CS 4803 / 7643: Deep Learning

Topic:

- Reinforcement Learning (RL)
	- Overview
	- Markov Decision Processes

Viraj Prabhu Georgia Tech

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration
		- Policy Iteration
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration
		-
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration
		-
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Cat

Classification

nage [is CC0 public do](https://creativecommons.org/publicdomain/zero/1.0/deed.en)

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc. **2-d density estimation**

2-d density im[age](https://commons.wikimedia.org/wiki/File:Bivariate_example.png)s I are CCD public de

Types of Learning

- Supervised learning
	- Learning from a "teacher"
	- Training data includes desired outputs
- Unsupervised learning
	- Discover structure in data
	- Training data does not include desired outputs
- Reinforcement learning
	- Learning to act under evaluative feedback (rewards)

What is Reinforcement Learning?

Learning to make good sequences of decisions

What is Reinforcement Learning?

- Learning to make good sequences of decisions \bullet
- Agent-oriented learning—learning by interacting with an $\ddot{\mathbf{O}}$ environment to achieve a goal
	- more realistic and ambitious than other kinds of machine learning

What is Reinforcement Learning?

- Learning to make good sequences of decisions \bullet
- Agent-oriented learning—learning by interacting with an $\ddot{\mathbf{O}}$ environment to achieve a goal
	- more realistic and ambitious than other kinds of machine learning
- Learning by trial and error, with only delayed evaluative feedback \bullet (reward)
	- the kind of machine learning most like natural learning
	- learning that can tell for itself when it is right or wrong

Example: Hajime Kimura's RL Robots

New Robot, Same algorithm

- Environment may be unknown, nonlinear, stochastic and complex
- Agent learns a policy mapping states to actions
	- \circ Seeking to maximize its cumulative reward in the long run

RL API

- At each step t the agent:
	- $-$ Executes action a_t
	- $-$ Receives observation o_t
	- Receives scalar reward r_t
- The environment:
	- Receives action a_t
	- $-$ Emits observation o_{t+1}
	- $-$ Emits scalar reward r_{t+1}

Signature challenges of RL

- Evaluative feedback (reward) \bullet
- Sequentiality, delayed consequences \bullet
- Need for trial and error, to explore as well as exploit \bullet
- Non-stationarity \bullet
- The fleeting nature of time and online data \bullet

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints **Action:** Torques applied on joints **Reward:** 1 at each time step upright + forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state **Action:** Game controls e.g. Left, Right, Up, Down **Reward:** Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Go

Objective: Win the game!

State: Position of all pieces Action: Where to put the next piece down **Reward:** 1 if win at the end of the game, 0 otherwise

[This im](https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png)age [is CC0 public do](https://creativecommons.org/publicdomain/zero/1.0/deed.en)m

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration
		-
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

This lecture:

- Focus on MDP's
- No learning (deep or otherwise)

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s_{0,} optional terminal / absorbing state]

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] ${\mathcal A}$: set of possible actions

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] $\mathcal A$: set of possible actions $\mathcal{R}(s,a,s')$: distribution of reward given (state, action, next state) tuple

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] $\mathcal A$: set of possible actions $\mathcal{R}(s,a,s')$: distribution of reward given (state, action, next state) tuple $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] $\mathcal A$: set of possible actions $\mathcal{R}(s,a,s')$: distribution of reward given (state, action, next state) tuple $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$ γ : discount factor

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] $\mathcal A$: set of possible actions $\mathcal{R}(s,a,s')$: distribution of reward given (state, action, next state) tuple $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$ γ : discount factor

- Life is trajectory: $\dots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \dots$

- RL operates within a framework called a Markov Decision Process
- MDP's: General formulation for decision making under uncertainty Defined by: $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 \mathcal{S} : set of possible states [start state = s₀ optional terminal / absorbing state] $\mathcal A$: set of possible actions $\mathcal{R}(s,a,s')$: distribution of reward given (state, action, next state) tuple $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$ γ : discount factor

- Life is trajectory: $\ldots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots$
- **Markov property**: Current state completely characterizes state of the world
- Assumption: Most recent observation is sufficient statistic of history

$$
p(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, \dots S_0 = s_0) = p(S_{t+1} = s'|S_t = s_t, A_t = a_t)
$$

- MDP state projects a search tree

- MDP state projects a search tree

- **Observability**:

- **Full:** In a fully observable MDP, $o_t = s_t$
	- Example: Chess
- **Partial:** In a partially observable MDP, agent *constructs* its own state, using history, of beliefs of world state, or an RNN, …
	- Example: Poker

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
	- Need to *actually try* actions and states out to learn
	- Sometimes, need to model the environment

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
	- Need to *actually try* actions and states out to learn
	- Sometimes, need to model the environment
- For today, let's assume we *do* have access to how the world works

- In RL, we don't have access to $\mathbb T$ or $\mathcal R$ (i.e. the environment)
	- Need to *actually try* actions and states out to learn
	- Sometimes, need to model the environment
- For today, let's assume we *do* have access to how the world works
- And that our goal is to find an optimal behavior strategy for an agent

Canonical Example: Grid World

- Agent lives in a grid
- Walls block the agent's path
- Actions do not always go as planned
	- 80% of the time, action North takes the agent North (if there is no wall)
	- 10% of the time, North takes the agent West; 10% East
	- If there is a wall, the agent stays put
- State: Agent's location
- Actions: N, E, S, W
- Rewards: +1 / -1 at absorbing states

Solving MDP's

Solving MDP's

- Policy
	- How should an agent behave?

