# CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Convolutional Neural Networks
  - Transposed convolutions
- Recurrent Neural Networks (RNNs)

Dhruv Batra Georgia Tech

# Administrativia

- HW1 Challenge Final Analysis
  - <u>https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200</u>
  - Qualitative Trends
- HW2 Reminder
  - Due: 10/10, 11:55pm
  - <u>https://www.cc.gatech.edu/classes/AY2020/cs7643\_fall/asse</u> <u>ts/hw2.pdf</u>



Sashank submission accuracy



#### Shenhao Jiang AlexNet Simplified submission accuracy

# Plan for Today

- (Finish) Convolutional Neural Networks
  - Transposed convolutions
- Recurrent Neural Networks (RNNs)
  - A new model class
  - Learning: BackProp Through Time (BPTT)

#### **Other Computer Vision Tasks**

#### Semantic Segmentation



GRASS, CAT, TREE, SKY

No objects, just pixels

2D Object Detection



DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection



Car

Object categories + 3D bounding boxes

This image is CC0 public domain

#### Semantic Segmentation Idea: Fully Convolutional



#### Semantic Segmentation Idea: Fully Convolutional



### Semantic Segmentation dea: Fully Convolutional



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", OVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

#### Semantic Segmentation Idea: Fully Convolutional



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

#### In-Network upsampling: "Unpooling"







Input: 2 x 2

Output: 4 x 4

### In-Network upsampling: "Max Unpooling"



# Transposed Convolutions

- Deconvolution (bad)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

Recall: Typical 3 x 3 convolution, stride 1 pad 1







Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n







Recall: Normal 3 x 3 convolution, stride 2 pad 1



Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1





3 x 3 transpose convolution, stride 2 pad 1









#### Transpose Convolution: 1D Example



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(C) Dhruv Batra

Figure Credit: https://medium.com/apache-mxnet/transposed-convolutionsexplained-with-ms-excel-52d13030c7e8

# **Transposed Convolution**

https://distill.pub/2016/deconv-checkerboard/

#### In-Network upsampling: "Unpooling"





## Why this operation?

# What is deconvolution?

• (Non-blind) Deconvolution

| What is deconvolution?                                                             |                       |                                              |             |                 |                                        |                                               |    |  |  |  |
|------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|-------------|-----------------|----------------------------------------|-----------------------------------------------|----|--|--|--|
| • (Non-blind)                                                                      | Decor                 | nvolutio                                     | ən, J       | = W             | τζ (Ξ                                  | $\frac{1}{2} \left  x = W' \right $           |    |  |  |  |
| $\overline{W} = [-10 + 1]$                                                         | $\overline{w_k}$      | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$       | M<br>       | 0               | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 1.<br>Northonorm                              | al |  |  |  |
| $\begin{bmatrix} 1 \end{bmatrix} \begin{pmatrix} 0 \end{pmatrix}$                  | $w_{k-2}$             | $w_k = 1$                                    | +1          | $0\\0$          | 0                                      |                                               |    |  |  |  |
|                                                                                    | $\ddot{\iota} \\ w_1$ |                                              | •<br>•<br>• | $\vdots \\ w_k$ | $\vdots \\ 0$                          | $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$    |    |  |  |  |
| $\begin{array}{c c} 0 & 1 \\ \mathbf{y} = w * x \\ \mathbf{y} = w * x \end{array}$ | r                     | :                                            | •<br>•<br>• | :               | •                                      | $\begin{array}{c} x_3 \\ \vdots \end{array}$  |    |  |  |  |
| 6 I                                                                                | •<br>•<br>•           | $\begin{array}{c} w_1 \\ \vdots \end{array}$ | • • •       | $w_{k-1}$ :     | $w_k$ :                                | $\begin{bmatrix} \vdots \\ x_n \end{bmatrix}$ |    |  |  |  |
| Я (<br>,                                                                           | Û                     | 0                                            | •<br>•<br>• | $w_1$           | $w_2$                                  |                                               |    |  |  |  |
|                                                                                    | 0                     |                                              | •<br>•      | 0               | $w_1$                                  |                                               | 04 |  |  |  |



### "transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X \vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

#### "transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X \vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

[xyz]

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} \mathbf{x} & 0 & 0 & 0 \\ y & \mathbf{x} & 0 & 0 \\ \mathbf{z} & y & \mathbf{x} & 0 \\ 0 & z & y & \mathbf{x} \\ 0 & 0 & \mathbf{z} & y \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

