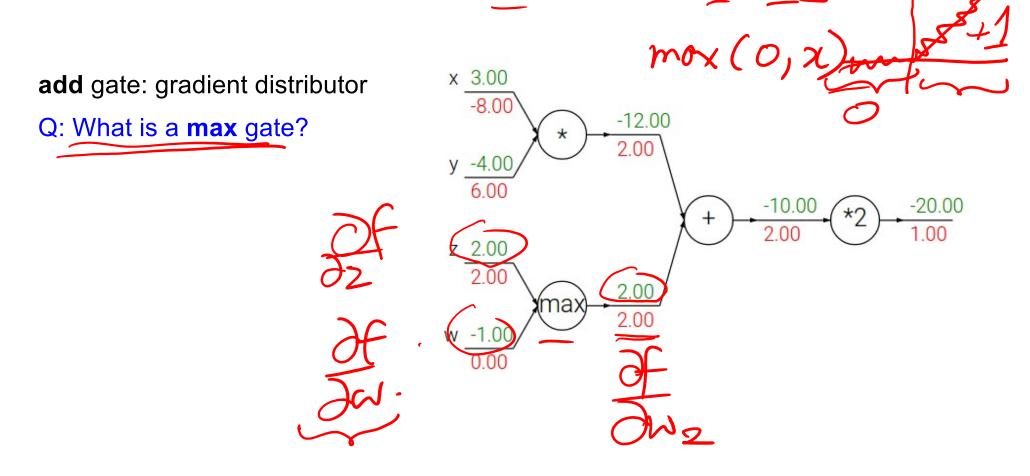
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

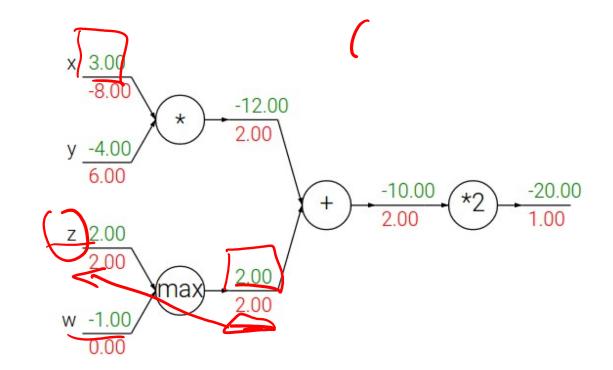




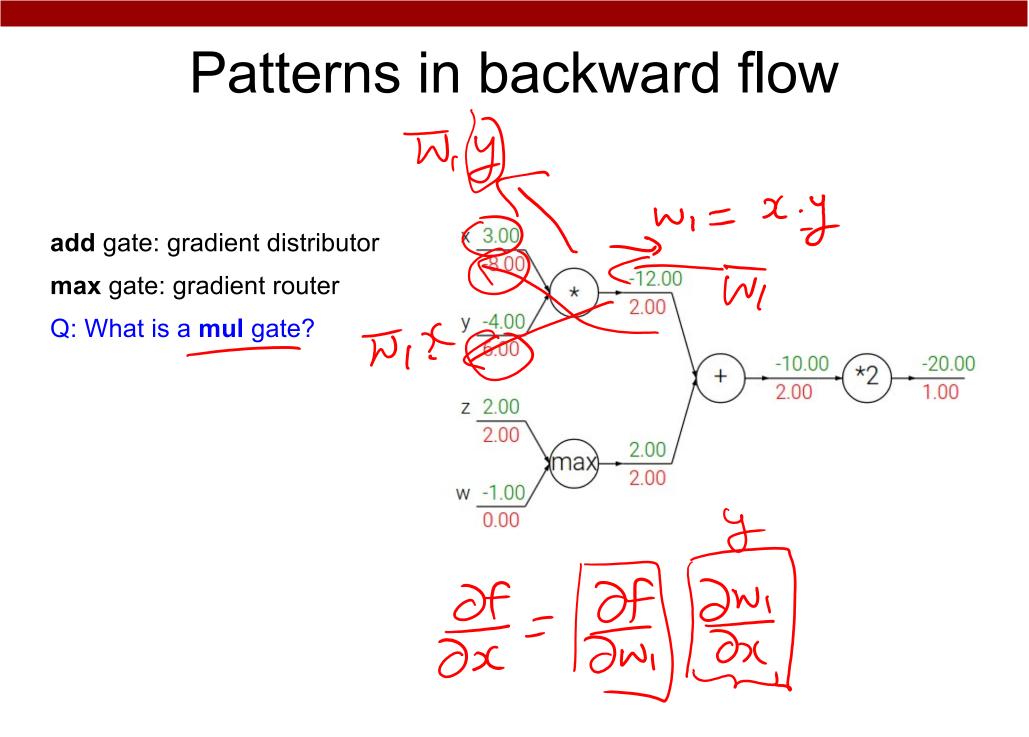
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

 $w_2 = mox (2, w)$



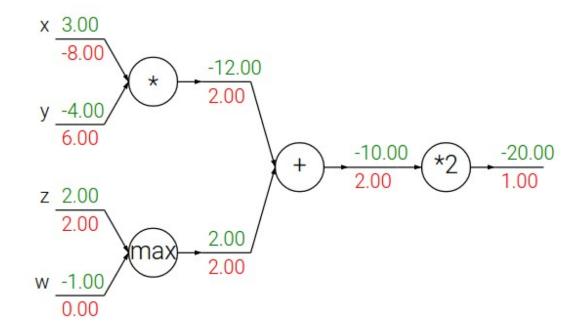


add gate: gradient distributor max gate: gradient router

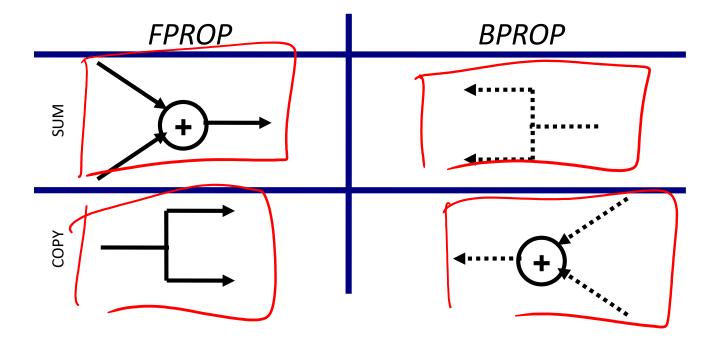


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor max gate: gradient router mul gate: gradient switcher



