CS 4803 / 7643: Deep Learning

Topic:

- Reinforcement Learning (RL)
 - Overview
 - Markov Decision Processes

Viraj Prabhu Georgia Tech

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

Overview of RL

- RL vs other forms of learning
- RL "API"
- Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Cat

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

2-d density images <u>left</u> and <u>right</u> are <u>CC0 public domain</u>

Types of Learning

- Supervised learning
 - Learning from a "teacher"
 - Training data includes desired outputs
- Unsupervised learning
 - Discover structure in data
 - Training data does not include desired outputs
- Reinforcement learning
 - Learning to act under evaluative feedback (rewards)

What is Reinforcement Learning?

• Learning to make good sequences of decisions

What is Reinforcement Learning?

- Learning to make good sequences of decisions
- Agent-oriented learning—learning by interacting with an environment to achieve a goal
 - more realistic and ambitious than other kinds of machine learning

What is Reinforcement Learning?

- Learning to make good sequences of decisions
- Agent-oriented learning—learning by interacting with an environment to achieve a goal
 - more realistic and ambitious than other kinds of machine learning
- Learning by trial and error, with only delayed evaluative feedback (reward)
 - the kind of machine learning most like natural learning
 - learning that can tell for itself when it is right or wrong

Example: Hajime Kimura's RL Robots

New Robot, Same algorithm

- Environment may be unknown, nonlinear, stochastic and complex
- Agent learns a policy mapping states to actions
 - $\circ~$ Seeking to maximize its cumulative reward in the long run

RL API

- At each step t the agent:
 - Executes action a_t
 - Receives observation ot
 - Receives scalar reward r_t
- The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}

Signature challenges of RL

- Evaluative feedback (reward)
- Sequentiality, delayed consequences
- Need for trial and error, to explore as well as exploit
- Non-stationarity
- The fleeting nature of time and online data

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints **Action:** Torques applied on joints **Reward:** 1 at each time step upright + forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state **Action:** Game controls e.g. Left, Right, Up, Down **Reward:** Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Go

Objective: Win the game!

State: Position of all piecesAction: Where to put the next piece downReward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

S : set of possible states [start state = $s_{0,}$ optional terminal / absorbing state]

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = $s_{0,}$ optional terminal / absorbing state] \mathcal{A} : set of possible actions

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = $s_{0,}$ optional terminal / absorbing state] \mathcal{A} : set of possible actions $\mathcal{R}(s, a, s')$: distribution of reward given (state, action, next state) tuple

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 $\begin{array}{l} \mathcal{S} : \text{set of possible states [start state = } s_{0}, \text{optional terminal / absorbing state]} \\ \mathcal{A} : \text{set of possible actions} \\ \mathcal{R}(s, a, s') : \text{distribution of reward given (state, action, next state) tuple} \\ \mathbb{T}(s, a, s') : \text{transition probability distribution, also written as } p(s'|s, a) \end{array}$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 $\begin{array}{l} \mathcal{S} : \text{set of possible states [start state = } s_{0,} \text{ optional terminal / absorbing state]} \\ \mathcal{A} : \text{set of possible actions} \\ \mathcal{R}(s,a,s') : \text{distribution of reward given (state, action, next state) tuple} \\ \mathbb{T}(s,a,s') : \text{transition probability distribution, also written as } p(s'|s,a) \\ \mathcal{\gamma} : \text{discount factor} \end{array}$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 $\begin{array}{l} \mathcal{S} : \text{set of possible states [start state = } s_{0,} \text{ optional terminal / absorbing state]} \\ \mathcal{A} : \text{set of possible actions} \\ \mathcal{R}(s,a,s') : \text{distribution of reward given (state, action, next state) tuple} \\ \mathbb{T}(s,a,s') : \text{transition probability distribution, also written as } p(s'|s,a) \\ \mathcal{Y} : \text{discount factor} \end{array}$

- Life is trajectory: $\dots \underline{s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \dots$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 $\begin{array}{l} \mathcal{S} : \text{set of possible states [start state = } s_{0,} \text{ optional terminal / absorbing state]} \\ \mathcal{A} : \text{set of possible actions} \\ \mathcal{R}(s,a,s') : \text{distribution of reward given (state, action, next state) tuple} \\ \mathbb{T}(s,a,s') : \text{transition probability distribution, also written as } p(s'|s,a) \\ \mathcal{Y} : \text{discount factor} \end{array}$

- Life is trajectory: $\dots \underline{s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \dots$
- Markov property: Current state completely characterizes state of the world
- **Assumption**: Most recent observation is sufficient statistic of history

$$p(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = p(S_{t+1} = s'|S_t = s_t, A_t = a_t)$$

- MDP state projects a search tree

- MDP state projects a search tree

- Observability:

