CS 4803 / 7643: Deep Learning

Topics:

- Dynamic Programming (Q-Value Iteration)
- Reinforcement Learning (Intro, Q-Learning, DQNs)

Nirbhay Modhe Georgia Tech

Topics we'll cover

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration (recap)
 - Q-Value Iteration (new)
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

Topics we'll cover

- Overview of RL
 - RL vs other forms of learning
 - RL "API"
 - Applications
- Framework: Markov Decision Processes (MDP's)
 - Definitions and notations
 - Policies and Value Functions
 - Solving MDP's
 - Value Iteration (recap)
 - Q-Value Iteration (new)
 - Policy Iteration
- Reinforcement learning
 - Value-based RL (Q-learning, Deep-Q Learning)
 - Policy-based RL (Policy gradients)

Recap

- Markov Decision Process (MDP)
 - Defined by $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
 - S_{A} : set of possible states [start state = s_{0} , optional terminal / absorbing state]
 - $\mathcal{A}_{\mathcal{A}}$: set of possible actions
 - $\mathcal{R}(s, a, s')$: distribution of reward given (state, action, next state) tuple
 - $\mathbb{T}(s, a, s')$: transition probability distribution, also written as p(s'|s, a)
 - γ : discount factor

Recap

- Markov Decision Process (MDP)
 - Defined by $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
 - S_{4} : set of possible states [start state = s_{0} , optional terminal / absorbing state]
 - $\mathcal{A}_{\mathcal{A}}$: set of possible actions

 $\mathcal{R}(s, a, s')$: distribution of reward given (state, action, next state) tuple

- $\mathbb{T}(s, a, s')$: transition probability distribution, also written as p(s'|s, a)
- γ : discount factor
- Value functions, optimal quantities, bellman equation
- Algorithms for solving MDP's
 - Value Iteration

Value Function

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

Value Function

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

Value Function

Following policy π that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^{t} r_{t} | s_{0} = s, \pi\right]$$

How good is a state-action pair?

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

Optimal Quantities

Given optimal policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The optimal value function at state s, and acting optimally thereafter

$$\underbrace{V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^*\right]}_{V} \qquad \qquad \bigvee \qquad \underbrace{\bigcap}_{t \ge 0} 1$$

Optimal Quantities

Given optimal policy π^* that produces sample trajectories s₀, a₀, r₀, s₁, a₁, ...

How good is a state?

The optimal value function at state s, and acting optimally thereafter

$$V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^*\right]$$

How good is a state-action pair?

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$\underbrace{Q^*(s, a)}_{t \ge 0} = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

,)

• Relations:

$$V^{*}(s) = \max_{a} Q^{*}(s, a) \qquad \pi^{*}(s) = \arg\max_{a} Q^{*}(s, a)$$

• Relations:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Recursive optimality equations:

$$Q^*(s,a) =$$

P(S'|S,a)

• Relations:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Recursive optimality equations:

$$Q^*(s,a) = \mathbb{E}_{\substack{s' \sim p(s'|s,a)}} \left[r(s,a) + \gamma V^*(s) \right]$$

• Relations:

• Recursive optimality equations:

$$Q^*(s,a) = \mathbb{E}_{\substack{s' \sim p(s'|s,a)}} [r(s,a) + \gamma V^*(s)]$$
$$= \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^*(s)]$$

• Relations:

$$V^*(s) = \max_a Q^*(s, a)$$
 $\pi^*(s) = \arg\max_a Q^*(s, a)$

• Recursive optimality equations:

$$\underbrace{Q^*(s,a)}_{s' \sim p(s'|s,a)} \begin{bmatrix} r(s,a) + \gamma V^*(s) \end{bmatrix} \\
= \sum_{s'} p(s'|s,a) \begin{bmatrix} r(s,a) + \gamma V^*(s) \end{bmatrix} \\
= \sum_{s'} p(s'|s,a) \begin{bmatrix} r(s,a) + \gamma \max_{a} Q^*(s',a') \end{bmatrix}$$

• Relations:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = \arg \max_{a} Q^{*}(s, a)$$

$$\pi^{*}(s) = \arg \max_{a} Q^{*}(s, a)$$

$$(s, a) = \max_{a} Q^{*}(s, a)$$

$$P^{*}(s, a) = \sum_{s' \sim p(s'|s, a)} [r(s, a) + \gamma V^{*}(s)]$$

$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s)]$$

$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

Value Iteration (VI)

• Based on the bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} p\left(s'|s,a\right) \left[r(s,a) + \gamma V^*\left(s'\right)\right]$$

Value Iteration (VI)

Based on the bellman optimality equation

$$V_{a}^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V_{a}^{*}(s')]$$
Algorithm
- Initialize values of all states $V^{0}(s) = 0$
- While not converged:
• For each state:
 $V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{i}(s')]$
- Repeat until convergence (no change in values) Homework
 $V^{0} \rightarrow V^{1} \rightarrow V^{2} \rightarrow \cdots \rightarrow V^{i} \rightarrow \cdots \rightarrow V^{*}$

