
CS 4803 / 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– (Finish) Convolutional Neural Networks

– Transposed convolutions
– Recurrent Neural Networks (RNNs)

Administrativia
• HW1 Challenge Final Analysis

– https://evalai.cloudcv.org/web/challenges/challenge-
page/431/leaderboard/1200

– Qualitative Trends

• HW2 Reminder
– Due: 10/10, 11:55pm
– https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/asse

ts/hw2.pdf

(C) Dhruv Batra 2

https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200
https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/assets/hw2.pdf

(C) Dhruv Batra 3

(C) Dhruv Batra 4

Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)

(C) Dhruv Batra 5

Other Computer Vision Tasks
Semantic

Segmentation
2D Object
Detection

DOG, DOG, CAT

Object categories +
2D bounding boxes

This image is CC0 public domain

GRASS, CAT,
TREE, SKY

No objects, just pixels

3D Object
Detection

Car

Object categories +
3D bounding boxes

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Problem: convolutions at
original image resolution will
be very expensive ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
???

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

…
Rest of the network

Output: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Transposed Convolutions
• Deconvolution (bad)
• Upconvolution
• Fractionally strided convolution
• Backward strided convolution

(C) Dhruv Batra 13

Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product
between filter
and input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product
between filter
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 4 x 4 Output: 2 x 2

Dot product
between filter
and input

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product
between filter
and input

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Sum where
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Sum where
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution
-Backward strided
convolution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Transpose Convolution: 1D Example

a

b

x

y

z

ax

ay

az + bx

by

bz

Input Filter
Output

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(C) Dhruv Batra 25
Figure Credit: https://medium.com/apache-mxnet/transposed-convolutions-

explained-with-ms-excel-52d13030c7e8

Transposed Convolution
• https://distill.pub/2016/deconv-checkerboard/

(C) Dhruv Batra 26

https://distill.pub/2016/deconv-checkerboard/

In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Why this operation?

(C) Dhruv Batra 29

What is deconvolution?
• (Non-blind) Deconvolution

(C) Dhruv Batra 30

What is deconvolution?
• (Non-blind) Deconvolution

(C) Dhruv Batra 31

y = w ⇤ x

2

66666666666666666664

wk 0 . . . 0 0
wk�1 wk . . . 0 0
wk�2 wk�1 . . . 0 0
...

...
...

...
...

w1 wk�2 . . . wk 0
...

...
...

...
...

0 w1 . . . wk�1 wk
...

...
...

...
...

0 0
... w1 w2

0 0
... 0 w1

3

77777777777777777775

2

666664

x1

x2

x3
...
xn

3

777775

. . .

What does “deconvolution” have to do with “transposed convolution”?

(C) Dhruv Batra 32

We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=1, padding=1

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=1, padding=1

Convolution transpose multiplies by the
transpose of the same matrix:

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=1, padding=1

Convolution transpose multiplies by the
transpose of the same matrix:

2

664

x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z

3

775

“transposed convolution” is a convolution!

When stride=1, convolution transpose is
just a regular convolution (with different
padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=2, padding=1

But not always

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

41

We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=2, padding=1

Convolution transpose multiplies by the
transpose of the same matrix:

When stride>1, convolution transpose is
no longer a normal convolution!

But not always

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)

(C) Dhruv Batra 42

New Topic: RNNs

(C) Dhruv Batra 43Image Credit: Andrej Karpathy

New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)

(C) Dhruv Batra 44

What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

(C) Dhruv Batra 45Image Credit: Alex Graves, book

What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback

(C) Dhruv Batra 46Image Credit: Alex Graves, book

Why model sequences?

Figure Credit: Carlos Guestrin

Why model sequences?

(C) Dhruv Batra 48Image Credit: Alex Graves

Sequences are everywhere…

(C) Dhruv Batra 49Image Credit: Alex Graves and Kevin Gimpel

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Classify images by taking a
series of “glimpses”

Even where you might not expect a sequence…

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Even where you might not expect a sequence…

52Image Credit: Ba et al.; Gregor et al

• Output ordering = sequence

(C) Dhruv Batra

Sequences in Input or Output?
• It’s a spectrum…

(C) Dhruv Batra 54

Input: No
sequence
Output: No
sequence
Example:
“standard”

classification /
regression
problems

Image Credit: Andrej Karpathy

Sequences in Input or Output?
• It’s a spectrum…

(C) Dhruv Batra 55

Input: No
sequence
Output: No
sequence
Example:
“standard”

classification /
regression
problems

Input: No sequence

Output: Sequence

Example:
Im2Caption

Image Credit: Andrej Karpathy

Sequences in Input or Output?
• It’s a spectrum…

(C) Dhruv Batra 56

Input: No
sequence
Output: No
sequence
Example:
“standard”

classification /
regression
problems

Input: No sequence

Output: Sequence

Example:
Im2Caption

Input: Sequence

Output: No
sequence

Example: sentence
classification,

multiple-choice
question answering

Image Credit: Andrej Karpathy

Sequences in Input or Output?
• It’s a spectrum…

(C) Dhruv Batra 57

Input: No
sequence
Output: No
sequence
Example:
“standard”

classification /
regression
problems

Input: No sequence

Output: Sequence

Example:
Im2Caption

Input: Sequence

Output: No
sequence

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification,
video captioning, open-ended question answering

Image Credit: Andrej Karpathy

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

(C) Dhruv Batra 58

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 59

Computational Graph

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

(C) Dhruv Batra 62

How do we model sequences?
• No input

(C) Dhruv Batra 63Image Credit: Bengio, Goodfellow, Courville

How do we model sequences?
• With inputs

(C) Dhruv Batra 64Image Credit: Bengio, Goodfellow, Courville

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check

(C) Dhruv Batra 65

Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
usually want to
predict a vector at
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

Notice: the same function and the same set
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht = tanh(Whhht�1 +Wxhxt + bh)

yt = Whyht + by

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-many

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

