CS 4803 / 7643: Deep Learning

Topics:

- Dynamic Programming (Q-Value Iteration)
- Reinforcement Learning (Intro, Q-Learning, DQNs)

Nirbhay Modhe Georgia Tech

Topics we'll cover

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration (recap)
		- Q-Value Iteration (new)
		- Policy Iteration
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

Topics we'll cover

- Overview of RL
	- RL vs other forms of learning
	- RL "API"
	- Applications
- Framework: Markov Decision Processes (MDP's)
	- Definitions and notations
	- Policies and Value Functions
	- Solving MDP's
		- Value Iteration (recap)
		- Q-Value Iteration (new)
		- Policy Iteration
- Reinforcement learning
	- Value-based RL (Q-learning, Deep-Q Learning)
	- Policy-based RL (Policy gradients)

Recap

- Markov Decision Process (MDP)
	- Defined by $(S, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
	- \mathcal{S} : set of possible states [start state = s_{0} optional terminal / absorbing state] $\mathcal A$: set of possible actions
	- $\mathcal{R}(s, a, s')$: distribution of reward given (state, action, next state) tuple
	- $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$
	- γ : discount factor

Recap

- Markov Decision Process (MDP)
	- Defined by $(S, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
	- \mathcal{S} : set of possible states [start state = s_{0,} optional terminal / absorbing state] $\mathcal A$: set of possible actions
	- $\mathcal{R}(s, a, s')$: distribution of reward given (state, action, next state) tuple
	- $\mathbb{T}(s, a, s')$: transition probability distribution, also written as $p(s'|s, a)$
	- γ : discount factor
- Value functions, optimal quantities, bellman equation
- Algorithms for solving MDP's
	- Value Iteration

Value Function

Following policy (π) that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

Value Function

Following policy π that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter): ١

$$
\underline{V^{\pi}(s)} = \underline{\mathbb{E}} \left[\sum_{t \geq 0} \gamma^{t} r_{t} | s_{0} = s, \pi \right]
$$
\n
$$
\rho(s)/S, \infty
$$
\n
$$
\rho(\gamma) > \rho(\gamma) \quad \text{and} \quad \Gamma(\alpha)
$$

Value Function

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi\right]
$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$
Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]
$$

Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories s_0 , a_0 , r_0 , s_1 , a_1 , ...

How good is a state?

The **optimal value function** at state s, and acting optimally thereafter

$$
V^*(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, \pi^*\right] \qquad \qquad \sqrt{\sum_{t=0}^{\infty} \gamma^t r_t} \leq \sqrt{\sum_{t=0}^{\infty} \gamma^t r_t}
$$

Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **optimal value function** at state s, and acting optimally thereafter

$$
V^*(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi^* \right]
$$

How good is a state-action pair?

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$
Q^*(s,\mathbf{Q}) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]
$$

 \int

• Relations:

$$
V^*(s) = \max_{a} Q^*(s, a) \qquad \pi^*(s) = \arg \max_{a} Q^*(s, a)
$$

• Relations:

$$
V^*(s) = \max_a Q^*(s, a) \qquad \boxed{\pi^*(s) = \arg \max_a Q^*(s, a)}
$$

• Recursive optimality equations:

$$
Q^*(s,a)=
$$

 $P(S^{1}|S,a)$

• Relations:

$$
V^*(s) = \max_a Q^*(s, a) \qquad \qquad \pi^*(s) = \arg\max_a Q^*(s, a)
$$

• Recursive optimality equations:

$$
Q^*(s, a) = \mathop{\mathbb{E}}_{s' \sim p(s' \mid s, a)} \left[r(s, a) + \sqrt{V^*(s)} \right]
$$

• Relations:

$$
V^*(s) = \max_{a} Q^*(s, a) \qquad \qquad \boxed{\pi^*(s) = \arg \max_{a} Q^*(s, a)}
$$

• Recursive optimality equations:

$$
Q^*(s, a) = \mathop{\mathbb{E}}_{s' \sim p(s'|s, a)} [r(s, a) + \gamma V^*(s)]
$$

