CS 4803 / 7643: Deep Learning

Topics: – Variational Auto-Encoders (VAEs) – AEs, Variational Inference

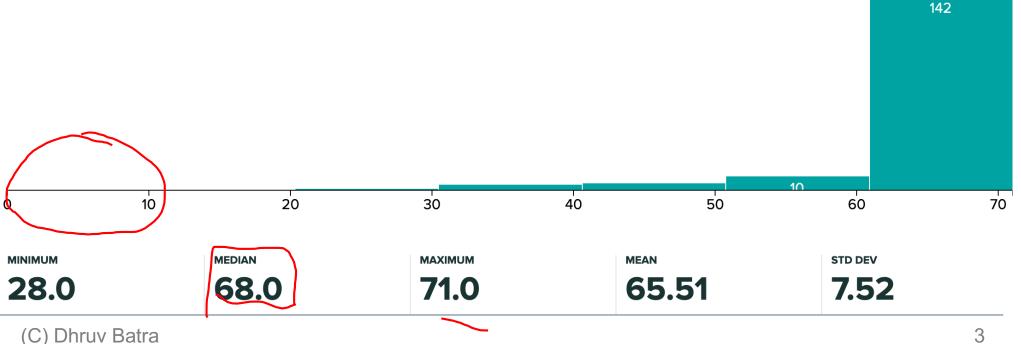
> Dhruv Batra Georgia Tech

Administrativia

- HW4 Reminder
 - Due: 11/07, 11:55pm
 - Reinforcement Learning
 - Last HW. Focus on project after that.
- Final project
 - No poster session
 - PDF Report submission
 - Details out soon

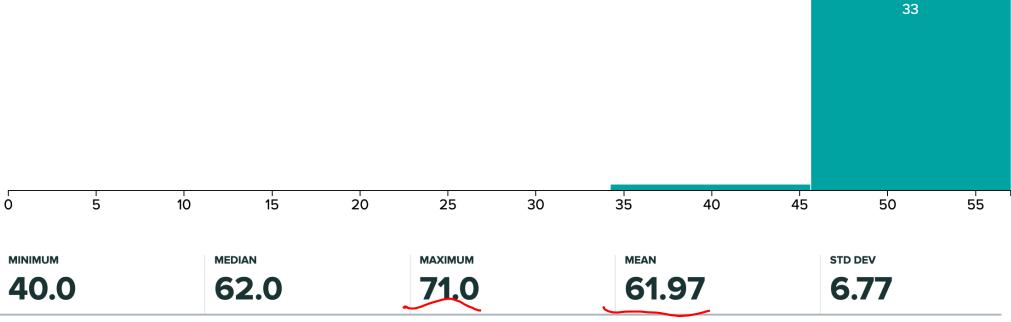
Administrativia

- HW3 Grades Released
 - Regrade requests close: 11/15, 11:55pm
 - Please check solutions first!
- Grade histogram: 7643 \bullet
 - Max possible: 71 (regular credit) + 0 (extra credit)



Administrativia

- HW3 Grades Released
 - Regrade requests close: 11/15, 11:55pm
 - Please check solutions first!
- Grade histogram: 4803
 - Max possible: 55 (regular) + 14 (extra credit)



Recap from last time 2 lectures ago

Supervised vs Reinforcement vs Unsupervised Learning Supervised Learning Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

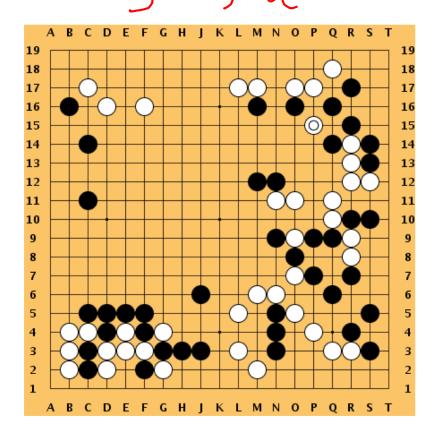
Cat

Reinforcement Learning

Given: (e, r) Environment e, Reward function r (evaluative feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games, board games, etc.



Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Learning

Data: x Just data, no labels!

- **Goal**: Learn some underlying hidden *structure* of the data
- **Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Learning

Unsupervised Learning

Data: x Just data, no labels!

Holy grail: Solve **Data**: (x, y) unsupervised learning x is data, y is label => understand structure of visual world

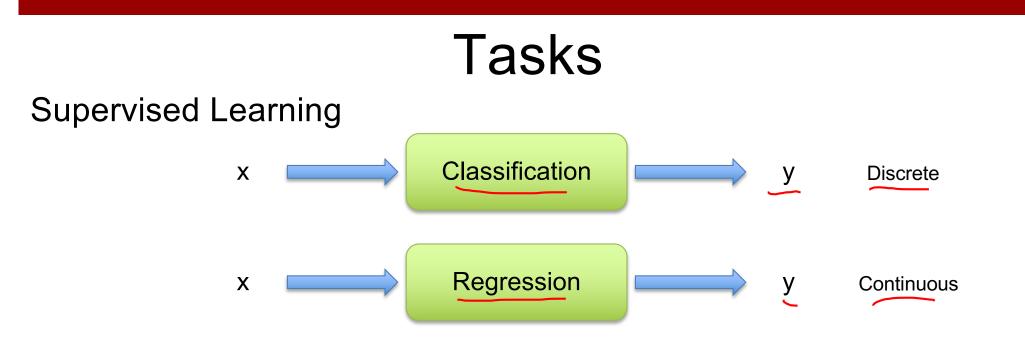
Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc. Supervised Learning

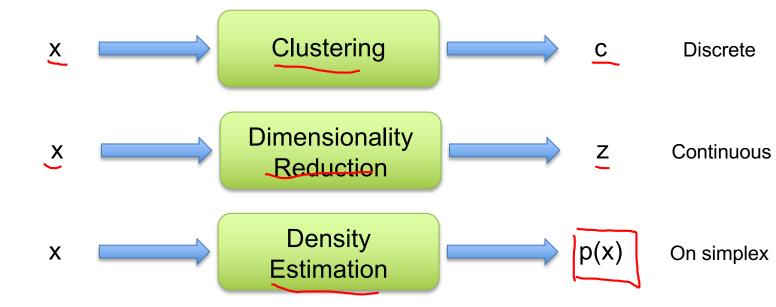
 $p(x_i | x_j)$

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.