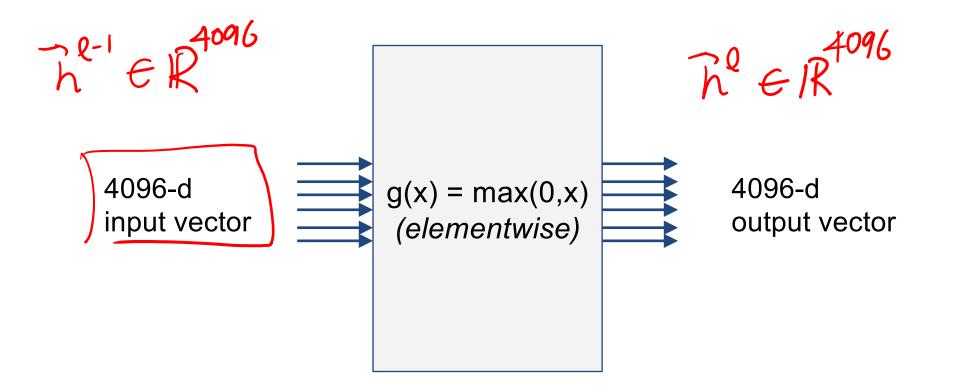
Duality in Fprop and Bprop

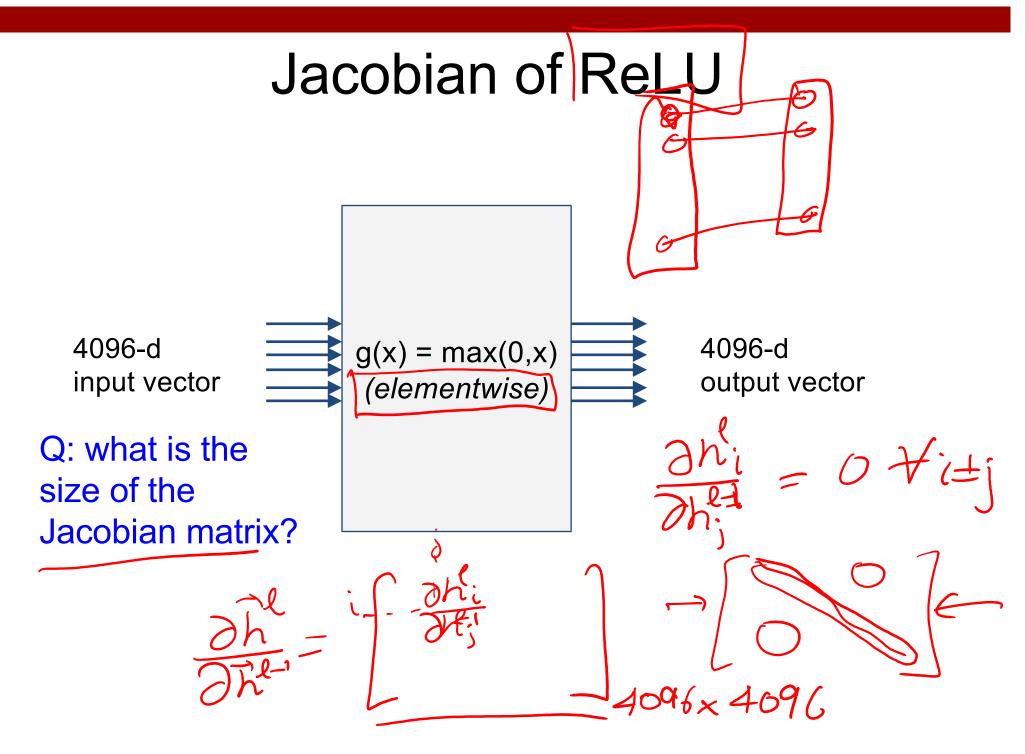


Plan for Today

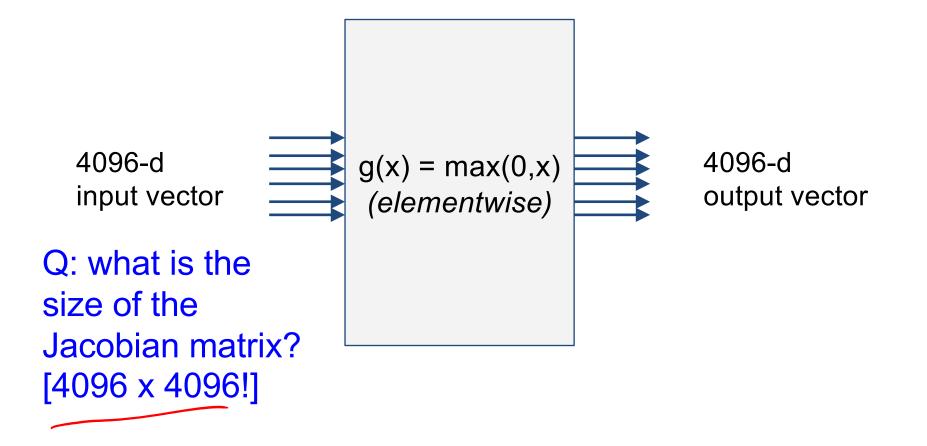
- (Finish) Computing Gradients
 - Backprop in FC+ReLU NNs
- Convolutional Neural Networks