=
$$
\sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s)]
$$

• Relations:

$$
V^*(s) = \max_a Q^*(s, a) \qquad \boxed{\pi^*(s) = \arg \max_a Q^*(s, a)}
$$

• Recursive optimality equations:

$$
\underbrace{Q^*(s,a)}_{s' \sim p(s'|s,a)} = \sum_{s' \sim p(s'|s,a)} [r(s,a) + \gamma V^*(s)]
$$
\n
$$
= \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^*(s)]
$$
\n
$$
= \sum_{s'} p(s'|s,a) [r(s,a) + \gamma \max_a Q^*(s',a')]
$$

• Relations:

$$
V^*(s) = \max_{a} Q^*(s, a) \quad \pi^*(s) = \arg \max_{a} Q^*(s, a)
$$
\nRecursive optimality equations:

\n
$$
Q^*(s, a) = \mathop{\mathbb{E}}_{s' \sim p(s'|s, a)} [r(s, a) + \gamma V^*(s)]
$$
\n
$$
= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma W^*(s)]
$$
\n
$$
= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma \max_{a} Q^*(s', a')]
$$
\n
$$
V^*(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$
\n
$$
V^*(s) = \max_{s'} P(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$

Value Iteration (VI)

• Based on the bellman optimality equation

$$
V^*(s) = \max_{a} \sum_{s'} p\left(s'|s,a\right) \left[r(s,a) + \gamma V^*\left(s'\right)\right]
$$

Value Iteration (VI)

• Based on the bellman optimality equation

$$
V^*(s) = \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]
$$
\n• Algorithm\n\n\n- Initialize values of all states\n $V^0(s) = 0$ \n $V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^i(s')]$ \n $V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^i(s')]$ \n $V^0 \rightarrow V^1 \rightarrow V^2 \rightarrow \cdots \rightarrow V^i \rightarrow \cdots \rightarrow V^*$ \n
\n

Time complexity per iteration $\,O(|\mathcal{S}|^2|\mathcal{A}|)$

Q-Value Iteration

• Value Iteration Update:

$$
V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^{i}(s') \right]
$$

• Q-Value Iteration Update:

$$
Q^{i+1}(s,a) \leftarrow
$$

Q-Value Iteration

• Value Iteration Update:

$$
V^{i+1}(s) \leftarrow \fbox{max}_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^i(s') \right]
$$

• Q-Value Iteration Update:

$$
Q^{i+1}(s,a) \leftarrow \sum_{s'} p\left(s'|s,a\right) \left[r\left(s,a\right) + \gamma \max_{a'} Q^i(s',a')\right]
$$

The algorithm is same as value iteration, but it loops over actions as well as states

• Policy iteration: Start with arbitrary π_0 and refine it.

$$
\pi_0 \to \pi_1 \to \pi_2 \to \dots \to \pi^*
$$

• Policy iteration: Start with arbitrary π_0 and refine it.

 $\pi_0 \to \pi_1 \to \pi_2 \to \ldots \to \pi^*$

- Involves repeating two steps:
	- Policy Evaluation: Compute V^{π} (similar to VI)
	- Policy Refinement: Greedily change actions as per V^{π}

$$
\pi_0 \longrightarrow V^{\pi_0} \longrightarrow \pi_1 \longrightarrow V^{\pi_1} \longrightarrow \dots \longrightarrow \pi^* \longrightarrow V^{\pi^*}
$$

• Policy iteration: Start with arbitrary π_0 and refine it.