Unsupervised Learning



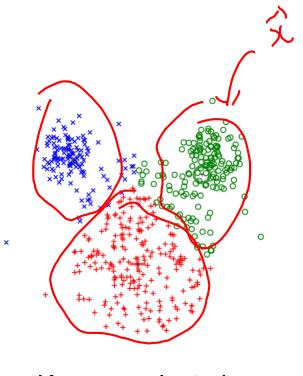
(C) Dhruv Batra

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



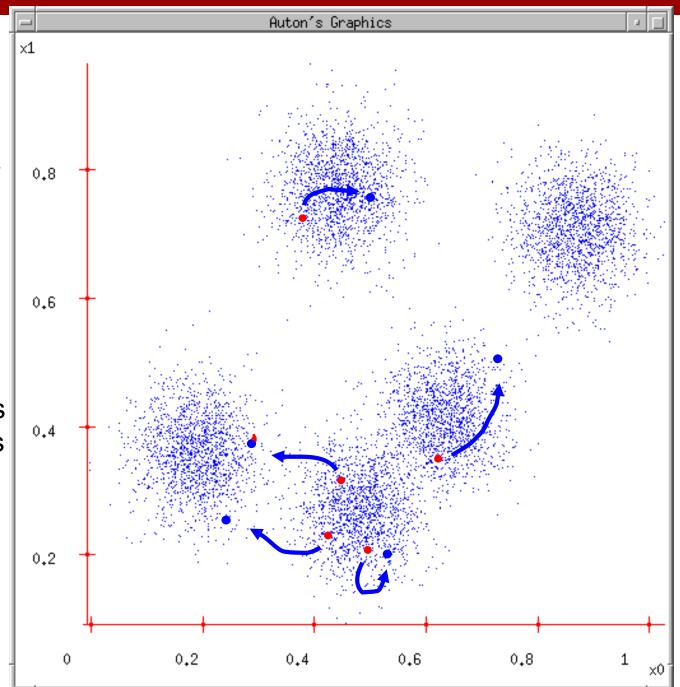
K-means clustering

This image is CC0 public domain

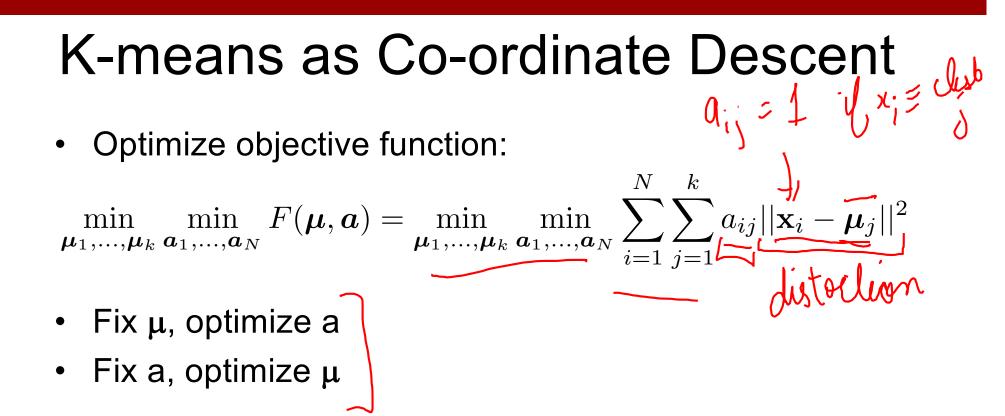
K-means

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it's closest to.
 - Each Center finds the centroid of the points it owns...
 - 5. ...and jumps there

6. ...Repeat until (C) Dhruv Baterminated!



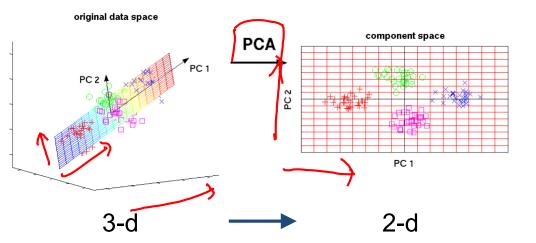
Slide Credit: Carlos Guestrin



Unsupervised Learning

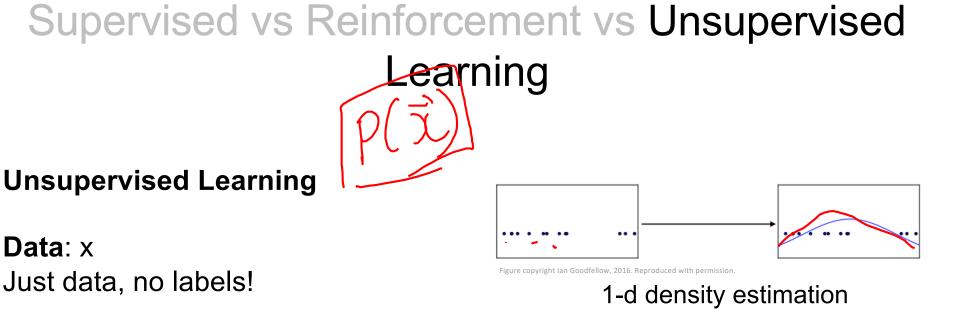
Data: x Just data, no labels!

- **Goal**: Learn some underlying hidden *structure* of the data
- **Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.



Principal Component Analysis (Dimensionality reduction)

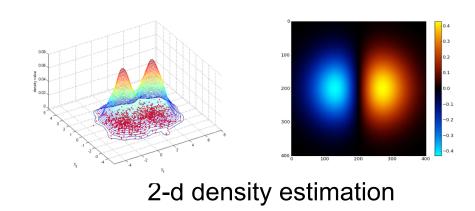
This image from Matthias Scholz is CC0 public domain



Goal: Learn some underlying hidden structure of the data

Data: x

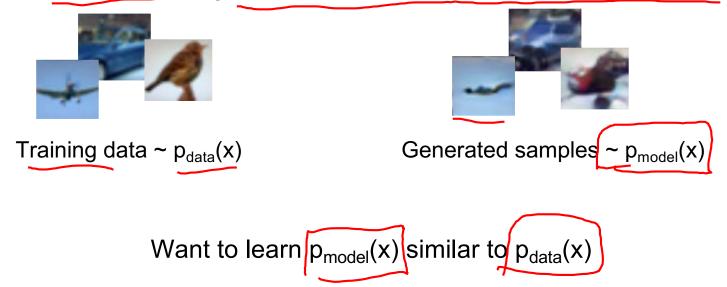
Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



2-d density images left and are CC0 public doma

Generative Models

Given training data, generate new samples from same distribution



Generative Models

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavors:

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from $p_{model}(x)$ w/o explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Why Generative Models?

p(image (ontril)

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Figures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.

