CS 4803 / 7643: Deep Learning

Topics:

- Convolutional Neural Networks
 - Stride, padding
 - Pooling layers
 - Fully-connected layers as convolutions

Dhruv Batra Georgia Tech

Administrativia

- HW1 Reminder
 - Due: 10/02, 11:55pm

Recap from last time

Jacobian of <u>ReLU</u>

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobians of FC-Layer

Jacobians of FC-Layer

Convolutional Neural Networks

(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Connected Layer (O)Example: 200x200 image $4\sqrt{}$ 40K hidden units ~2B parameters!!! - Spatial correlation is local - Waste of resources + we have not enough

training samples anyway..

Slide Credit: Marc'Aurelio Ranzato

$\begin{array}{c} \text{Convolutions!} \\ \text{math} \rightarrow \underline{CS} \rightarrow \underline{Programming} \end{array}$

(C) Dhruv Batra

Convolutions for mathematicians

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_with_itself2.gif

Convolutions for computer scientists

Convolutions for programmers

Convolutional Layer

Mathieu et al. "Fast training of CNNs through FFTs" ICLR 2014

Plan for Today

- Convolutional Neural Networks
 - Stride, padding
 - Pooling layers
 - Fully-connected layers as convolutions

Convolution Explained

- <u>http://setosa.io/ev/image-kernels/</u>
- https://github.com/bruckner/deepViz

FC vs Conv Layer

Convolution Layer

32x32x3 image -> preserve spatial structure

Convolution Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

activation map

GEMM

Time Distribution of AlexNet

GPU Forward Time Distribution

CPU Forward Time Distribution

consider a second, green filter

Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolutional Neural Networks

Image Credit: Yann LeCun, Kevin Murphy

preview:

Visualizing Learned Filters

Figure Credit: [Zeiler & Fergus ECCV14]

(C) Dhruv Batra

Visualizing Learned Filters

Visualizing Learned Filters

(C) Dhruv Batra

Figure Credit: [Zeiler & Fergus ECCV14]

7x7 input (spatially) assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

A closer look at spatial dimensions:

stride=1

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

7x7 input (spatially) applied with stride 2

assume 3x3 filter

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

In practice: Common to zero pad the border

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

7x7 output!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with stride 1 **pad with 1 pixel** border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. $F = 3 \Rightarrow zero pad with 1$

F = 5 => zero pad with 2

F = 7 => zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially. (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Output volume size: ?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

 $\times (32)$

Examples time:

Input volume: **32x32x3 10 5x5** filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Examples time:

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760 Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent 𝑘,
 - \circ the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~~H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - $\circ\;$ the stride S ,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
- $\circ~H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
- $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.