Time complexity per iteration $O(|\mathcal{S}|^2|\mathcal{A}|)$

Q-Value Iteration

• Value Iteration Update:

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^{i}(s') \right]$$

• Q-Value Iteration Update:

$$Q^{i+1}(s,a) \leftarrow$$

Q-Value Iteration

• Value Iteration Update:

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^{i}(s') \right]$$

• Q-Value Iteration Update:

$$Q^{i+1}(s,a) \leftarrow \sum_{s'} p\left(s'|s,a\right) \left[r\left(s,a\right) + \gamma \max_{a'} Q^{i}(s',a')\right]$$

The algorithm is same as value iteration, but it loops over actions as well as states

• Policy iteration: Start with arbitrary π_0 and refine it.

$$\pi_0 \to \pi_1 \to \pi_2 \to \dots \to \pi^*$$

• Policy iteration: Start with arbitrary π_0 and refine it.

 $\pi_0 \to \pi_1 \to \pi_2 \to \dots \to \pi^*$

- Involves repeating two steps:
 - Policy Evaluation: Compute V^{π} (similar to VI)
 - Policy Refinement: Greedily change actions as per V^{π}

$$\pi_0 \longrightarrow V^{\pi_0} \longrightarrow \pi_1 \longrightarrow V^{\pi_1} \longrightarrow \dots \longrightarrow \underline{\pi^*} \longrightarrow \underline{V^{\pi^*}}$$

• Policy iteration: Start with arbitrary π_0 and refine it.

 $\pi_0 \to \pi_1 \to \pi_2 \to \dots \to \pi^*$

- Involves repeating two steps:
 - Policy Evaluation: Compute V^{π} (similar to VI)
 - Policy Refinement: Greedily change actions as per V^{π}

$$\pi_0 \longrightarrow V^{\pi_0} \longrightarrow \pi_1 \longrightarrow V^{\pi_1} \longrightarrow \qquad \longrightarrow \pi^* \longrightarrow V^{\pi^*}$$

• Why do policy iteration? – π_i often converges to π^* much sooner than V^{π_i}

Summary

- Value Iteration
 - Bellman update to state value estimates
- Q-Value Iteration
 - Bellman update to (state, action) value estimates
- Policy Iteration
 - Policy evaluation + refinement

- Typically, we don't know the environment
 - $\mathbb{T}(s, a, s')$ unknown, how actions affect the environment. - $\mathcal{R}(s, a, s')$ unknown, what/when are the good actions?

- Typically, we don't know the environment
 - $\mathbb{T}(s, a, s')$ unknown, how actions affect the environment. - $\mathcal{R}(s, a, s')$ unknown, what/when are the good actions?
- But, we can learn by trial and error.
 - Gather experience (data) by performing actions.

$$\{s, a, s', r\}_{i=1}^{N}$$

Approximate unknown quantities from data.

- Old Dynamic Programming Demo
 - <u>https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html</u>
- RL Demo
 - https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

• In addition to not knowing the environment, sometimes the state space is too large.

- In addition to not knowing the environment, sometimes the state space is too large.
- A value iteration updates takes $O(|\mathcal{S}|^2 |\mathcal{A}|)$
 - Not scalable to high dimensional states e.g.: RGB images.

- In addition to not knowing the environment, sometimes the state space is too large.
- A value iteration updates takes $O(|\mathcal{S}|^2|\mathcal{A}|)$
 - Not scalable to high dimensional states e.g.: RGB images.
- Solution: Deep Learning!
 - Use deep neural networks to learn low-dimensional representations.

Reinforcement Learning

Reinforcement Learning

- Value-based RL
 - (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network

Reinforcement Learning

- Value-based RL
 - (Deep) Q-Learning, approximating $Q^*(s,a)$ with a deep Q-network
- Policy-based RL ullet
 - Directly approximate optimal policy π^* with a parametrized policy $\pi^*_{\rm A}$

Reinforcement Learning

- Value-based RL
 - (Deep) Q-Learning, approximating $\,Q^*(s,a)\,$ with a deep Q-network
- Policy-based RL
 - Directly approximate optimal policy π^* with a parametrized policy π_{θ}^*
- Model-based RL
 - Approximate transition function T(s', a, s) and reward function $\mathcal{R}(s, a)$
 - Plan by looking ahead in the (approx.) future!

Reinforcement Learning

- Value-based RL
 - (Deep) Q-Learning, approximating $\,Q^*(s,a)\,$ with a deep Q-network
- Policy-based RL
 - Directly approximate optimal policy π^* with a parametrized policy π^*_{θ}
- Model-based RL
 - Approximate transition function $T(s^\prime,a,s)$ and reward function $\mathcal{R}(s,a)$
 - Plan by looking ahead in the (approx.) future!