Taxonomy of Generative Models

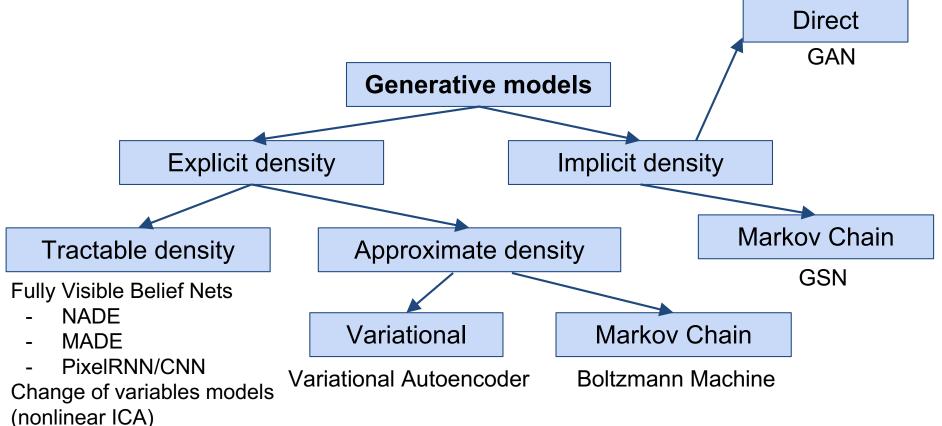
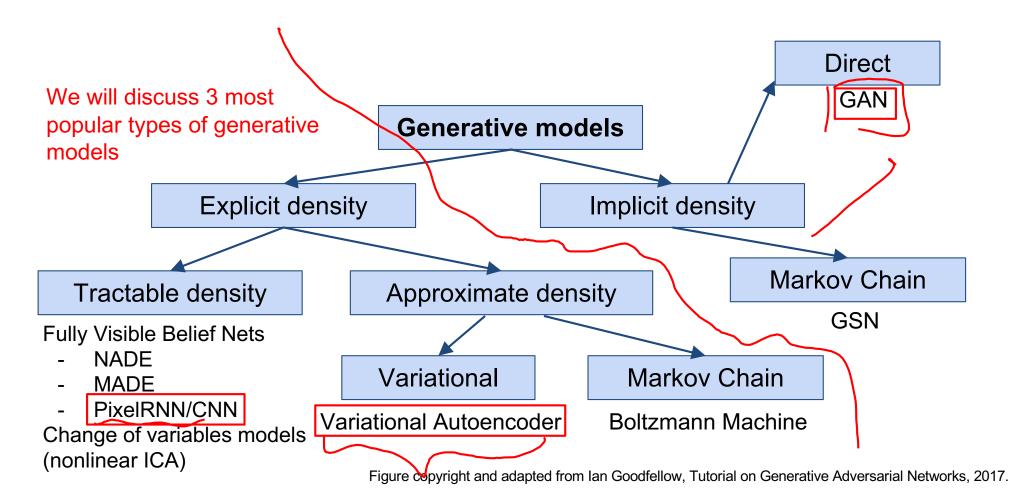


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

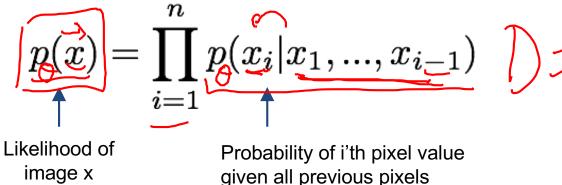
Taxonomy of Generative Models



Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:



Then maximize likelihood of training data

 $\frac{\chi_{1} - \dots + \chi_{i-1}}{\sigma} \xrightarrow{\gamma_{i-1}} NN \xrightarrow{\gamma_{i-1}} \gamma_{i-1}$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

Likelihood of image x

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

Plan for Today

- Goal: Variational Autoencoders
- Latent variable probabilistic models – Example GMMs
- Autoencodeders
- Variational Inference

Variational Autoencoders (VAE)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$\underline{p_{\theta}(\vec{x})} = \prod_{i=1}^{n} p_{\theta}(\underline{x_i}|\underline{x_1, ..., x_{i-1}}) \qquad P(\vec{x}) \qquad D=\vec{q} \quad \vec{x} \quad \vec{p}$$

$$P(\vec{x}, |\underline{z}|) \quad b \quad b \quad d \quad d \quad n''$$

$$P(\vec{x}, |\underline{z}|) \quad p(z) \quad b \quad d \quad n''$$

$$P(\vec{x}, |\underline{z}|) \quad p(z) \quad d \quad n' \quad d \quad n''$$

$$P(\vec{x}, |\underline{z}|) \quad p(z) \quad d \quad n' \quad d \quad n''$$

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent **z**:

$$p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz \qquad z \quad (online uous)$$

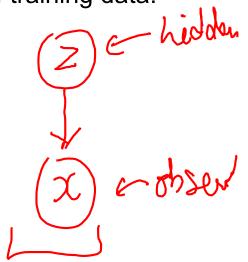
$$\sum_{z} P(z) P(x|z) \qquad z \quad discrete$$