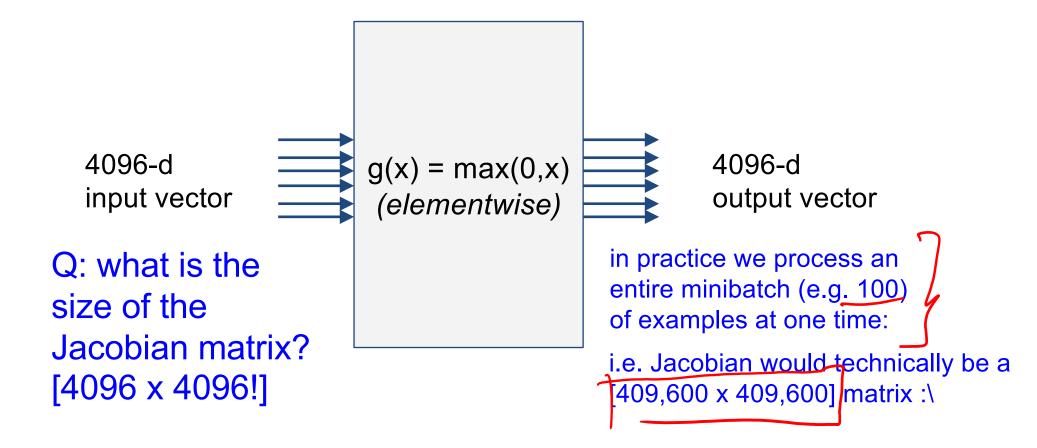
Jacobian of <u>ReLU</u>

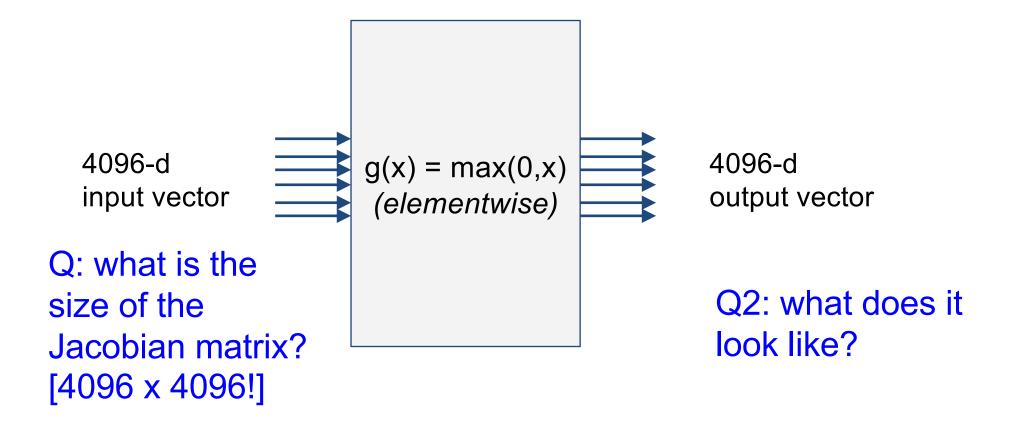


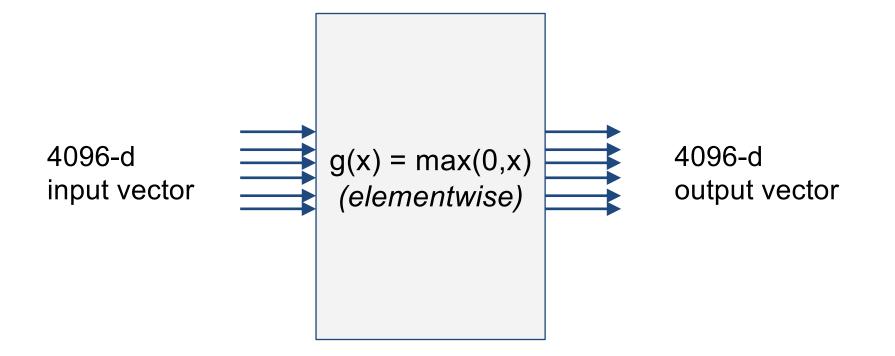


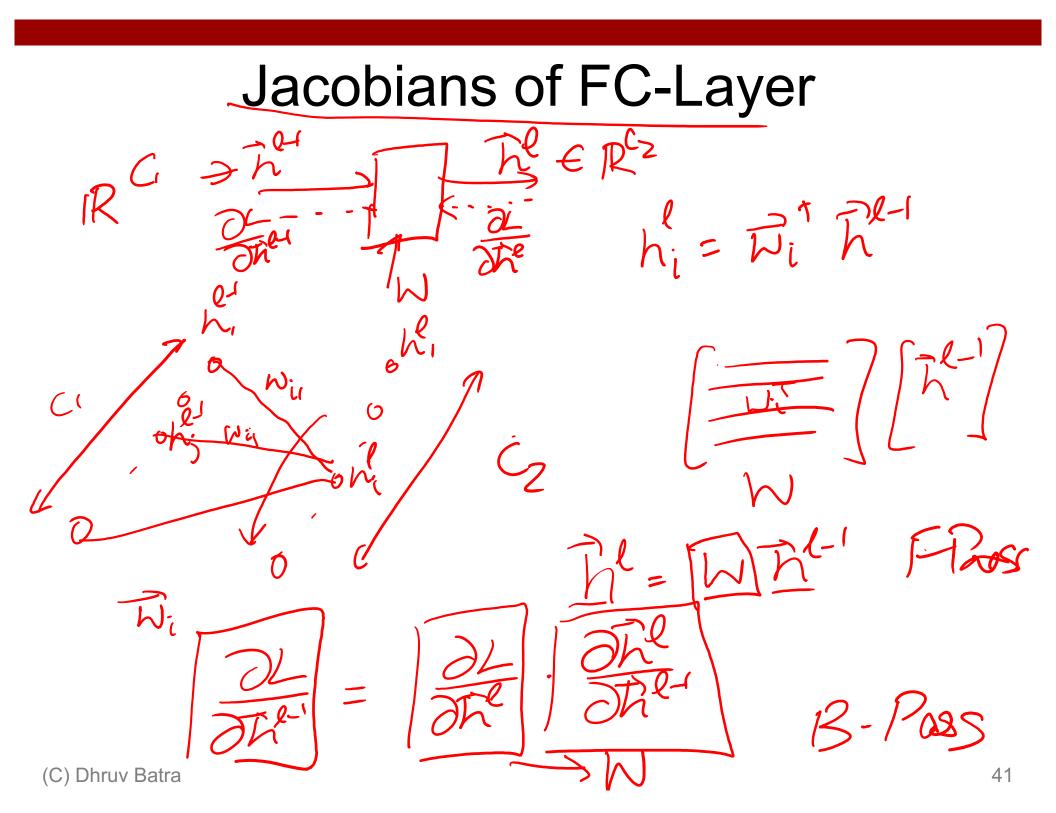
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



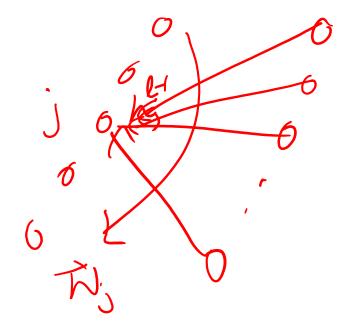








Jacobians of FC-Layer



Jacobians of FC-Layer

Jacobians of FC-Layer

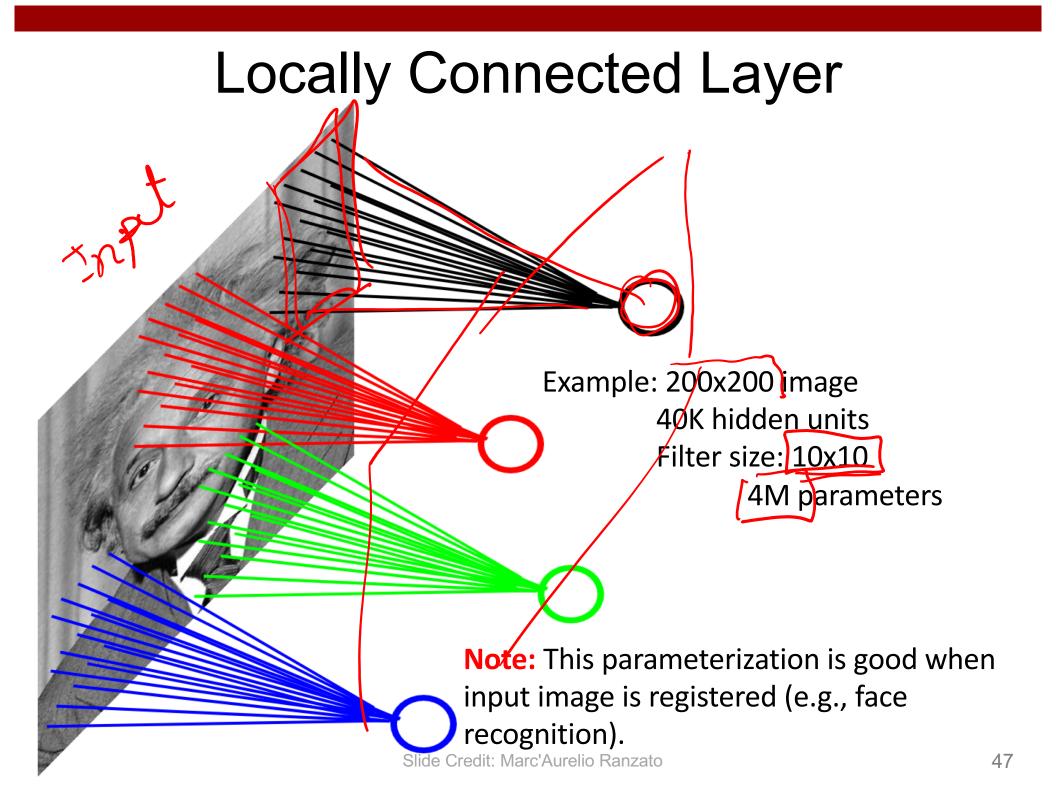
Convolutional Neural Networks

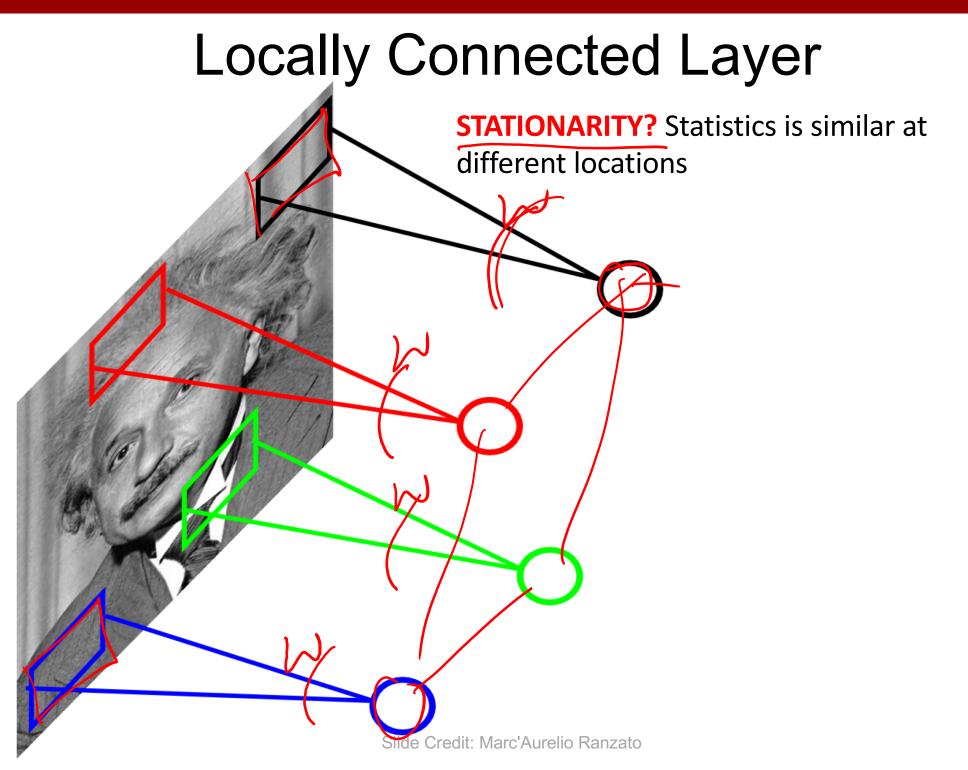
(without the brain stuff)

