
CS 4803 / 7643: Deep Learning

Viraj Prabhu
Georgia Tech

Topic: 
– Reinforcement Learning (RL)

– Overview
– Markov Decision Processes



2

Topics we’ll cover
• Overview of RL

• RL vs other forms of learning
• RL “API”
• Applications

• Framework: Markov Decision Processes (MDP’s)
• Definitions and notations
• Policies and Value Functions
• Solving MDP’s

• Value Iteration
• Policy Iteration

• Reinforcement learning
• Value-based RL (Q-learning, Deep-Q Learning)
• Policy-based RL (Policy gradients)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc. 2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Unsupervised learning
– Discover structure in data
– Training data does not include desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)
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What is Reinforcement Learning?

Learning to make good sequences of decisions

Slide Credit: Rich Sutton, Emma Brunskill
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• more realistic and ambitious than other kinds of machine 
learning
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What is Reinforcement Learning?

Learning to make good sequences of decisions

Agent-oriented learning—learning by interacting with an 
environment to achieve a goal 

• more realistic and ambitious than other kinds of machine 
learning

Learning by trial and error, with only delayed evaluative feedback 
(reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

Slide Credit: Rich Sutton, Emma Brunskill



11David Silver 2015
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Example: Hajime Kimura’s RL Robots

Before After

New Robot, Same algorithm
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● Environment may be unknown, nonlinear, stochastic and complex

● Agent learns a policy mapping states to actions

○ Seeking to maximize its cumulative reward in the long run

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Slide Credit: Rich Sutton

RL API



RL API

Slide Credit: David Silver 14

• At each step t the agent:

– Executes action at

– Receives observation ot

– Receives scalar reward rt

• The environment:

– Receives action at

– Emits observation ot+1

– Emits scalar reward rt+1
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Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Slide Credit: Rich Sutton
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Markov Decision Process (MDP)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



22

Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
- MDP’s: General formulation for decision making under uncertainty

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
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Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
- MDP’s: General formulation for decision making under uncertainty

Defined by: 

: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 
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Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
- MDP’s: General formulation for decision making under uncertainty

Defined by: 

: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 

: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



29

Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
- MDP’s: General formulation for decision making under uncertainty

- Life is trajectory: 

Defined by: 

: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 

: discount factor
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Markov Decision Process (MDP)
- RL operates within a framework called a Markov Decision Process 
- MDP’s: General formulation for decision making under uncertainty

- Life is trajectory: 

- Markov property: Current state completely characterizes state of the world
- Assumption: Most recent observation is sufficient statistic of history

Defined by: 

: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as 

: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Markov Decision Process (MDP)
- MDP state projects a search tree

Slide Credit: Emma Brunskill, Byron Boots
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Markov Decision Process (MDP)
- MDP state projects a search tree

- Observability: 
- Full: In a fully observable MDP,

- Example: Chess
- Partial: In a partially observable MDP, agent constructs its own state, 

using history, of beliefs of world state, or an RNN, …
- Example: Poker

Slide Credit: Emma Brunskill, Byron Boots
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Markov Decision Process (MDP)

- In RL, we don’t have access to       or        (i.e. the environment)
- Need to actually try actions and states out to learn
- Sometimes, need to model the environment
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Markov Decision Process (MDP)

- In RL, we don’t have access to       or        (i.e. the environment)
- Need to actually try actions and states out to learn
- Sometimes, need to model the environment

- For today, let’s assume we do have access to how the world works

- And that our goal is to find an optimal behavior strategy for an agent



36

Canonical Example: Grid World
• Agent lives in a grid
• Walls block the agent’s path
• Actions do not always go as planned

• 80% of the time, action North takes the 
agent North (if there is no wall)

• 10% of the time, North takes the agent 
West; 10% East

• If there is a wall, the agent stays put

• State: Agent’s location
• Actions: N, E, S, W
• Rewards: +1 / -1 at absorbing states

Slide credit: Pieter Abbeel



Solving MDP’s
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Solving MDP’s
• Policy

– How should an agent behave?
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Solving MDP’s
• Policy

– How should an agent behave?

• Value function (Utility)
– How good is each state and/or state-action pair?