 $\pi_0 \to \pi_1 \to \pi_2 \to \ldots \to \pi^*$

- Involves repeating two steps:
	- Policy Evaluation: Compute V^{π} (similar to VI)
	- $-$ Policy Refinement: Greedily change actions as per V^{π}

$$
\pi_0 \longrightarrow V^{\pi_0} \longrightarrow \pi_1 \longrightarrow V^{\pi_1} \longrightarrow \qquad \qquad \overbrace{\phantom{K^{*}_{\text{\tiny N}}}}^{*} \longrightarrow V^{\pi^*}
$$

• Why do policy iteration? – π_i often converges to $/\pi^*$ much sooner than V^{π_i}

Summary

- Value Iteration
	- Bellman update to state value estimates
- Q-Value Iteration
	- Bellman update to (state, action) value estimates
- Policy Iteration
	- Policy evaluation + refinement

- Typically, we don't know the environment
	- $-\mathbb{T}(s, a, s')$ unknown, how actions affect the environment. $\mathcal{R}(s,a,s')$ unknown, what/when are the good actions?

- Typically, we don't know the environment
	- $\left(s,a,s' \right)$ unknown, how actions affect the environment. (s, a, s') unknown, what/when are the good actions?
- But, we can learn by trial and error.
	- Gather experience (data) by performing actions.

$$
\{s,a,\cancel{s'}\}_{i=1}^N
$$

– Approximate unknown quantities from data.

- Old Dynamic Programming Demo
	- [https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.htm](https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html)l
- RL Demo
	- [https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.htm](https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html)l

• In addition to not knowing the environment, sometimes the state space is too large.

- In addition to not knowing the environment, sometimes the state space is too large.
- A value iteration updates takes O
	- Not scalable to high dimensional states e.g.: RGB images.

- In addition to not knowing the environment, sometimes the state space is too large.
- A value iteration updates takes $O(|\mathcal{S}|^2|\mathcal{A}|)$
	- Not scalable to high dimensional states e.g.: RGB images.
- Solution: Deep Learning!
	- Use deep neural networks to learn low-dimensional representations.

- Value-based RL
	- (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network $\mathfrak{a}, \mathfrak{a},$

- Value-based RL
	- (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network
- Policy-based RL
	- Directly approximate optimal policy $\pi^{\,\text{c}}$ with a parametrized policy

- Value-based RL
	- (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network
- Policy-based RL
	- Directly approximate optimal policy π^* with a parametrized policy π^*_ρ
- Model-based RL
	- Approximate transition function $(T(s', a, s))$ and reward function $\bigl(\mathcal{R}(s,a)\bigr)$
	- $-$ Plan by looking ahead in the (approx.) future!

- Value-based RL
	- (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network
- Policy-based RL
	- Directly approximate optimal policy π^* with a parametrized policy π^*_ρ
- Model-based RL
	- Approximate transition function $T(s', a, s)$ and reward function $\mathcal{R}(s, a)$
	- Plan by looking ahead in the (approx.) future!

Homework!

Value-based Reinforcement Learning

• Q-Learning with linear function approximators

$$
Q(s, a; w, b) = \underline{w_a \textcircled{s} + b_a}
$$

– Has some theoretical guarantees

• Q-Learning with linear function approximators

$$
Q(s, a; w, b) = w_a^\top s + b_a
$$

– Has some theoretical guarantees

- Deep Q-Learning: Fit a deep Q-Network $Q(s, a; \theta)$
	- Works well in practice
	- Q-Network can take RGB images $(0,1)$

Image Credits: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Assume we have collected a dataset

$$
\underbrace{\{(s,a,s',r)_i\}_{i=1}^N}_{\text{A}}
$$

• We want a Q-function that satisfies:

Q-Value Bellman Optimality
\n
$$
Q^*(s, a) = \mathop{\mathbb{E}}_{s' \sim p(s'|s, a)} \left[r(s, a) + \gamma \max_{a'} Q^*(s', a') \right]
$$

• Loss for a single data point:

$$
\text{MSE Loss} := \left(\underbrace{Q_{new}(s, a)}_{\text{Predicted Q-Value}} \right) \left(r + \frac{\max Q_{old}(s', a)}{a}\right)^2
$$

- Minibatch of $\{(s, a, s', r)_{i}\}_{i=1}^{B}$
- Forward pass: State Q-Network Q-Values per action $B \times n_{actions}$ $B \times D$