Homework!

Value-based Reinforcement Learning

Q-Learning with linear function approximators

$$Q(s,a;w,b) = w_a^{\mathsf{T}} s + b_a$$

Has some theoretical guarantees

Q-Learning with linear function approximators

$$Q(s,a;w,b) = w_a^{\top}s + b_a$$

Has some theoretical guarantees

- Deep Q-Learning: Fit a deep Q-Network $Q(s, a; \theta)$
 - Works well in practice
 - Q-Network can take RGB images

Image Credits: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Assume we have collected a dataset

$$\{(s, a, s', r)_i\}_{i=1}^N$$

• We want a Q-function that satisfies:

• Loss for a single data point:

$$MSE \text{ Loss} := \underbrace{\left(\begin{array}{c} Q_{new}(s, a) \end{array}\right)}_{a} \left(r + \max_{a} Q_{old}(s', a) \right) \right)^{2}$$

$$Predicted Q-Value \qquad Target Q-Value$$

- Minibatch of $\{(s, a, s', r)_i\}_{i=1}^{B}$
- Forward pass: State Q-Network Q-Values per action $B \times D$ $B \times n_{actions}$

• Minibatch of $\{(s, a, s', r)_i\}_{i=1}^B$

- Minibatch of $\{(s, a, s', r)_i\}_{i=1}^B$
- Forward pass: State Q-Network Q-Values per action $B \times D$ $B \times n_{actions}$ • Compute loss: $\left(\begin{array}{c} Q_{new}(s,a) - (r + \max_{a} Q_{old}(s',a)) \\ \theta_{new} \end{array} \right)^{2}$

- Minibatch of $\{(s, a, s', r)_i\}_{i=1}^B$
- Forward pass: State Q-Network Q-Values per action $B \times D$ $B \times n_{actions}$
- Compute loss:

$$\left(\underbrace{\begin{array}{c}Q_{new}(s,a)-(r+\max_{a}Q_{old}(s',a))\\\theta_{new}\end{array}}_{\theta_{old}}\right)^{2}$$

- Minibatch of $\{(s, a, s', r)_i\}_{i=1}^B$
- Forward pass: State Q-Network Q-Values per action ٠ $B \times D$ $B \times n_{actions}$ $\left(Q_{new}(s,a) - (r + \max_{a} Q_{old}(s',a))\right)^{2}$ Compute loss: ullet $\theta_{\underline{new}}$ $\frac{\partial Loss}{\partial \theta}$ Backward pass: •

Deep Q-Learning
MSE Loss :=
$$(Q_{new}(s, a) - (r + \max_{a} Q_{old}(s', a)))^{2}$$

• In practice, for stability:
- Freeze Q_{old} and update Q_{new} parameters
- Set $Q_{old} \leftarrow Q_{new}$ at regular intervals

Ð

How to gather experience?

$$\{(s, a, s', r)_i\}_{i=1}^N$$

This is why RL is hard

How To Gather Experience?

Exploration Problem

• What should $\pi_{ ext{gather}}$ be?

- Greedy? -> Local minimas, no exploration $\arg \max_{a} Q(s, a; \theta)$

Exploration Problem

• What should $\pi_{ ext{gather}}$ be?

- Greedy? -> Local minimas, no exploration $\arg \max_{a} Q(s, a; \theta)$

• An exploration strategy:

$$-\epsilon \text{-greedy}$$

$$a_t = \begin{cases} \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases}$$

Correlated Data Problem

- Samples are correlated => high variance gradients
 => inefficient learning
- Current Q-network parameters determines next training samples => can lead to bad feedback loops
 - e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size.

Experience Replay

- Address this problem using experience replay
 - A replay buffer stores transitions

Experience Replay

• Address this problem using experience replay

- A replay buffer stores transitions (s, a, s', r)

 Continually update replay buffer as game (experience) episodes are played, older samples discarded

Experience Replay

• Address this problem using experience replay

- A replay buffer stores transitions (s, a, s', r)

- Continually update replay buffer as game (experience) episodes are played, older samples discarded
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Q-Learning Algorithm

Case study: Playing Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs from the game state
- Action: Game controls e.g.: Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Playing Atari Games

- Q-Network architecture
- State:
 - Stack of 4 image frames, grayscale conversion, down-sampling and cropping to (84 x 84 x 4)
- Last FC layer has #(actions) dimensions (predicts Q-values)

Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Summary

In today's class, we looked at

- Dynamic Programming
 - Q-Value Iteration
 - Policy Iteration
- Reinforcement Learning (RL)
 - The challenges of (deep) learning based methods
 - Value-based RL algorithms
 - Deep Q-Learning

Next class:

Policy-based RL algorithms

Thanks!