- Full: In a fully observable MDP, $o_t = s_t$
 - Example: Chess
- **Partial:** In a partially observable MDP, agent *constructs* its own state, using history, of beliefs of world state, or an RNN, ...
 - Example: Poker

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
 - Need to actually try actions and states out to learn
 - Sometimes, need to model the environment

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
 - Need to actually try actions and states out to learn
 - Sometimes, need to model the environment
- For today, let's assume we *do* have access to how the world works

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
 - Need to actually try actions and states out to learn
 - Sometimes, need to model the environment
- For today, let's assume we *do* have access to how the world works
- And that our goal is to find an optimal behavior strategy for an agent

Canonical Example: Grid World

- Agent lives in a grid
- Walls block the agent's path
- Actions do not always go as planned
 - 80% of the time, action North takes the agent North (if there is no wall)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall, the agent stays put
- State: Agent's location
- Actions: N, E, S, W
- Rewards: +1 / -1 at absorbing states

Solving MDP's

Solving MDP's

- Policy
 - How should an agent behave?

Solving MDP's

- Policy
 - How should an agent behave?
- Value function (Utility)
 - How good is each state and/or state-action pair?

Policy

• A policy is how the agent acts

Policy

- A policy is how the agent acts
- Formally, map from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

The optimal policy π^{*}

What's a good policy?

The optimal policy π^{*}

What's a good policy?

Maximizes current reward? Sum of all future reward?

The optimal policy π^{*}

What's a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

The optimal policy π^*

What's a good policy?

Maximizes current reward? Sum of all future reward?

with $s_0 \sim p(s_0), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t)$

The optimal policy π^*

R(s) = -0.03

Discounting

- Prefer rewards now to rewards later
- Helps with convergence
- Alternate interpretation: Contending with possibility of "death"

Discounting

- Prefer rewards now to rewards later
- Helps with convergence
- Alternate interpretation: Contending with possibility of "death"

- Given an MDP:
 - Actions: East, West, Exit (at first and last position)
 - Deterministic transitions
- What is the optimal policy for:
 - • γ = 1
 - = 0.1

• A value function is a prediction of future reward

- A value function is a prediction of future reward
- State Value Function or simply Value Function
 - How good is a state?
 - Am I screwed? Am I winning this game?

- A value function is a prediction of future reward
- State Value Function or simply Value Function
 - How good is a state?
 - Am I screwed? Am I winning this game?
- Action-Value Function or **Q-function**
 - How good is a state action-pair?
 - Should I do this now?

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi\right]$$

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi\right]$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

Optimal Quantities

Given optimal policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

Optimal Quantities

Given optimal policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The optimal value function at state s, and acting optimally thereafter

$$V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^*\right]$$

Optimal Quantities

Given optimal policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The optimal value function at state s, and acting optimally thereafter

$$V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^*\right]$$

How good is a state-action pair?

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

• Extracting optimal value / policy from Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Extracting optimal value / policy from Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Bellman Equations:

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^{*}(s') \right]$$

• Extracting optimal value / policy from Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Bellman Equations:

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$
$$Q^{*}(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

• Extracting optimal value / policy from Q-values:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Bellman Equations:

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$
$$Q^{*}(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

 Characterize optimal values in a way we'll use over and over

 Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
 - Initialize values of all states $V_0(s) = 0$
 - Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^i(s') \right]$
 - Repeat until convergence (to V^*)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
 - Initialize values of all states $V_0(s) = 0$
 - Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{i} p(s'|s, a) \left[r(s, a) + \gamma V^{i}(s') \right]$
 - Repeat until convergence (to V^*)
- Complexity per iteration (DP): O(|S|²|A|)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
 - Initialize values of all states $V_0(s) = 0$
 - Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{i} p(s'|s,a) \left[r(s,a) + \gamma V^{i}(s') \right]$

- Repeat until convergence (to V^*)

- Complexity per iteration (DP): O(|S|²|A|)
- Convergence
 - Guaranteed for $\gamma < 1$
 - Sketch: Approximations get refined towards optimal values
 - In practice, policy may converge before values do

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p\left(s'|s,a\right) \left[r(s,a) + \gamma V^{i}\left(s'\right)\right]$$
$$V^{2}(\langle 3,3 \rangle) = \sum_{s'} P\left(s'|\operatorname{right}, \langle 3,3 \rangle\right) \left[r(\langle 3,3 \rangle) + \gamma V^{1}\left(s'\right)\right]$$
$$= 0.9[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]$$

Demo

 <u>https://cs.stanford.edu/people/karpathy/reinforcejs/gri</u> <u>dworld_dp.html</u>

Next class

- Solving MDP's
 - Policy Iteration
- Reinforcement learning
 - Value-based RL
 - Q-learning
 - Deep Q Learning