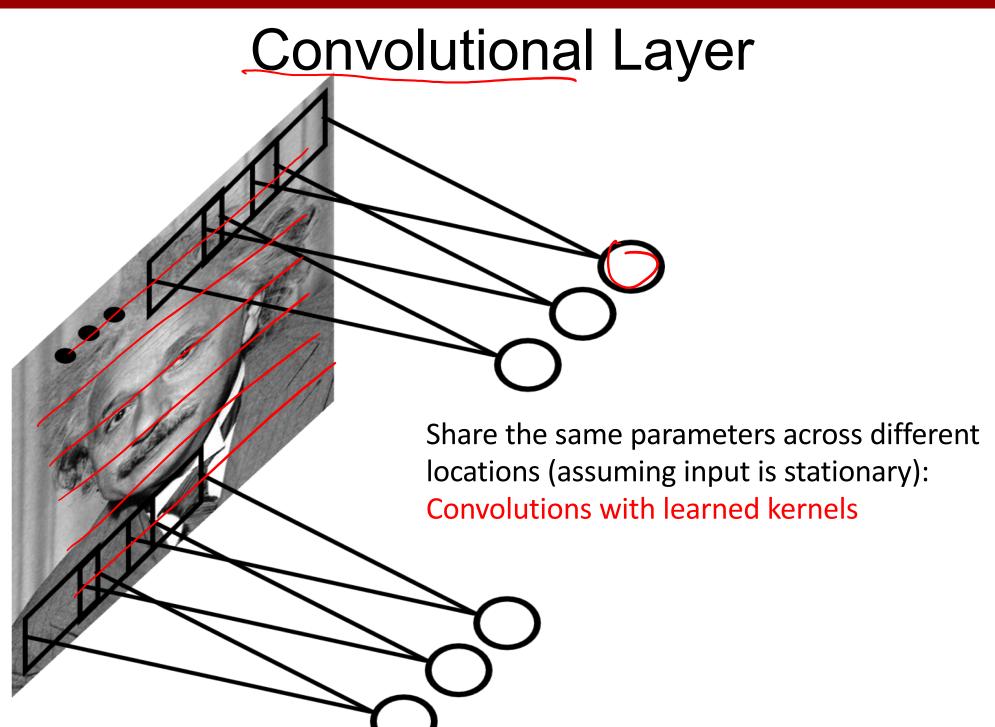
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Connected Layer Example: 200x200 image 40K hidden units ~2B parameters!!! - Spatial correlation is local - Waste of resources + we have not enough training samples anyway..

Slide Credit: Marc'Aurelio Ranzato

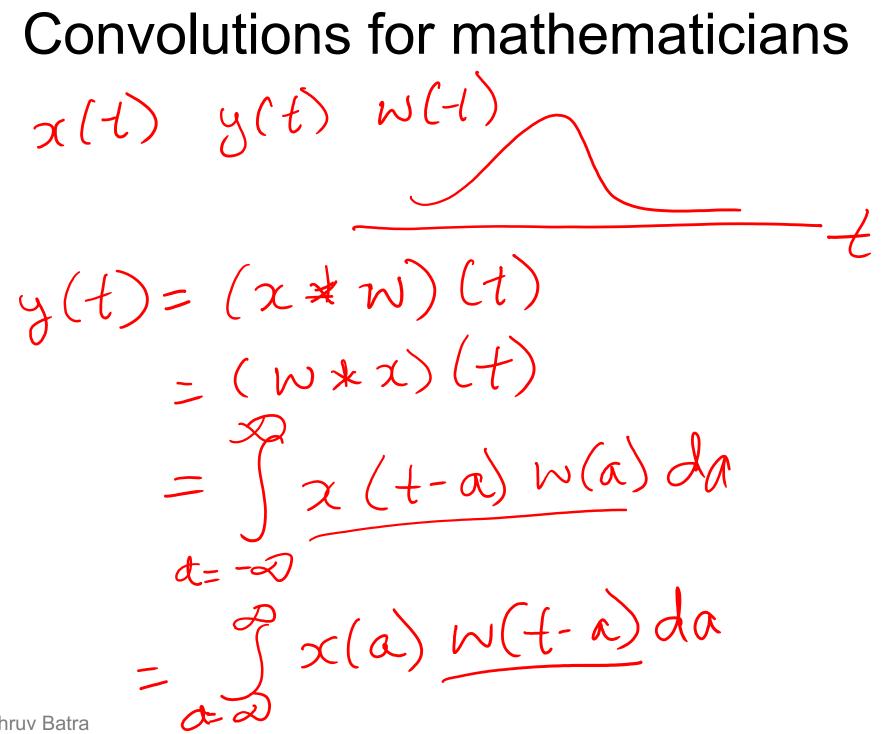




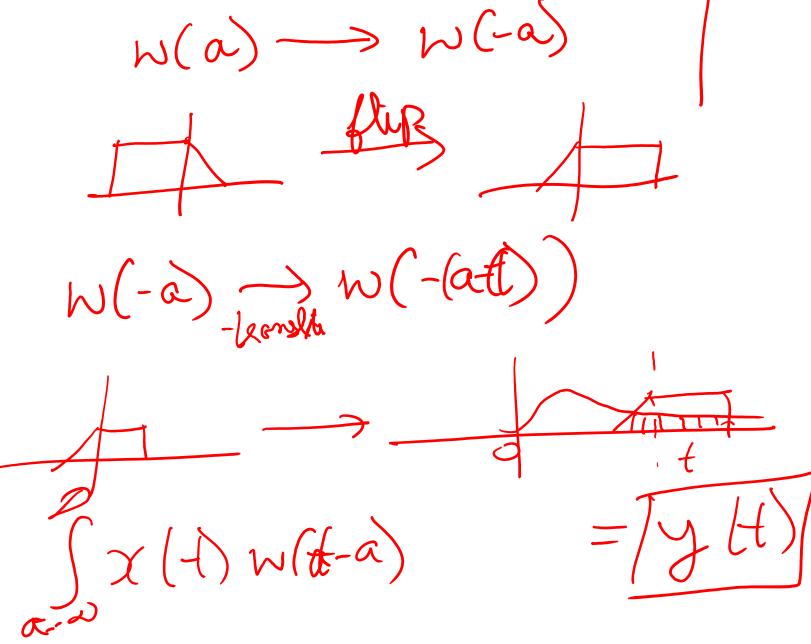


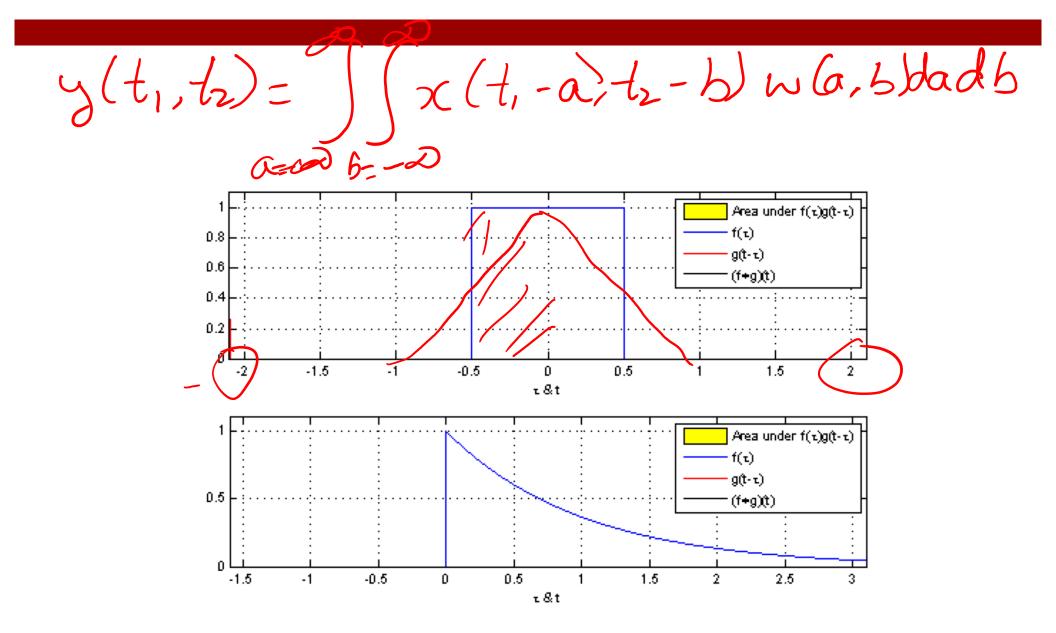
Slide Credit: Marc'Aurelio Ranzato

$\begin{array}{c} \text{Convolutions!} \\ \text{math} \rightarrow \underline{CS} \rightarrow \underline{Programming} \\ \end{array}$