Solving MDP's

- Policy
	- How should an agent behave?
- Value function (Utility)
	- How good is each state and/or state-action pair?

Policy

• A policy is how the agent acts

Policy

- A policy is how the agent acts
- Formally, map from states to actions
	- Deterministic $\pi(s) = a$
	- Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

What's a good policy?

What's a good policy?

Maximizes current reward? Sum of all future reward?

What's a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

What's a good policy?

Maximizes current reward? Sum of all future reward?

with $\mathbf{s}_0 \sim p\left(\mathbf{s}_0\right), a_t \sim \pi\left(\cdot|\mathbf{s}_t\right), \mathbf{s}_{t+1} \sim p\left(\cdot|\mathbf{s}_t, a_t\right)$

 $R(s) = -0.03$

Discounting

- Prefer rewards now to rewards later
- Helps with convergence
- Alternate interpretation: Contending with possibility of "death"

Discounting

- Prefer rewards now to rewards later
- Helps with convergence
- Alternate interpretation: Contending with possibility of "death"

- Given an MDP:
	- Actions: East, West, Exit (at first and last position)
	- Deterministic transitions
- What is the optimal policy for:
	- $\cdot \gamma = 1$
	- $\bullet = 0.1$

• A value function is a prediction of future reward

- A value function is a prediction of future reward
- State Value Function or simply **Value Function**
	- How good is a state?
	- Am I screwed? Am I winning this game?

- A value function is a prediction of future reward
- State Value Function or simply **Value Function**
	- How good is a state?
	- Am I screwed? Am I winning this game?
- Action-Value Function or **Q-function**
	- How good is a state action-pair?
	- Should I do this now?

Following policy π that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

Following policy π that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi\right]
$$

Following policy π that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi\right]
$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$
Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]
$$

Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **optimal value function** at state s, and acting optimally thereafter

$$
V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^* \right]
$$

Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **optimal value function** at state s, and acting optimally thereafter

$$
V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^* \right]
$$

How good is a state-action pair?

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$
Q^*(s, a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^* \right]
$$

• Extracting optimal value / policy from Q-values:

$$
V^*(s) = \max_a Q^*(s, a) \qquad \pi^*(s) = \arg\max_a Q^*(s, a)
$$

• Extracting optimal value / policy from Q-values:

$$
V^*(s) = \max_{a} Q^*(s, a) \qquad \pi^*(s) = \arg \max_{a} Q^*(s, a)
$$

• Bellman Equations:

$$
V^*(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

• Extracting optimal value / policy from Q-values:

$$
V^*(s) = \max_{a} Q^*(s, a) \qquad \pi^*(s) = \arg \max_{a} Q^*(s, a)
$$

• Bellman Equations:

$$
V^*(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

$$
Q^*(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

• Extracting optimal value / policy from Q-values:

$$
V^*(s) = \max_a Q^*(s, a) \qquad \pi^*(s) = \arg\max_a Q^*(s, a)
$$

• Bellman Equations:

$$
V^*(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

$$
Q^*(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

• Characterize optimal values in a way we'll use over and over

• Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
	- Initialize values of all states $V_0(s) = 0$
	- Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{i} p(s'|s, a) [r(s, a) + \gamma V^{i}(s')]$
	- Repeat until convergence (to V^*)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
	- Initialize values of all states $V_0(s) = 0$
	- Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{i} p(s'|s, a) [r(s, a) + \gamma V^{i}(s')]$
	- Repeat until convergence (to V^*)
- Complexity per iteration (DP): O($|S|^2$ AI)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to *compute* it
- Algorithm
	- Initialize values of all states $V_0(s) = 0$
	- Update: $V^{i+1}(s) \leftarrow \max_{a} \sum_{i} p(s'|s, a) [r(s, a) + \gamma V^{i}(s')]$

- Repeat until convergence (to V^*)

- Complexity per iteration (DP): O($|S|^2$ AI)
- **Convergence**
	- Guaranteed for $\gamma < 1$
	- Sketch: Approximations get refined towards optimal values
	- In practice, policy may converge before values do

$$
V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{i}(s')]
$$

$$
V^{2}(\langle 3, 3 \rangle) = \sum_{s'} P(s' | \text{ right}, \langle 3, 3 \rangle) [r(\langle 3, 3 \rangle) + \gamma V^{1}(s')]
$$

$$
= 0.9[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]
$$

Demo

• [https://cs.stanford.edu/people/karpathy/reinforcejs/g](https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html)ri dworld_dp.html

Next class

- Solving MDP's
	- Policy Iteration
- Reinforcement learning
	- Value-based RL
		- Q-learning
		- Deep Q Learning