
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Variational Auto-Encoders (VAEs)

– AEs, Variational Inference



Administrativia
• HW4 Reminder

– Due: 11/07, 11:55pm
– Reinforcement Learning
– Last HW. Focus on project after that. 

• Final project
– No poster session
– PDF Report submission

• Details out soon 
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Administrativia
• HW3 Grades Released

– Regrade requests close: 11/15, 11:55pm
– Please check solutions first!

• Grade histogram: 7643
– Max possible: 71 (regular credit) + 0 (extra credit)
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Administrativia
• HW3 Grades Released

– Regrade requests close: 11/15, 11:55pm
– Please check solutions first!

• Grade histogram: 4803
– Max possible: 55 (regular) + 14 (extra credit)
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Recap from last time 2 lectures ago
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Supervised vs Reinforcement vs Unsupervised 
Learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised 
Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reinforcement 
Learning

Reinforcement Learning

Given: (e, r)
Environment e, Reward function r 

(evaluative feedback)

Goal: Maximize expected reward

Examples: Robotic control, video 
games, board games, etc.



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Holy grail: Solve 
unsupervised learning
=> understand structure 
of visual world

Training data is cheap



Tasks
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx c Discrete

Dimensionality
Reduction

x z Continuous

Supervised Learning

Unsupervised Learning

Density 
Estimation

x p(x) On simplex



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

K-means clustering

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en


K-means

1. Ask user how many 
clusters they’d like. 

(e.g. k=5) 

2. Randomly guess k
cluster Center 

locations

3. Each datapoint finds 
out which Center it’s 

closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated! 15(C) Dhruv Batra Slide Credit: Carlos Guestrin



• Optimize objective function:

• Fix µ, optimize a
• Fix a, optimize µ

16(C) Dhruv Batra Slide Credit: Carlos Guestrin

K-means as Co-ordinate Descent

min
µ1,...,µk

min
a1,...,aN

F (µ,a) = min
µ1,...,µk

min
a1,...,aN

NX

i=1

kX

j=1

aij ||xi � µj ||2



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised 
Learning

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Given training data, generate new samples from same distribution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Want to learn pmodel(x) similar to pdata(x)



Generative Models

Want to learn pmodel(x) similar to pdata(x)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Given training data, generate new samples from same distribution



Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and 
planning (reinforcement learning applications!)

- Training generative models can also enable inference of  latent 
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/


Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

We will discuss 3 most 
popular types of generative 
models

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Then maximize likelihood of training data

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Complex distribution over pixel values 
=> Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Goal: Variational Autoencoders

• Latent variable probabilistic models
– Example GMMs

• Autoencodeders
• Variational Inference

(C) Dhruv Batra 26



Variational 
Autoencoders (VAE)



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

VAEs define intractable density function with latent z:  

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

VAEs define intractable density function with latent z:  

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Cannot optimize directly, derive and optimize lower bound on likelihood instead



GMM

(C) Dhruv Batra 31Figure Credit: Kevin Murphy
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Gaussian Mixture Model
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Gaussian Mixture Model
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GMM
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K-means vs GMM
• K-Means

– http://stanford.edu/class/ee103/visualizations/kmeans/kmean
s.html

• GMM
– https://lukapopijac.github.io/gaussian-mixture-model/
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http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
https://lukapopijac.github.io/gaussian-mixture-model/


Hidden Data Causes Problems #1
• Fully Observed (Log) Likelihood factorizes

• Marginal (Log) Likelihood doesn’t factorize

• All parameters coupled! 
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Hidden Data Causes Problems #2
• Identifiability
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Hidden Data Causes Problems #3
• Likelihood has singularities if one Gaussian 

“collapses”

(C) Dhruv Batra 40x

p
(x

)
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Autoencoders
• Demo

– https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto
encoder.html

53

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

q𝜙 𝑧 𝑥 p𝜃 𝑥 𝑧



Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Key problem
• P(z|x)
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What is Variational Inference?
• A class of methods for 

– approximate inference, parameter learning
– and approximating integrals basically.. 

• Key idea
– Reality is complex
– Instead of performing approximate computation in something 

complex, 
– Can we perform exact computation in something “simple”?
– Just need to make sure the simple thing is “close” to the 

complex thing. 
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Intuition
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• Given two distributions p and q KL divergence:

• D(p||q) = 0 iff p=q

• Not symmetric – p determines where difference is 
important

KL divergence: 
Distance between distributions

(C) Dhruv Batra 62Slide Credit: Carlos Guestrin



Find simple approximate distribution

• Suppose p is intractable posterior
• Want to find simple q that approximates p
• KL divergence not symmetric

• D(p||q)
– true distribution p defines support of diff. 
– the “correct” direction
– will be intractable to compute

• D(q||p)
– approximate distribution defines support
– tends to give overconfident results
– will be tractable
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Example 1
• p = 2D Gaussian with arbitrary co-variance
• q = 2D Gaussian with diagonal co-variance
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z1

z2

(a)
0 0.5 1
0

0.5

1

z1

z2

(b)
0 0.5 1
0

0.5

1
argmin_q KL (p || q) 

p = Green; q = Red

argmin_q KL (q || p) 



Example 2
• p = Mixture of Two Gaussians
• q = Single Gaussian
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argmin_q KL (p || q) 

p = Blue; q = Red

argmin_q KL (q || p) 