Convolutions for mathematicians



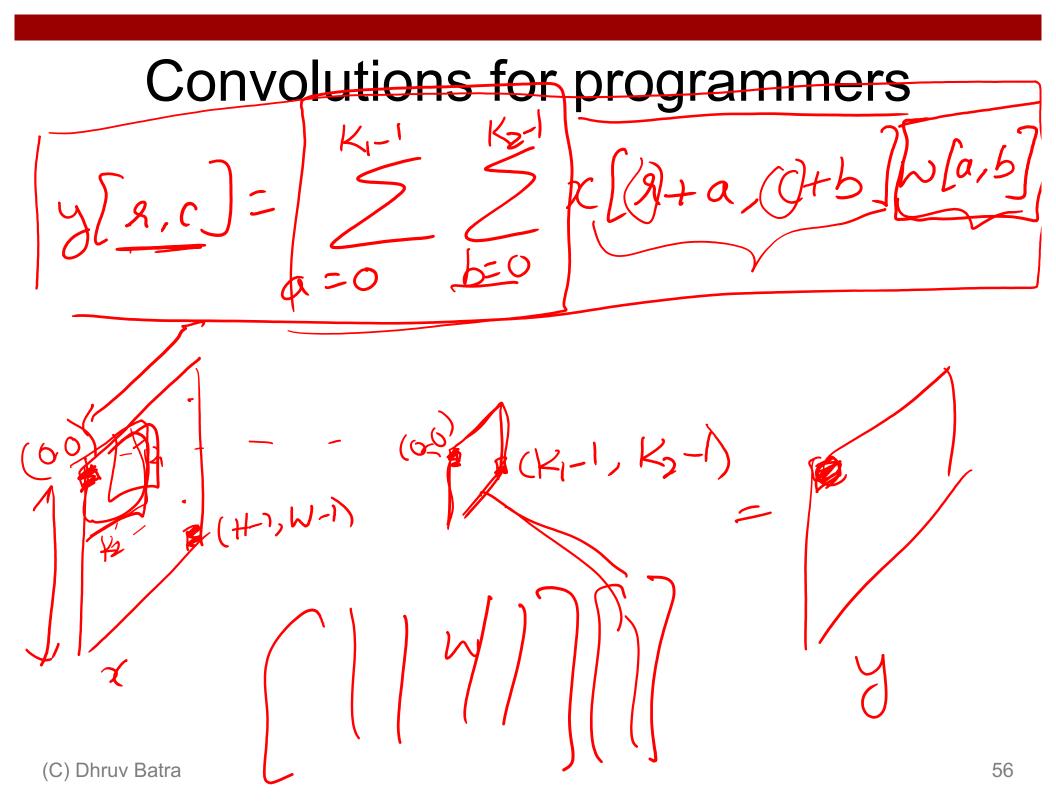


"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution of box signal with itself.gif. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi th itself2.gif

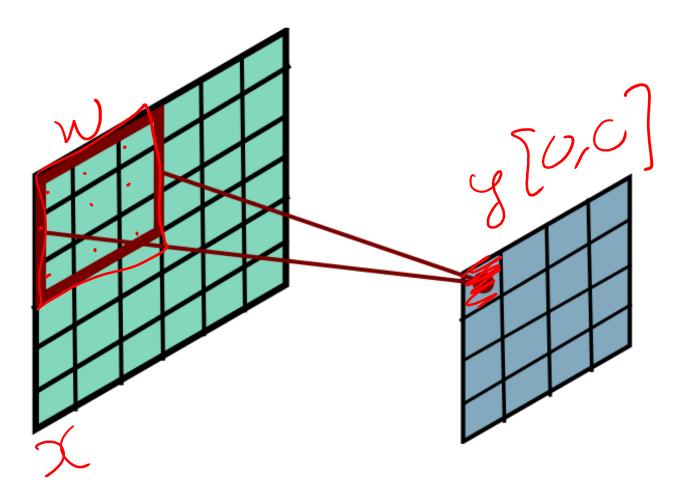
(C) Dhruv Batra

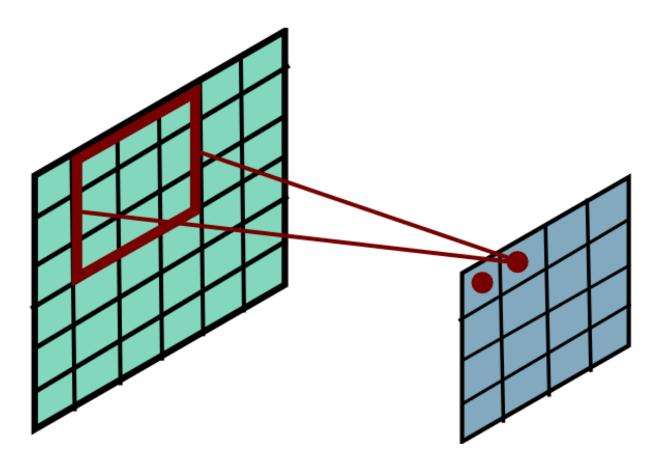
Convolutions for computer scientists , c-b]w[a,5] y) r. -21 \mathcal{D} $\boldsymbol{\lambda}$ S,C 5

