
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Convolutional Neural Networks

– Stride, padding 
– Pooling layers
– Fully-connected layers as convolutions



Administrativia
• HW1 Reminder

– Due: 09/26, 11:55pm
– https://evalai.cloudcv.org/web/challenges/challenge-

page/431/leaderboard/1200

• Project Teams Google Doc
– https://docs.google.com/spreadsheets/d/1ouD6ctaemV_3nb

2MQHs7rUOAaW9DFLu8I5Zd3yOFs7E/edit?usp=sharing
– Project Title
– 1-3 sentence project summary TL;DR
– Team member names

(C) Dhruv Batra 2

https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200
https://docs.google.com/spreadsheets/d/1ouD6ctaemV_3nb2MQHs7rUOAaW9DFLu8I5Zd3yOFs7E/edit?usp=sharing


Recap from last time
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Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:  200x200 image
40K hidden units

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato

~2B parameters!!!
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Example: 200x200 image
40K hidden units
“Filter” size: 10x10

4M parameters

Note: 
This parameterization is good when input 
image is registered (e.g., face recognition).

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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STATIONARITY? 
Statistics similar at all locations

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Share the same parameters across different 
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato



Convolutions!
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Convolutions for programmers
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Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 11



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 12



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 13



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 14



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 15



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 16



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 17



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 18



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 19



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 20



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 21



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 22



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 23



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 24



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 25



Convolution

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 26



32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Filters always extend the full 
depth of the input volume

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations, 
computing all dot products

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Im2Col
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GEMM
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Convolutional Neural Networks

– Features learned by CNN layers
– Stride, padding 
– 1x1 convolutions
– Pooling layers
– Fully-connected layers as convolutions
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Convolutional Neural Networks
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preview:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



example 5x5 filters
(32 total)

one filter => 
one activation map

Figure copyright Andrej Karpathy.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualizing Learned Filters
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Visualizing Learned Filters
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Visualizing Learned Filters
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Visualizing Learned Filters
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Linear 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

We can learn image features now!



Plan for Today
• Convolutional Neural Networks

– Features learned by CNN layers
– Stride, padding 
– 1x1 convolutions
– Pooling layers
– Fully-connected layers as convolutions
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: CONV 
layer in Torch

Torch is licensed under BSD 3-clause.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://torch.ch/
https://github.com/torch/torch7/blob/master/COPYRIGHT.txt


Plan for Today
• Convolutional Neural Networks

– Features learned by CNN layers
– Stride, padding 
– 1x1 convolutions
– Pooling layers
– Fully-connected layers as convolutions
– Backprop in conv layers
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Can we have 1x1 filters?
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1x1 convolution layers make perfect sense

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3072
1

Fully Connected Layer as 1x1 Conv

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


