
CS 4803 / 7643: Deep Learning

Nirbhay Modhe
Georgia Tech

Topics:
– Dynamic Programming (Q-Value Iteration)
– Reinforcement Learning (Intro, Q-Learning, DQNs)

2

Topics we’ll cover
• Overview of RL

• RL vs other forms of learning
• RL “API”
• Applications

• Framework: Markov Decision Processes (MDP’s)
• Definitions and notations
• Policies and Value Functions
• Solving MDP’s

• Value Iteration (recap)
• Q-Value Iteration (new)
• Policy Iteration

• Reinforcement learning
• Value-based RL (Q-learning, Deep-Q Learning)
• Policy-based RL (Policy gradients)

3

Topics we’ll cover
• Overview of RL

• RL vs other forms of learning
• RL “API”
• Applications

• Framework: Markov Decision Processes (MDP’s)
• Definitions and notations
• Policies and Value Functions
• Solving MDP’s

• Value Iteration (recap)
• Q-Value Iteration (new)
• Policy Iteration

• Reinforcement learning
• Value-based RL (Q-learning, Deep-Q Learning)
• Policy-based RL (Policy gradients)

Recap

4

• Markov Decision Process (MDP)
– Defined by
: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as

: discount factor

Recap

5

• Markov Decision Process (MDP)
– Defined by
: set of possible states [start state = s0, optional terminal / absorbing state]
: set of possible actions

: distribution of reward given (state, action, next state) tuple
: transition probability distribution, also written as

: discount factor

• Value functions, optimal quantities, bellman equation

• Algorithms for solving MDP’s
– Value Iteration

Recap

6

7

Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

8

Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state?
The value function at state s, is the expected cumulative reward from
state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

9

Value Function
Following policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state?
The value function at state s, is the expected cumulative reward from
state s (and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected
cumulative reward from taking action a in state s (and following the
policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

10

Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state?
The optimal value function at state s, and acting optimally thereafter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

11

Optimal Quantities
Given optimal policy that produces sample trajectories s0, a0, r0, s1, a1, …

How good is a state?
The optimal value function at state s, and acting optimally thereafter

How good is a state-action pair?
The optimal Q-value function at state s and action a, is the expected
cumulative reward from taking action a in state s and acting optimally
thereafter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Bellman Optimality Equations
• Relations:

12

Bellman Optimality Equations
• Relations:

• Recursive optimality equations:

13

Bellman Optimality Equations
• Relations:

• Recursive optimality equations:

14

Bellman Optimality Equations
• Relations:

• Recursive optimality equations:

15

Bellman Optimality Equations
• Relations:

• Recursive optimality equations:

16

Bellman Optimality Equations
• Relations:

• Recursive optimality equations:

17

Value Iteration (VI)
• Based on the bellman optimality equation

18

Value Iteration (VI)
• Based on the bellman optimality equation

• Algorithm
– Initialize values of all states
– While not converged:

• For each state:

– Repeat until convergence (no change in values)

19

Time complexity per iteration

Homework

Q-Value Iteration
• Value Iteration Update:

• Q-Value Iteration Update:

20

The algorithm is same as value iteration,
but it loops over actions as well as states

Q-Value Iteration
• Value Iteration Update:

• Q-Value Iteration Update:

21

The algorithm is same as value iteration,
but it loops over actions as well as states

Policy Iteration

(C) Dhruv Batra 22

• Policy iteration: Start with arbitrary and refine it.

Policy Iteration

23

• Policy iteration: Start with arbitrary and refine it.

• Involves repeating two steps:

– Policy Evaluation: Compute (similar to VI)

– Policy Refinement: Greedily change actions as per

Policy Iteration

24

• Policy iteration: Start with arbitrary and refine it.

• Involves repeating two steps:

– Policy Evaluation: Compute (similar to VI)

– Policy Refinement: Greedily change actions as per

• Why do policy iteration?
– often converges to much sooner than

Policy Iteration

25

Summary
• Value Iteration

– Bellman update to state value estimates

• Q-Value Iteration
– Bellman update to (state, action) value estimates

• Policy Iteration
– Policy evaluation + refinement

26

Learning Based Methods

27

Learning Based Methods
• Typically, we don’t know the environment

– unknown, how actions affect the environment.

– unknown, what/when are the good actions?

28

Learning Based Methods
• Typically, we don’t know the environment

– unknown, how actions affect the environment.

– unknown, what/when are the good actions?

• But, we can learn by trial and error.
– Gather experience (data) by performing actions.

– Approximate unknown quantities from data.

29

Reinforcement Learning

Learning Based Methods

(C) Dhruv Batra 30

Reinforcement Learning

• Old Dynamic Programming Demo
– https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

• RL Demo
– https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

(Deep) Learning Based Methods

31

(Deep) Learning Based Methods
• In addition to not knowing the environment,

sometimes the state space is too large.