• Minibatch of $\{(s,a,s',r)_i\}_{i=1}^B$

- Minibatch of $\{(s,a,s',r)_i\}_{i=1}^B$
- Forward pass: State \rightarrow Q-Network \rightarrow Q-Values per action $B \times n_{actions}$ $B \times D$ $\overline{2}$ $\left(\underbrace{Q_{new}}(s, a) - (r + \max_{a} Q_{old}(s', a)\right)$ • Compute loss: θ_{old} θ_{new}

- Minibatch of $\{(s,a,s',r)_i\}_{i=1}^B$
- Forward pass: State Q-Network Q-Values per action $B \times n_{actions}$ $B \times D$
- Compute loss:

$$
\left(\underbrace{Q_{new}(s,a)}_{\textcolor{red}{\theta_{new}}} - (r + \max_a \underbrace{Q_{old}(s',a)}_{\textcolor{red}{\theta_{old}}})\right)^2
$$

- Minibatch of $\{(s, a, s', r)_{i}\}_{i=1}^{B}$
- Forward pass: State \rightarrow Q-Network \rightarrow Q-Values per action $B \times D \longrightarrow 1$ $B \times n_{actions}$ $(Q_{new}(s, a) - (r + \sqrt{\max_{a} Q_{old}(s', a)}))^{2}$ • Compute loss: θ_{new} $\left(\begin{matrix} \partial Loss \ \partial \theta_{new} \end{matrix}\right)$ • Backward pass:

Deep Q-Learning

\nMSE Loss :=
$$
(Q_{new}(s, a)) - (r + \max_{a} \frac{Q_{old}(s', a))}{M})^2
$$

\n• In practice, for stability:

\n– Free Q_{old} and update Q_{new} parameters

\n– Set $(Q_{old} \leftarrow Q_{new})$ at regular intervals

\n– Q_{old} is the following property.

 \bigcirc

How to gather experience?

$$
\{(s,a,s',r)_i\}_{i=1}^N
$$

This is why RL is hard

How To Gather Experience?

Exploration Problem

• What should π_{gather} be?

– Greedy? -> Local minimas, no exploration $\arg\max_{a} Q(s, a; \theta)$

Exploration Problem

• What should π_{gather} be?

– Greedy? -> Local minimas, no exploration $\arg\max_{a} Q(s,a;\theta)$

• An exploration strategy:

$$
- \epsilon\text{-greedy}
$$

$$
a_t = \begin{cases} \arg\max_a Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases}
$$

Correlated Data Problem

- Samples are correlated => high variance gradients => inefficient learning
- Current Q-network parameters determines next training samples => can lead to bad feedback loops
	- e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size.

Experience Replay

- Address this problem using experience replay
	- A replay buffer stores transitions

Experience Replay

• Address this problem using experience replay

- A replay buffer stores transitions (s, a, s', r)

– Continually update replay buffer as game (experience) episodes are played, older samples discarded

Experience Replay

• Address this problem using experience replay

- A replay buffer stores transitions (s, a, s', r)

- Continually update replay buffer as game (experience) episodes are played, older samples discarded
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Q-Learning Algorithm

Case study: Playing Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs from the game state
- Action: Game controls e.g.: Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Playing Atari Games

- Q-Network architecture
- State:
	- Stack of 4 image frames, grayscale conversion, down-sampling and cropping to $(84 \times 84 \times 4)$
- Last FC layer has #(actions) dimensions (predicts Q-values)

Breakout

[https://www.youtube.com/watch?v=V1eYniJ0R](https://www.youtube.com/watch?v=V1eYniJ0Rnk)nk

Summary

In today's class, we looked at

- Dynamic Programming
	- Q-Value Iteration
	- Policy Iteration
- Reinforcement Learning (RL)
	- The challenges of (deep) learning based methods
	- Value-based RL algorithms
		- Deep Q-Learning

Next class:

– Policy-based RL algorithms

Thanks!