39



Policy
• A policy is how the agent acts

40



Policy
• A policy is how the agent acts

• Formally, map from states to actions
– Deterministic
– Stochastic  

41
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What’s a good policy? 

The optimal policy 𝝿*
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What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

The optimal policy 𝝿*
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What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

The optimal policy 𝝿*
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What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

Formally:

with 

The optimal policy 𝝿*

(Typically for a 
fixed horizon T)
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The optimal policy 𝝿*

Slide Credit: Byron Boots, CS 7641
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Discounting

• Prefer rewards now to rewards later
• Helps with convergence
• Alternate interpretation: Contending with possibility of “death”

Slide Credit: Byron Boots, CS 7641
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Discounting

• Prefer rewards now to rewards later
• Helps with convergence
• Alternate interpretation: Contending with possibility of “death”

• Given an MDP:

• Actions:  East, West, Exit (at first and last position)
• Deterministic transitions

• What is the optimal policy for:
• = 1
• = 0.1

Slide credit: Byron Boots, CS 7641

10 1



Value Function
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Value Function
• A value function is a prediction of future reward
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Value Function
• A value function is a prediction of future reward

• State Value Function or simply Value Function
– How good is a state? 
– Am I screwed? Am I winning this game?
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Value Function
• A value function is a prediction of future reward

• State Value Function or simply Value Function
– How good is a state? 
– Am I screwed? Am I winning this game?

• Action-Value Function or Q-function
– How good is a state action-pair? 
– Should I do this now?

52
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from 
state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from 
state s (and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected 
cumulative reward from taking action a in state s (and following the 
policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



56

Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The optimal value function at state s, and acting optimally thereafter 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state? 
The optimal value function at state s, and acting optimally thereafter 

How good is a state-action pair?
The optimal Q-value function at state s and action a, is the expected 
cumulative reward from taking action a in state s and acting optimally 
thereafter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recursive definition of value

59Slide credit: Byron Boots, CS 7641



Recursive definition of value
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• Extracting optimal value / policy from Q-values:

Slide credit: Byron Boots, CS 7641



Recursive definition of value
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• Extracting optimal value / policy from Q-values:

• Bellman Equations:

Slide credit: Byron Boots, CS 7641
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• Extracting optimal value / policy from Q-values:

• Bellman Equations:

Slide credit: Byron Boots, CS 7641



Recursive definition of value
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• Extracting optimal value / policy from Q-values:

• Bellman Equations:

• Characterize optimal values in a way we’ll use over 
and over

Slide credit: Byron Boots, CS 7641



Value Iteration (VI)
• Bellman equations characterize optimal values, VI is 

a fixed-point DP solution method to compute it

64Slide credit: Byron Boots, CS 7641



Value Iteration (VI)
• Bellman equations characterize optimal values, VI is 

a fixed-point DP solution method to compute it

• Algorithm
– Initialize values of all states V0(s) = 0 
– Update: 

– Repeat until convergence (to      )

65Slide credit: Byron Boots, CS 7641



Value Iteration (VI)
• Bellman equations characterize optimal values, VI is 

a fixed-point DP solution method to compute it

• Algorithm
– Initialize values of all states V0(s) = 0 
– Update: 

– Repeat until convergence (to      )

• Complexity per iteration (DP): O(|S|2|A|)

66Slide credit: Byron Boots, CS 7641



Value Iteration (VI)
• Bellman equations characterize optimal values, VI is 

a fixed-point DP solution method to compute it

• Algorithm
– Initialize values of all states V0(s) = 0 
– Update: 

– Repeat until convergence (to      )

• Complexity per iteration (DP): O(|S|2|A|)

• Convergence
– Guaranteed for 
– Sketch: Approximations get refined towards optimal values
– In practice, policy may converge before values do

67Slide credit: Byron Boots, CS 7641



Value Iteration (VI)

68Slide credit: Pieter Abbeel



Demo
• https://cs.stanford.edu/people/karpathy/reinforcejs/gri

dworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


Next class
• Solving MDP’s

– Policy Iteration

• Reinforcement learning
– Value-based RL

• Q-learning
• Deep Q Learning

Slide Credit: David Silver 70