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

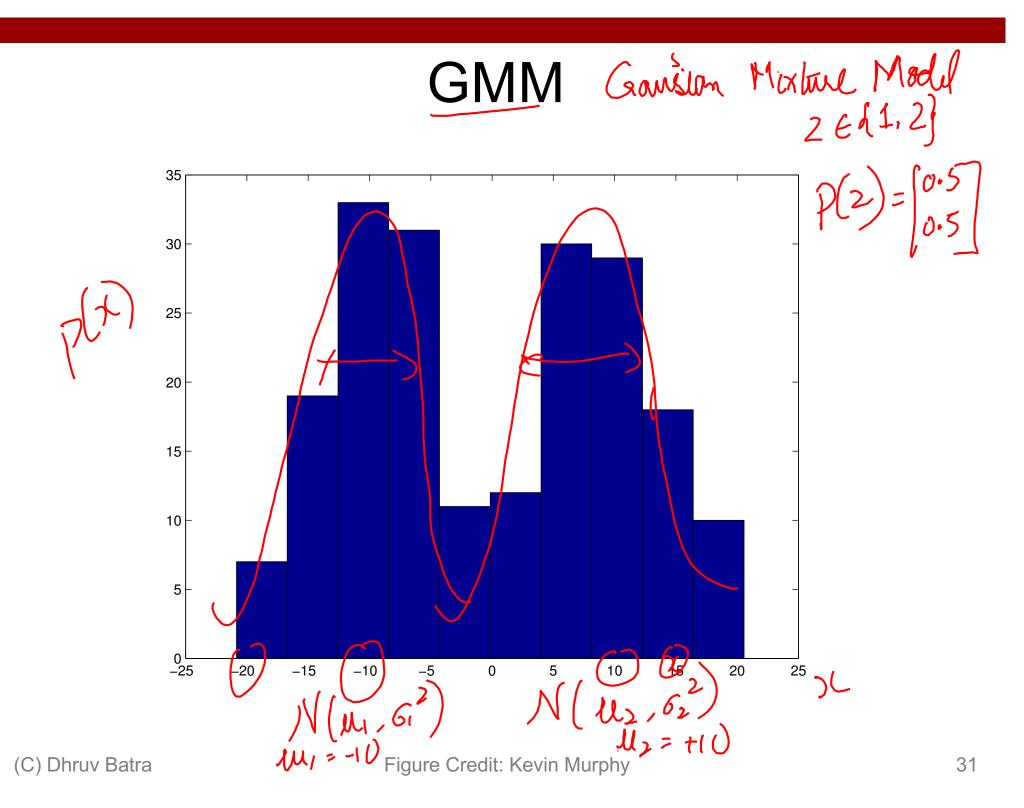
$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

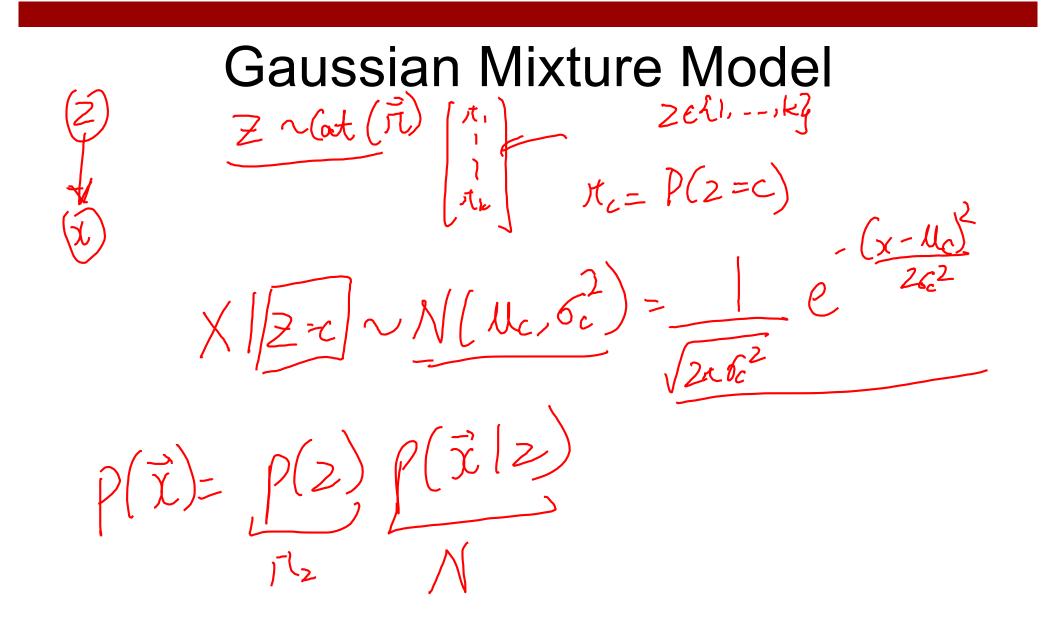
VAEs define intractable density function with latent **z**: $p_{\theta}(x) = \iint p_{\theta}(z) p_{\theta}(x|z) dz$



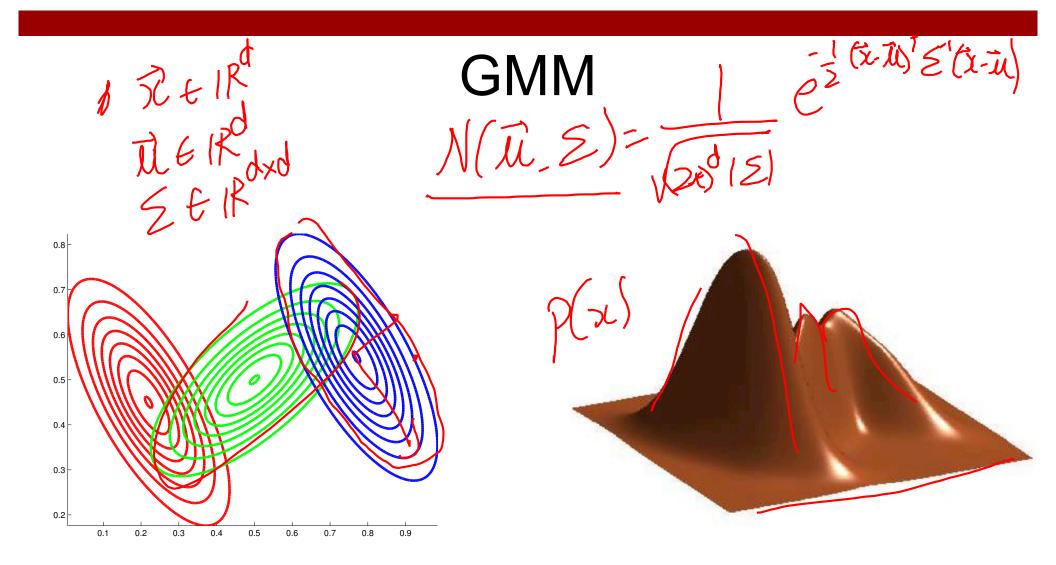
Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





Gaussian Mixture Model $p(z) = n_z$ $P(x|z) = N(M_z, 6z)$ 1 prom P(2) P(x12) = Morginalization $p(2,\tilde{\chi})$ p[zl



K-means vs GMM

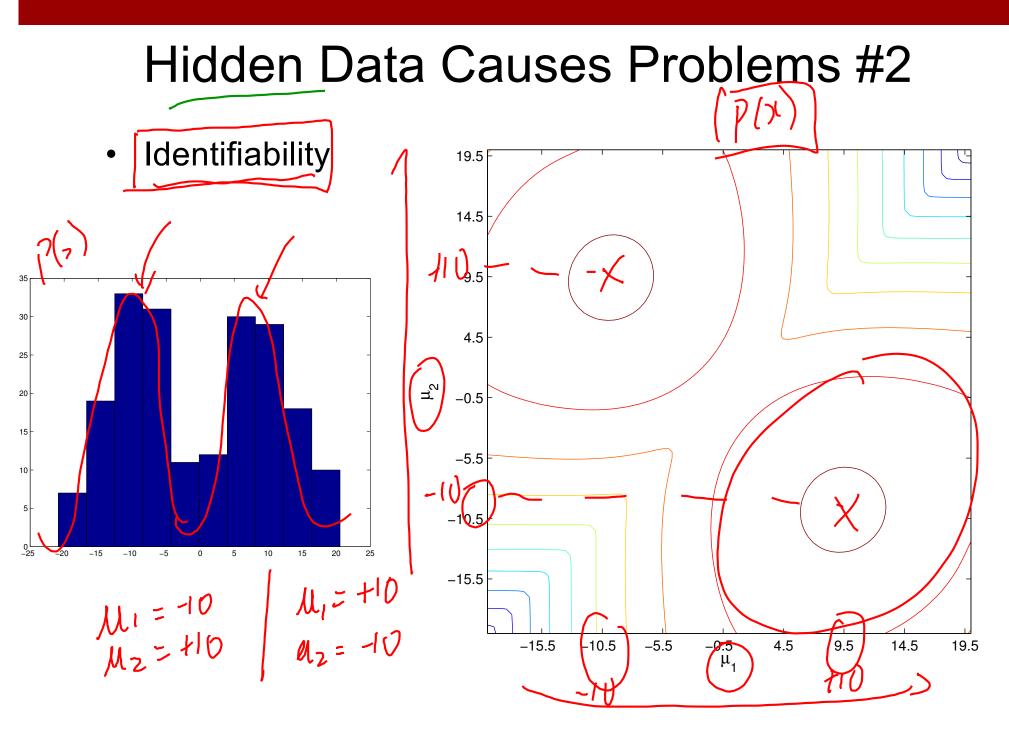
- K-Means
 - <u>http://stanford.edu/class/ee103/visualizations/kmeans/kmean</u>
 <u>s.html</u>
- GMM
 - <u>https://lukapopijac.github.io/gaussian-mixture-model/</u>

Hidden Data Causes Problems #1

- Fully Observed (Log) Likelihood factorizes
- Marginal (Log) Likelihood doesn't factorize
- All parameters coupled!

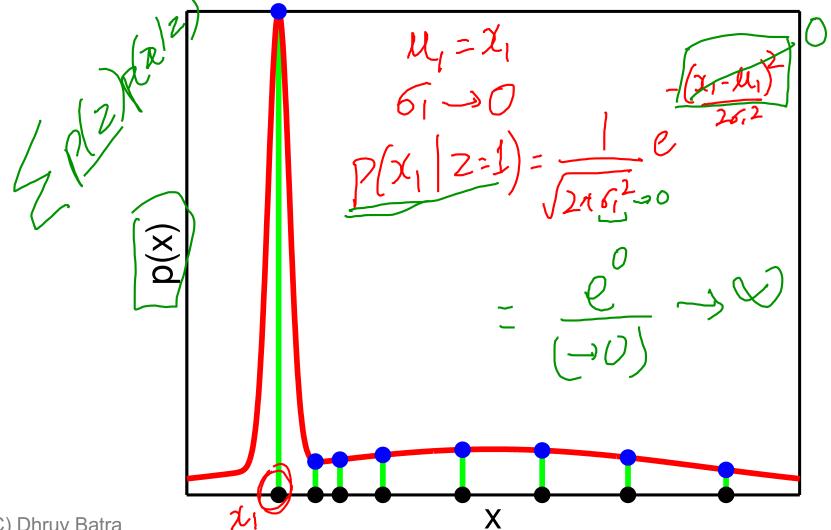
Parometers: q r, ___rk, ll, -__ lk, Z, _...Zk ΞΘ $D = \int \vec{x}_i q$ ÔMLE = argmox P(D10) = log P(D10) = Elog P(z: 10) $\left[\chi_{i}, Z_{i} | 0\right]$ $\frac{\log \left| \sum_{i} \sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum_{$ $P(\chi_i, \chi_i | \mathcal{O})$ Zi=1

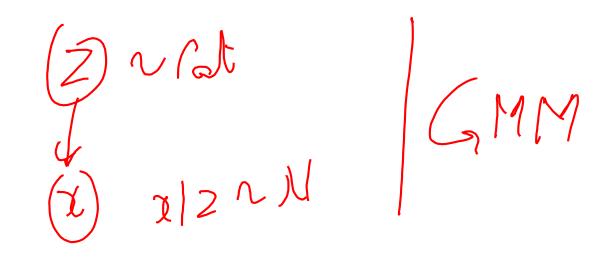
(C) Dhruv Batra



Hidden Data Causes Problems #3

Likelihood has singularities if one Gaussian \bullet "collapses"