 $\begin{bmatrix} 2 & y & x \end{bmatrix}$ 

#### "transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} \ast \vec{a} = X \vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

 $\rightarrow$   $T \rightarrow$   $- - T \rightarrow$ 

When stride=1, convolution transpose is just a regular convolution (with different padding rules)

#### But not always

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, <u>stride=2</u>, padding=1

#### But not always

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, <u>stride=2</u>, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

When stride>1, convolution transpose is no longer a normal convolution!
# Plan for Today

- (Finish) Convolutional Neural Networks
  - Transposed convolutions
- Recurrent Neural Networks (RNNs)
  - A new model class
  - Learning: BackProp Through Time (BPTT)

# New Topic: RNNs







many to many





(C) Dhruv Batra

# New Words

- Recurrent Neural Networks (RNNs)
- Recursive Neural Networks
  - General family; think graphs instead of chains
- Types:
  - "Vanilla" RNNs (Elman Networks)
  - Long Short Term Memory (LSTMs)
  - Gated Recurrent Units (GRUs)
  - ...
- Algorithms
  - BackProp Through Time (BPTT)
  - BackProp Through Structure (BPTS)

# What's wrong with MLPs?

- Problem 1: Can't model sequences  $\bullet$ 
  - Fixed-sized Inputs & Outputs
  - No temporal structure



# What's wrong with MLPs?

- Problem 1: Can't model sequences
  - Fixed-sized Inputs & Outputs
  - No temporal structure
- Problem 2: Pure feed-forward processing
  No "memory", no feedback



## Why model sequences?



## Why model sequences?





### Even where you might not expect a sequence...

## Classify images by taking a series of "glimpses"

| 2 | 10 | S<br>S | 2. | 9 | 1    | ( | 1   | 1 | 8   |
|---|----|--------|----|---|------|---|-----|---|-----|
| 3 | 3  | ×      | 8  | 6 | 9    | 6 | 5   | 1 | 3   |
| 8 | 8  | 1      | 8  | 2 | 6    | 9 | 8   | 3 | 4   |
| 1 | 0  | 2      | 1  | 6 | Õ    | 9 | -   | 4 | 5   |
| 7 | /  | 4      | 4  | 4 | 4    | 4 | ų   | 7 | 9   |
| 3 | 1  | 8      | 9  | 3 | 4    | 2 | 7   | 2 | 3   |
| 6 | 6  | 1      | 6  | 3 | - An | 3 | 3   | - | 0   |
| b | 1  | ۵      | Б  | 3 | 5    | 1 | 8   | 3 | 4   |
| 9 | 9  | ł      | 1  | 3 | 0    | 5 | 9   | 5 | 4   |
| 1 | 1  | 0      | 1  | 0 | 0    | 2 | 3   | 6 | 0   |
| ÷ | 1  | 3      |    | 1 | đ    | 2 | -te | ŧ | 107 |

Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

### Even where you might not expect a sequence...

• Output ordering = sequence



(C) Dhruv Batra

Image Credit: Ba et al.; Gregor et al

• It's a spectrum...

one to one



• It's a spectrum...



classification / regression problems

(C) Dhruv Batra

• It's a spectrum...



Image Credit: Andrej Karpathy

(C) Dhruv Batra

• It's a spectrum...

regression problems

(C) Dhruv Batra



question answering



- Parameter Sharing
  - in computation graphs = adding gradients

## **Computational Graph**



### Gradients add at branches



# 2 Key Ideas

- Parameter Sharing
  - in computation graphs = adding gradients
- "Unrolling"
  - in computation graphs with parameter sharing

## How do we model sequences?

• No input



## How do we model sequences?

• With inputs

$$s_t = f_{\theta}(s_{t-1}, x_t)$$



# 2 Key Ideas

- Parameter Sharing
  - in computation graphs = adding gradients
- "Unrolling"
  - in computation graphs with parameter sharing
- Parameter sharing + Unrolling
  - Allows modeling arbitrary sequence lengths!
  - Keeps numbers of parameters in check



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.







Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Re-use the same weight matrix at every time-step



#### **RNN:** Computational Graph: Many to Many



### **RNN: Computational Graph: Many to Many**





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

### **RNN:** Computational Graph: Many to One



#### **RNN:** Computational Graph: One to Many



### Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector


## Sequence to Sequence: Many-to-one + one-to-many