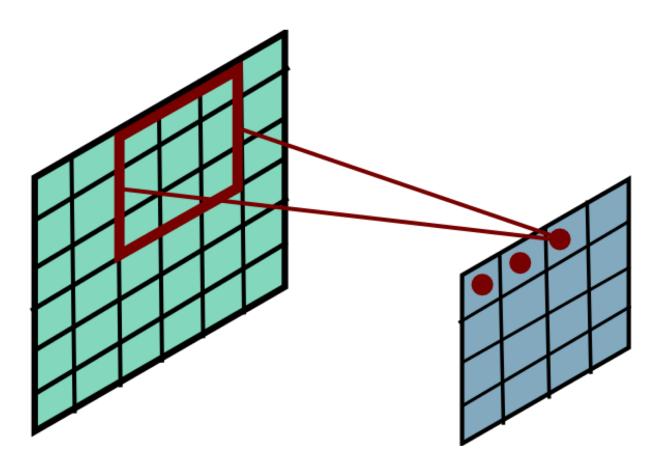
Convolutions for computer scientists

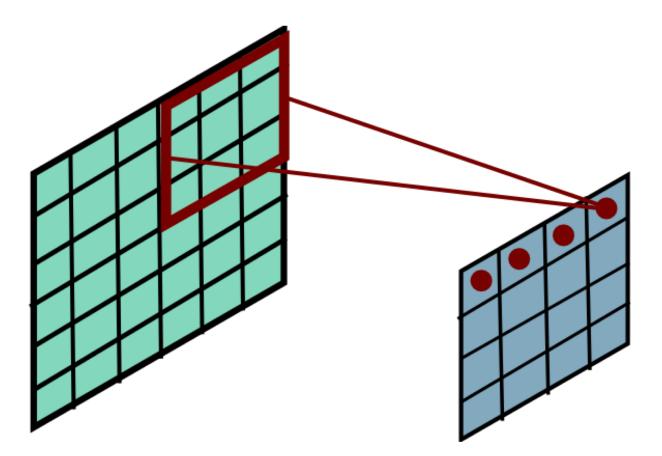


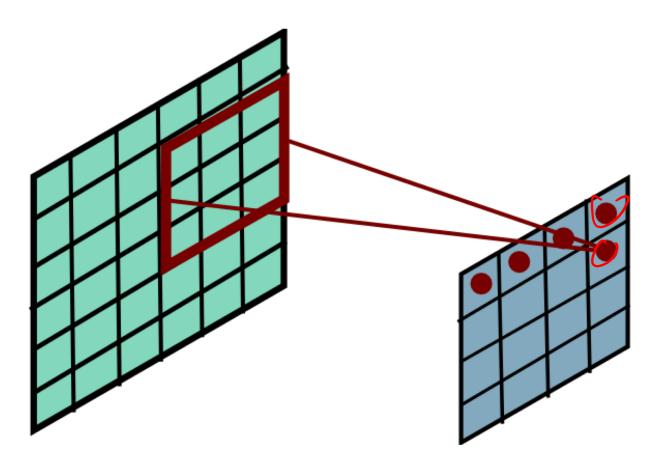
Convolutions for programmers

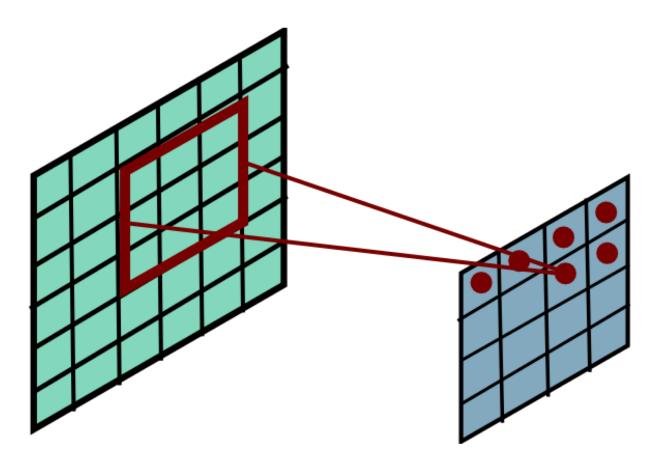


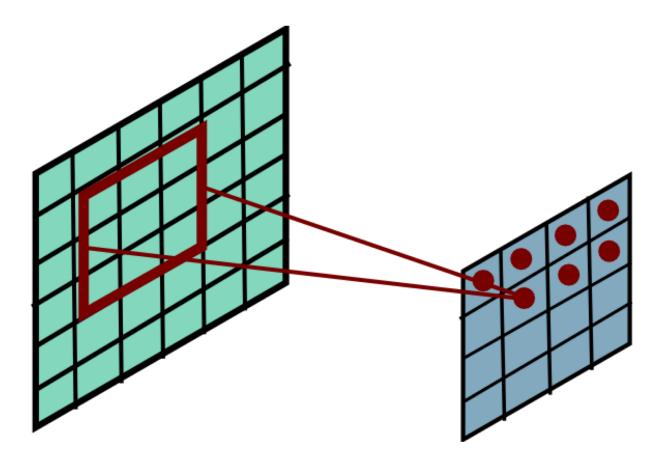


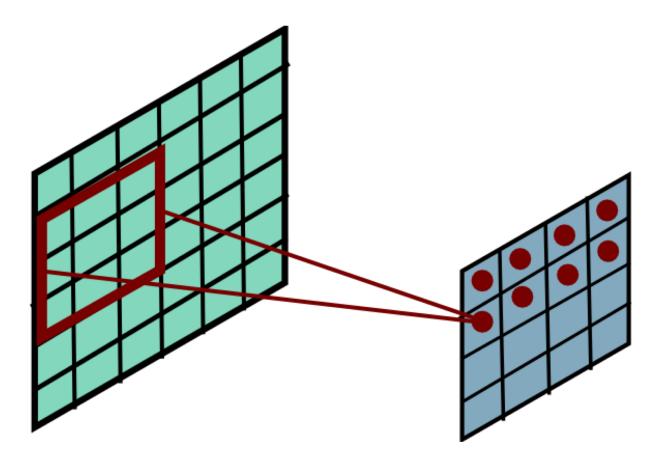


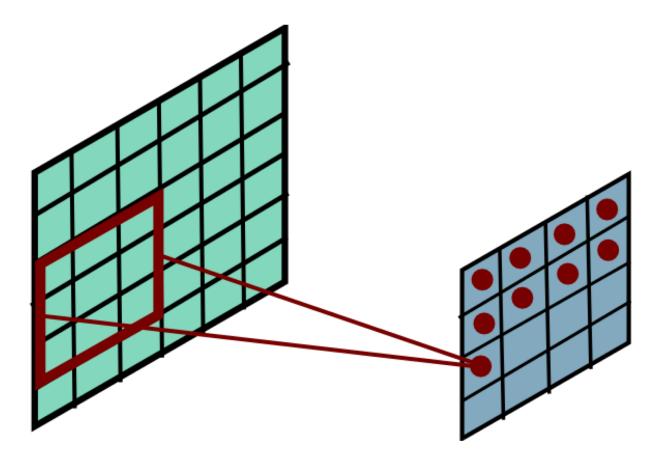


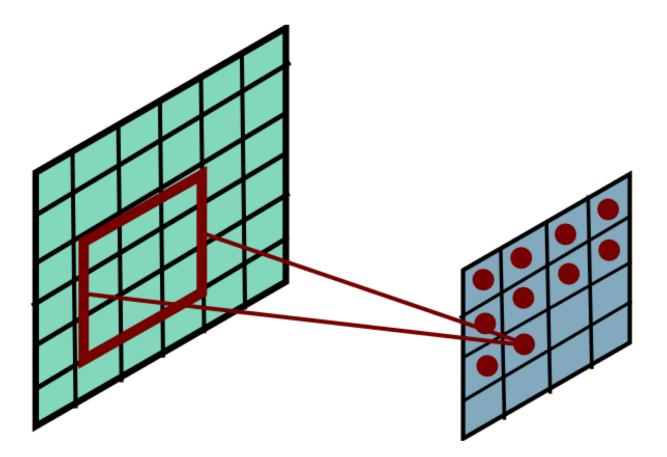


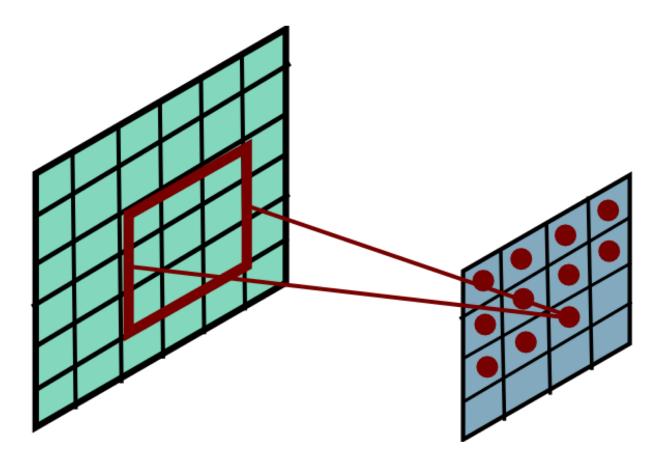


