
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– (Finish) Convolutional Neural Networks

– Transposed convolutions
– Recurrent Neural Networks (RNNs)



Administrativia
• HW1 Challenge Final Analysis

– https://evalai.cloudcv.org/web/challenges/challenge-
page/431/leaderboard/1200

– Qualitative Trends

• HW2 Reminder
– Due: 10/10, 11:55pm
– https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/asse

ts/hw2.pdf
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https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/assets/hw2.pdf
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Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)
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Other Computer Vision Tasks
Semantic

Segmentation
2D Object 
Detection

DOG, DOG, CAT

Object categories + 
2D bounding boxes

This image is CC0 public domain

GRASS, CAT, 
TREE, SKY

No objects, just pixels

3D Object 
Detection

Car

Object categories + 
3D bounding boxes

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Problem: convolutions at 
original image resolution will 
be very expensive ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
???

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transposed Convolutions
• Deconvolution (bad)
• Upconvolution
• Fractionally strided convolution
• Backward strided convolution
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Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution
-Backward strided
convolution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example

a

b

x

y

z

ax

ay

az + bx

by 

bz

Input Filter
Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Figure Credit: https://medium.com/apache-mxnet/transposed-convolutions-

explained-with-ms-excel-52d13030c7e8



Transposed Convolution
• https://distill.pub/2016/deconv-checkerboard/
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https://distill.pub/2016/deconv-checkerboard/


In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why this operation?
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What is deconvolution?
• (Non-blind) Deconvolution
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What is deconvolution?
• (Non-blind) Deconvolution
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What does “deconvolution” have to do with “transposed convolution”?
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We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

When stride=1, convolution transpose is 
just a regular convolution (with different 
padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

But not always

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



41

We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

When stride>1, convolution transpose is 
no longer a normal convolution!

But not always

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)
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New Topic: RNNs

(C) Dhruv Batra 43Image Credit: Andrej Karpathy



New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)
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What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

(C) Dhruv Batra 45Image Credit: Alex Graves, book



What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback

(C) Dhruv Batra 46Image Credit: Alex Graves, book



Why model sequences?

Figure Credit: Carlos Guestrin



Why model sequences?

(C) Dhruv Batra 48Image Credit: Alex Graves



Sequences are everywhere…

(C) Dhruv Batra 49Image Credit: Alex Graves and Kevin Gimpel



Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”

Even where you might not expect a sequence… 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence… 

52Image Credit: Ba et al.; Gregor et al

• Output ordering = sequence

(C) Dhruv Batra 



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence
Output: No 
sequence
Example: 
“standard” 

classification / 
regression 
problems

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 

(C) Dhruv Batra 55

Input: No 
sequence
Output: No 
sequence
Example: 
“standard” 

classification / 
regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence
Output: No 
sequence
Example: 
“standard” 

classification / 
regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence
Output: No 
sequence
Example: 
“standard” 

classification / 
regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients
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Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 59

Computational Graph



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing
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How do we model sequences?
• No input

(C) Dhruv Batra 63Image Credit: Bengio, Goodfellow, Courville



How do we model sequences?
• With inputs

(C) Dhruv Batra 64Image Credit: Bengio, Goodfellow, Courville



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check
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Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht = tanh(Whhht�1 +Wxhxt + bh)

yt = Whyht + by

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT