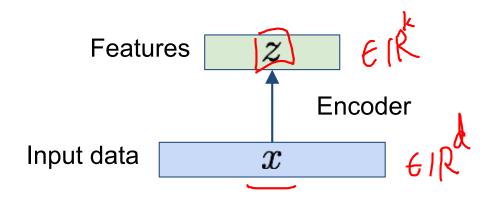


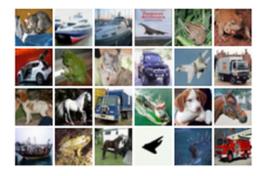
Variational Auto Encoders

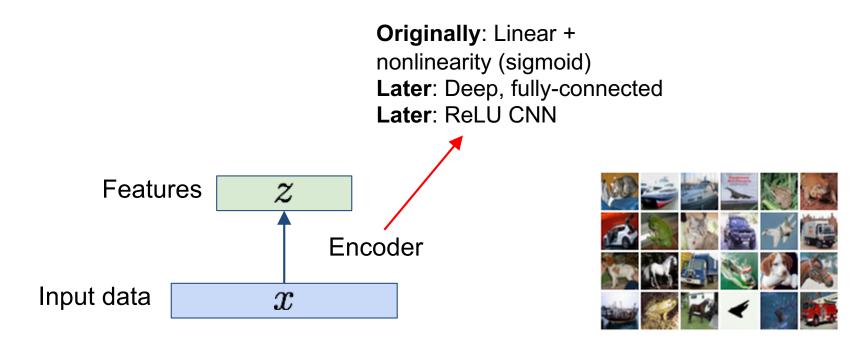
VAEs are a combination of the following ideas:

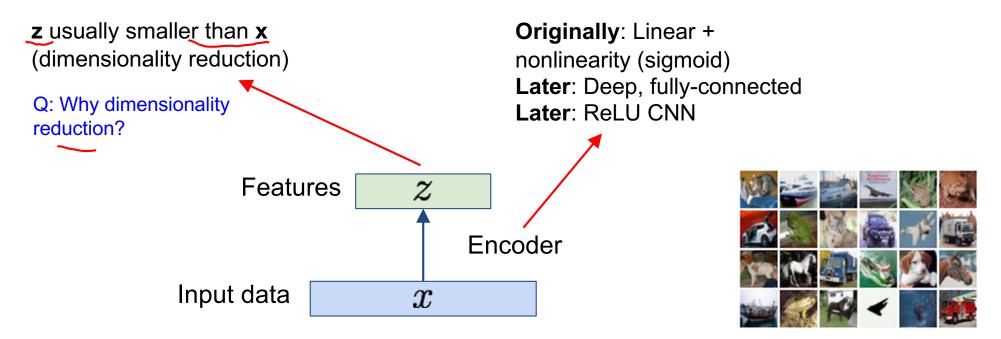
- Auto Encoders
- Variational ApproximationVariational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick

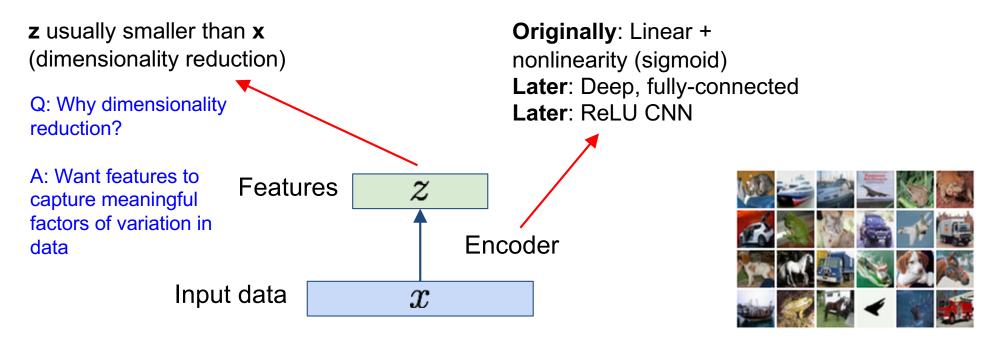
ZP(X|Z)



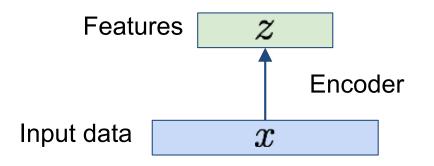


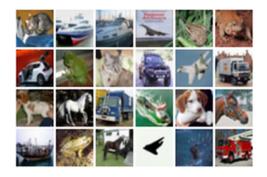






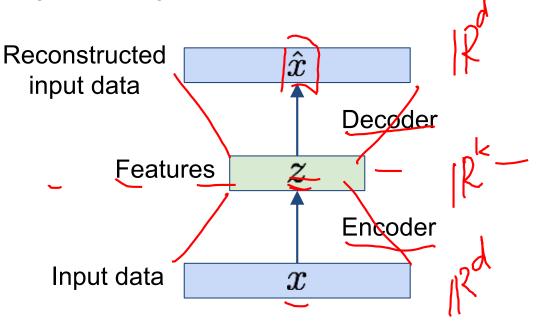
How to learn this feature representation?

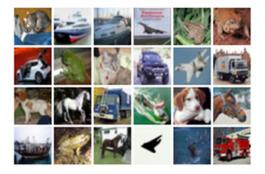




How to learn this feature representation?

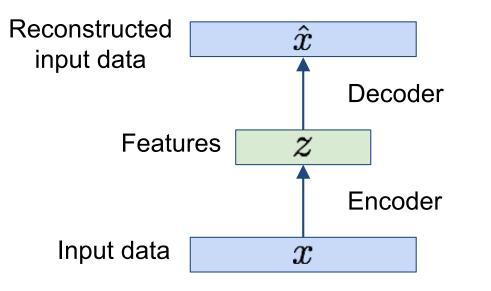
Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