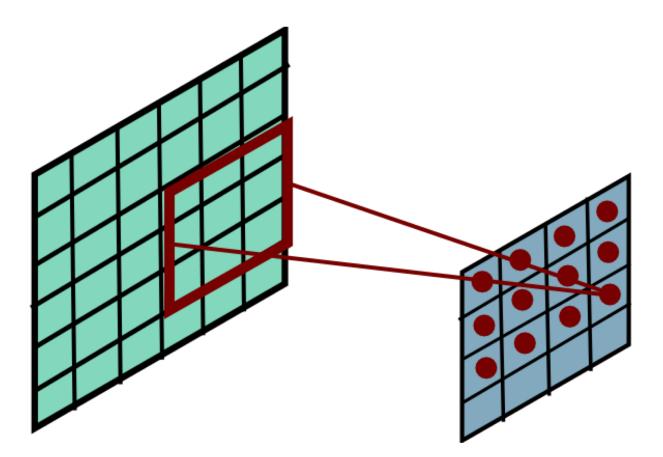


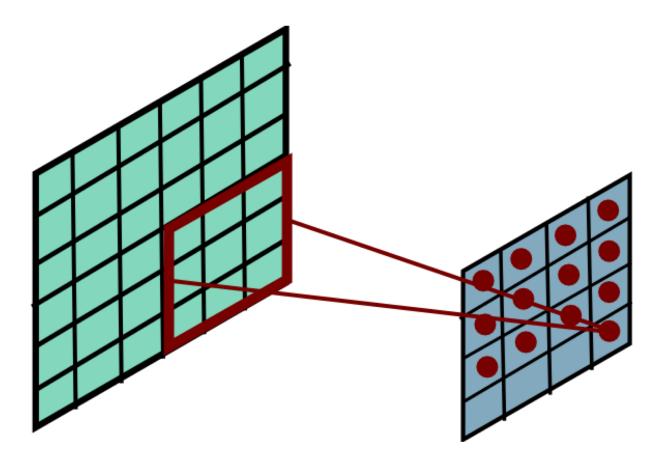


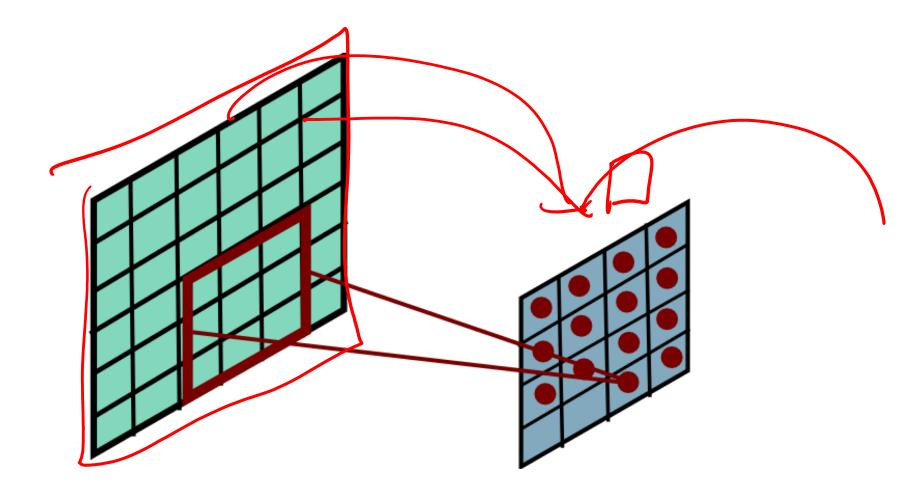


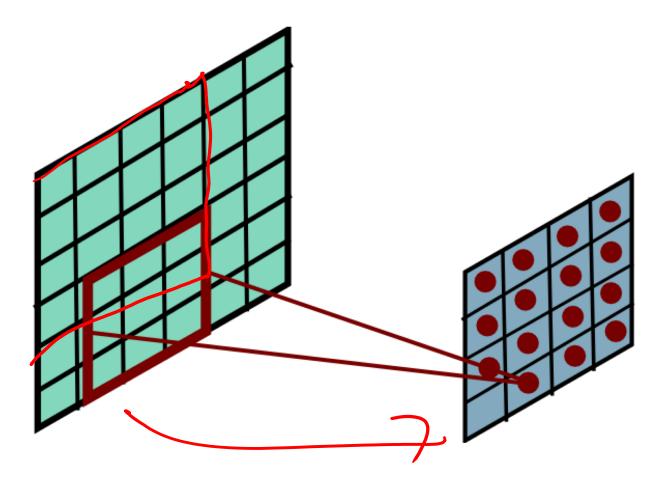


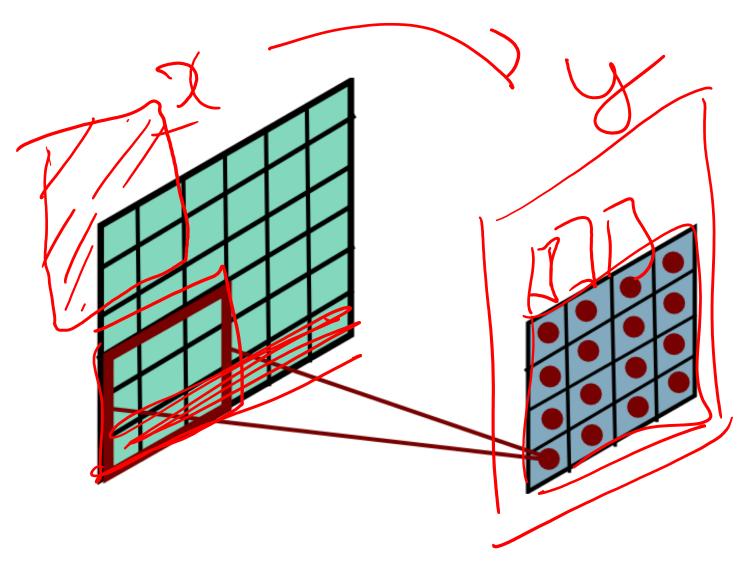








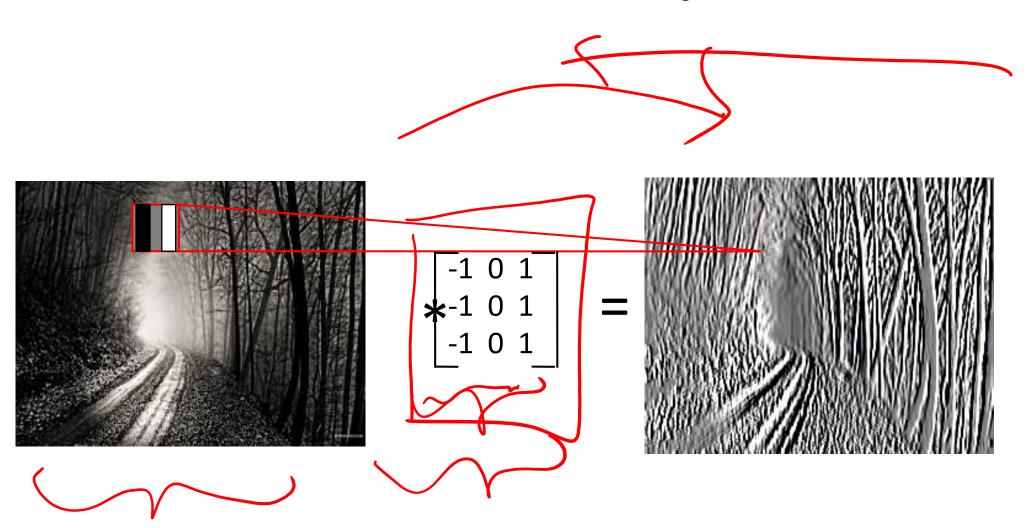


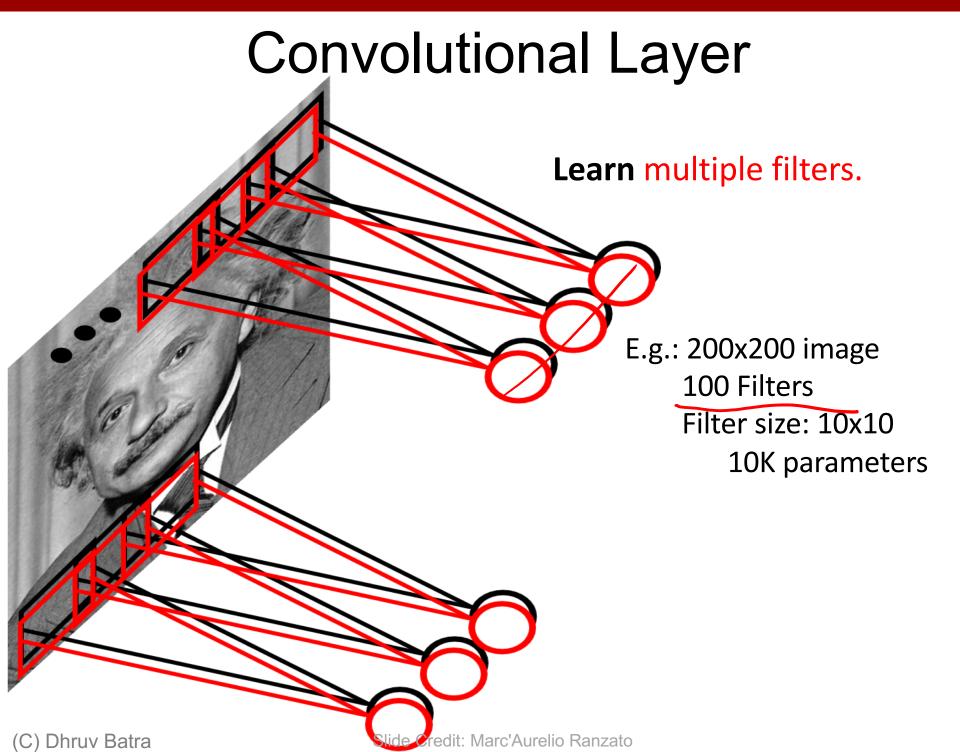


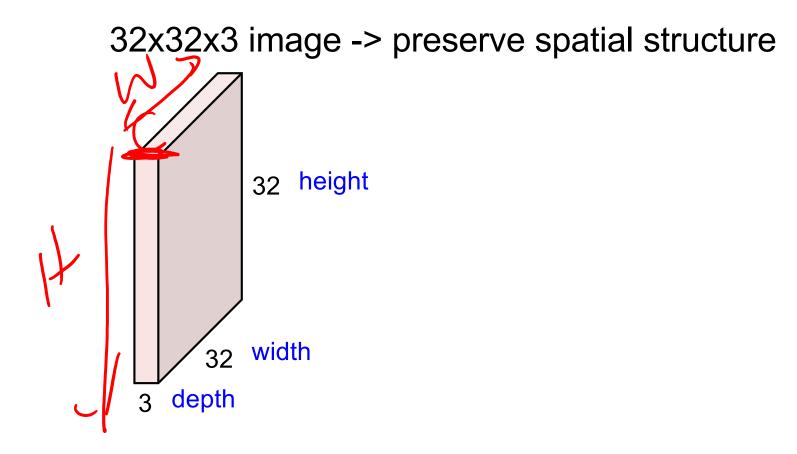
Mathieu et al. "Fast training of CNNs through FFTs" ICLR 2014