32

(Deep) Learning Based Methods
• In addition to not knowing the environment,

sometimes the state space is too large.

• A value iteration updates takes
– Not scalable to high dimensional states e.g.: RGB images.

33

(Deep) Learning Based Methods
• In addition to not knowing the environment,

sometimes the state space is too large.

• A value iteration updates takes
– Not scalable to high dimensional states e.g.: RGB images.

• Solution: Deep Learning!
– Use deep neural networks to learn low-dimensional

representations.

34

Deep Reinforcement Learning

Reinforcement Learning

(C) Dhruv Batra 35

Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating with a deep
Q-network

(C) Dhruv Batra 36

Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating with a deep
Q-network

• Policy-based RL
– Directly approximate optimal policy with a parametrized

policy

(C) Dhruv Batra 37

Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating with a deep
Q-network

• Policy-based RL
– Directly approximate optimal policy with a parametrized

policy

• Model-based RL
– Approximate transition function and reward

function
– Plan by looking ahead in the (approx.) future!

(C) Dhruv Batra 38

Reinforcement Learning
• Value-based RL

– (Deep) Q-Learning, approximating with a deep
Q-network

• Policy-based RL
– Directly approximate optimal policy with a parametrized

policy

• Model-based RL
– Approximate transition function and reward

function
– Plan by looking ahead in the (approx.) future!

(C) Dhruv Batra 39

Homework!

Value-based Reinforcement Learning

Deep Q-Learning

Deep Q-Learning
• Q-Learning with linear function approximators

– Has some theoretical guarantees

41

Deep Q-Learning
• Q-Learning with linear function approximators

– Has some theoretical guarantees

• Deep Q-Learning: Fit a deep Q-Network

– Works well in practice

– Q-Network can take RGB images

42
Image Credits: Fei-Fei Li, Justin Johnson,

Serena Yeung, CS 231n

Deep Q-Learning

43

Deep Q-Learning
• Assume we have collected a dataset

• We want a Q-function that satisfies:

• Loss for a single data point:

44

Q-Value Bellman Optimality

Target Q-ValuePredicted Q-Value

• Minibatch of

• Forward pass:

45

State Q-Network Q-Values per action

Deep Q-Learning

• Minibatch of

• Forward pass:

46

State Q-Network Q-Values per action

State

Q-Network

Deep Q-Learning

Deep Q-Learning
• Minibatch of

• Forward pass:

• Compute loss:

47

State Q-Network Q-Values per action

Deep Q-Learning
• Minibatch of

• Forward pass:

• Compute loss:

48

State Q-Network Q-Values per action

Deep Q-Learning
• Minibatch of

• Forward pass:

• Compute loss:

• Backward pass:

49

State Q-Network Q-Values per action

Deep Q-Learning

• In practice, for stability:

– Freeze and update parameters

– Set at regular intervals

50

How to gather experience?

This is why RL is hard

Environment Data

Update

How To Gather Experience?

Train

Environment Data

Update

How To Gather Experience?

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

Train

Exploration Problem
• What should be?

– Greedy? -> Local minimas, no exploration

54

Exploration Problem
• What should be?

– Greedy? -> Local minimas, no exploration

• An exploration strategy:

–

55

Correlated Data Problem
• Samples are correlated => high variance gradients

=> inefficient learning

• Current Q-network parameters determines next
training samples => can lead to bad feedback loops
– e.g. if maximizing action is to move left, training samples will

be dominated by samples from left-hand size.

56Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions

57Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions

– Continually update replay buffer as game (experience)
episodes are played, older samples discarded

58Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Experience Replay
• Address this problem using experience replay

– A replay buffer stores transitions

– Continually update replay buffer as game (experience)
episodes are played, older samples discarded

– Train Q-network on random minibatches of transitions from
the replay memory, instead of consecutive samples

59Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q-Learning Algorithm

60

Epsilon-greedy

Q Update

Experience Replay

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games

• Objective: Complete the game with the highest score

• State: Raw pixel inputs from the game state
• Action: Game controls e.g.: Left, Right, Up, Down
• Reward: Score increase/decrease at each time step

61Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Playing Atari Games
• Q-Network architecture

• State:
– Stack of 4 image frames, grayscale

conversion, down-sampling and
cropping to (84 x 84 x 4)

• Last FC layer has #(actions)
dimensions (predicts Q-values)

62Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

63

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Pong
Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Summary
In today’s class, we looked at

• Dynamic Programming
– Q-Value Iteration
– Policy Iteration

• Reinforcement Learning (RL)
– The challenges of (deep) learning based methods
– Value-based RL algorithms

• Deep Q-Learning

Next class:
– Policy-based RL algorithms

64

(C) Dhruv Batra 65

Thanks!