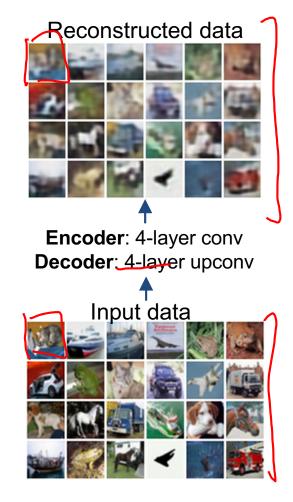




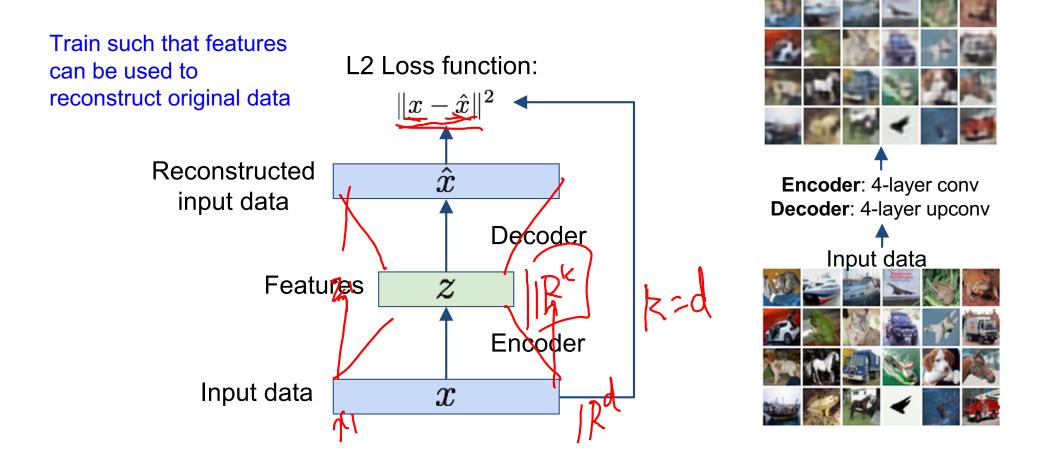
How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

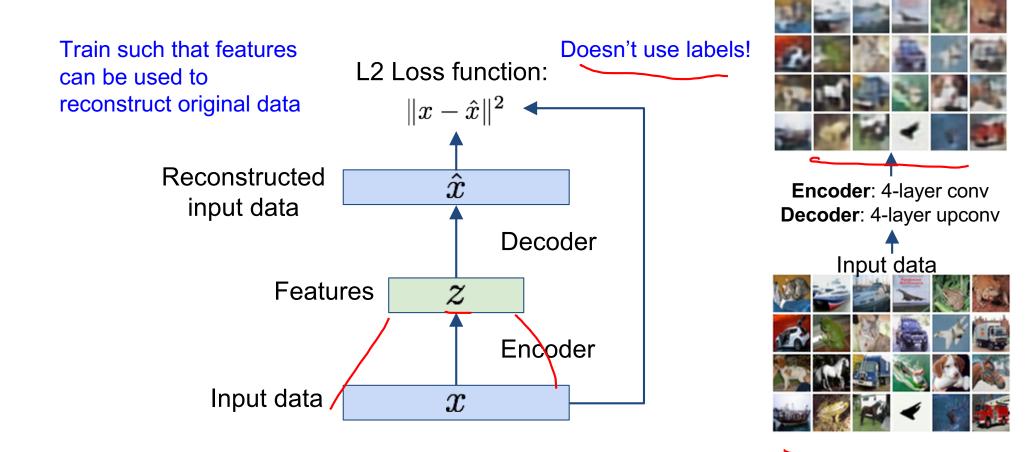




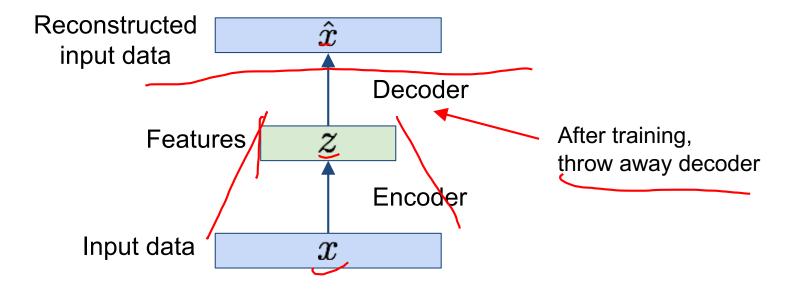
Reconstructed data

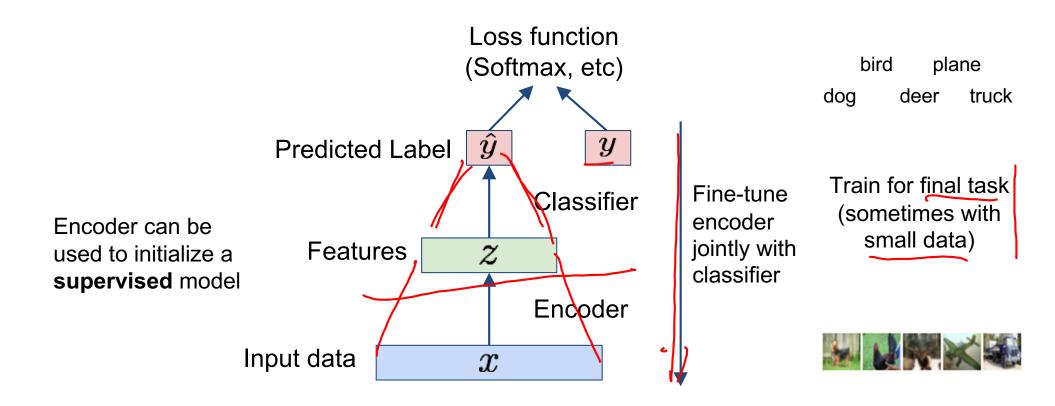


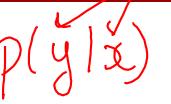
Reconstructed data



- Demo
 - <u>https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto</u> <u>encoder.html</u>





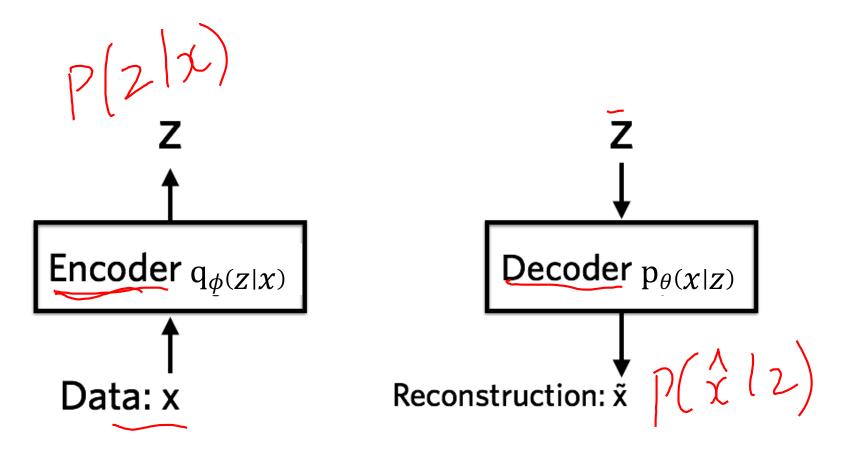


Reconstructed \hat{x} input data DecoderFeatures zInput data x Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Features capture factors of variation in training data. Can we generate new images from an autoencoder?