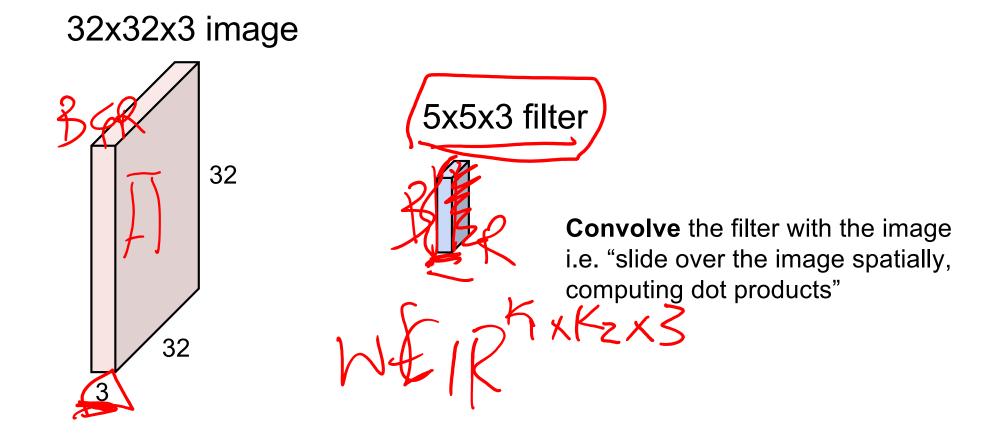
Convolution Explained

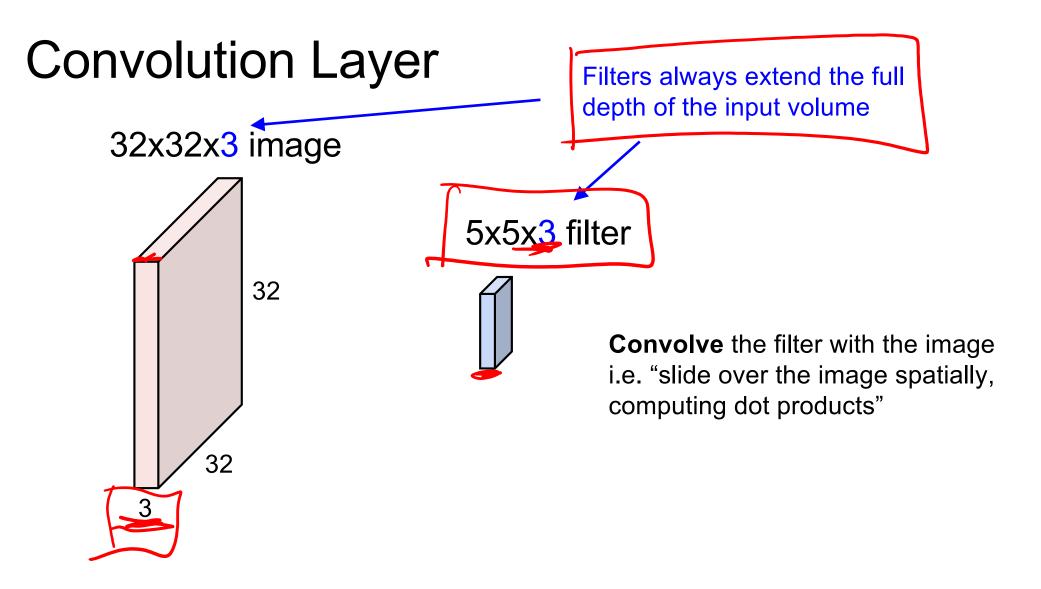
- <u>http://setosa.io/ev/image-kernels/</u>
- <u>https://github.com/bruckner/deepViz</u>

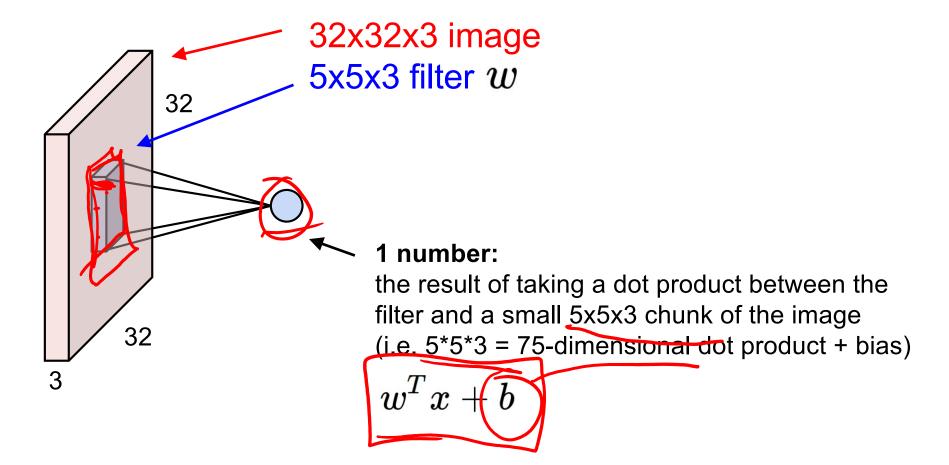


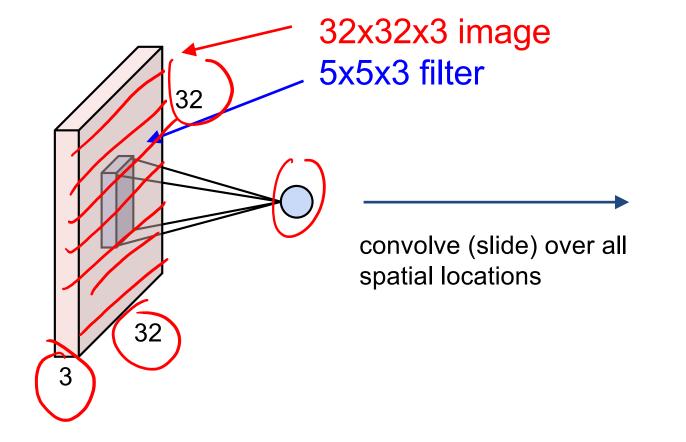




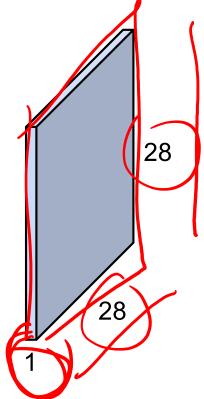


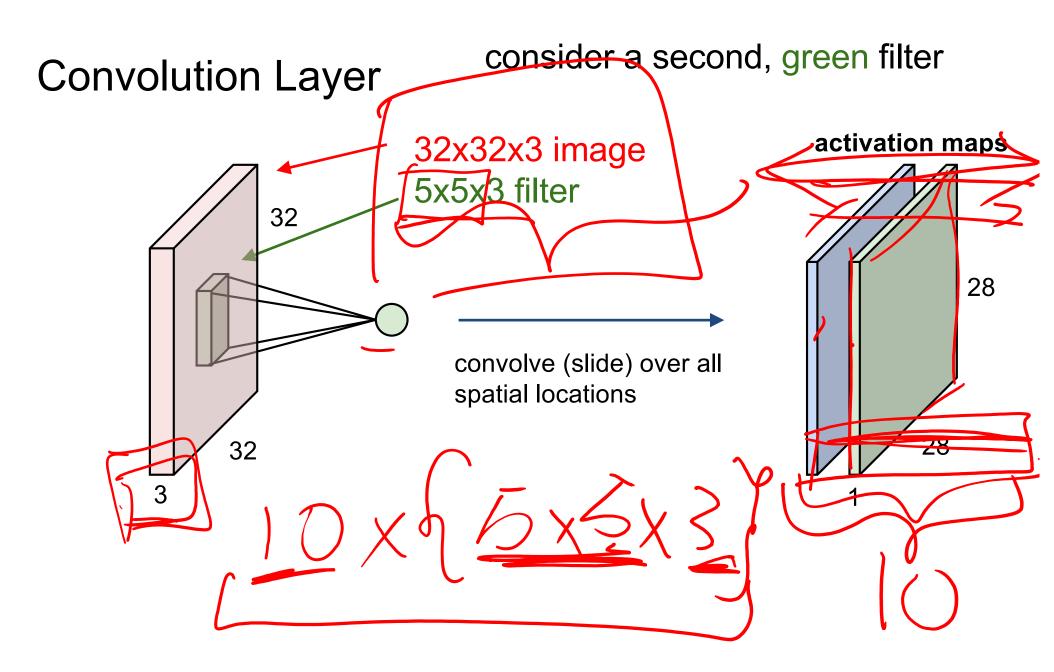






activation map





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