Variational Autoencoders

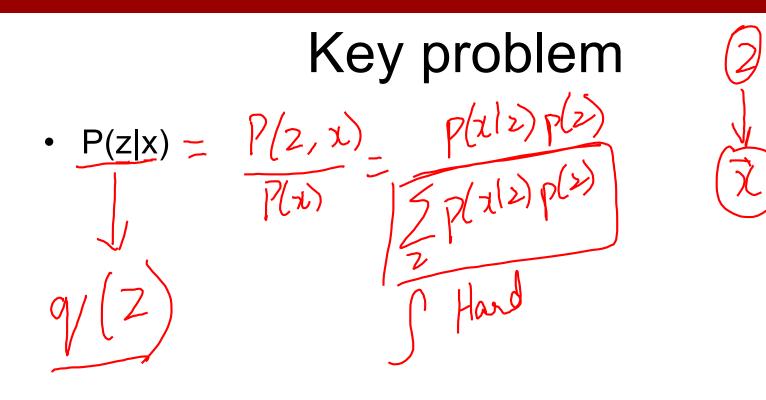
Probabilistic spin on autoencoders - will let us sample from the model to generate data!



Variational Auto Encoders

VAEs are a combination of the following ideas:

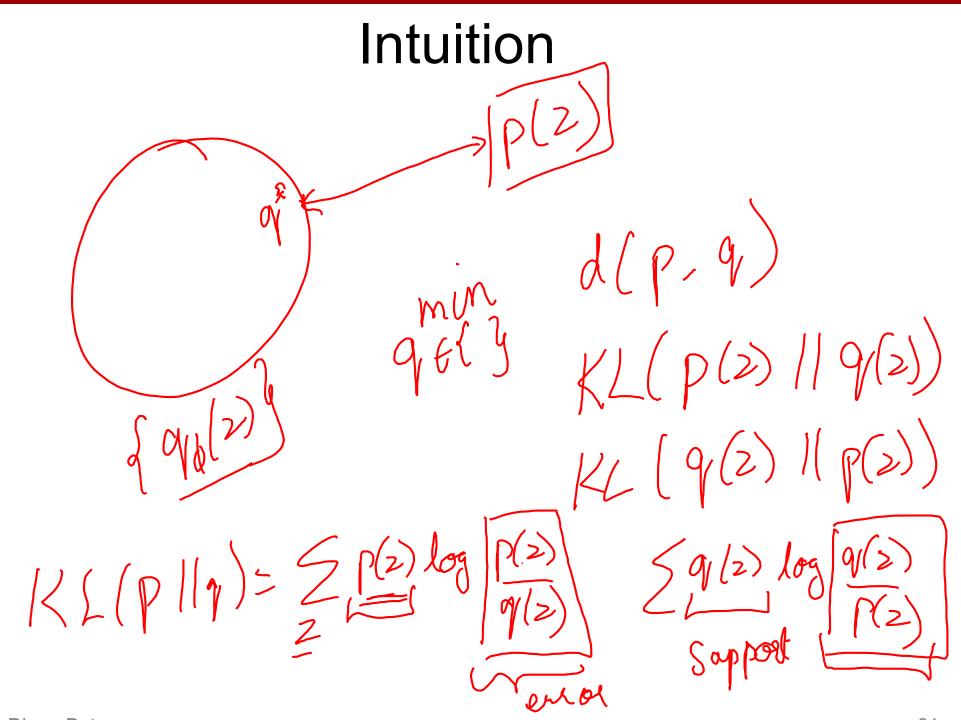
- 1. Auto Encoders
- 2. Variational Approximation
 - Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick



(C) Dhruv Batra

What is Variational Inference?

- A class of methods for
 - approximate inference, parameter learning
 - and approximating integrals basically..
- Key idea
 - Reality is complex
 - Instead of performing approximate computation in something complex,
 - Can we perform exact computation in something "simple"?
 - Just need to make sure the simple thing is "close" to the complex thing.



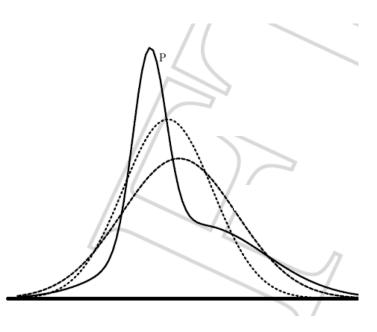
KL divergence: Distance between distributions

• Given two distributions *p* and *q* KL divergence:

- D(p||q) = 0 iff p=q
- Not symmetric p determines where difference is important

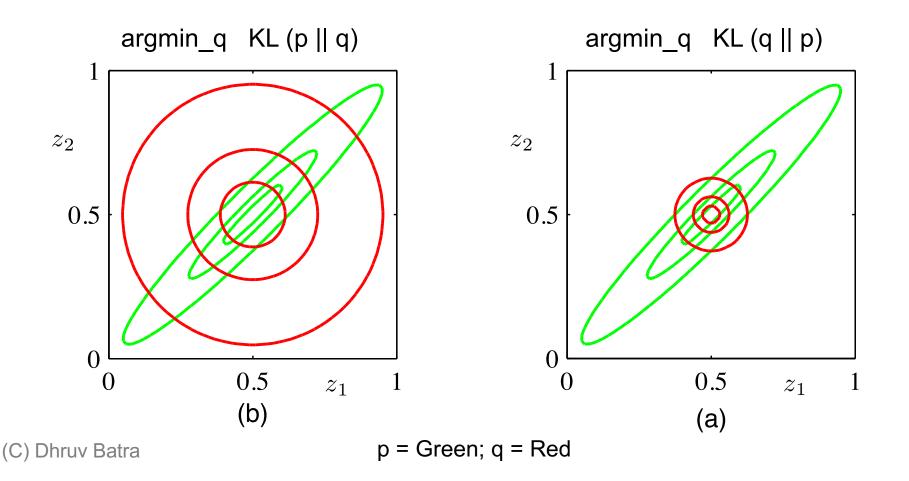
Find simple approximate distribution

- Suppose *p* is intractable posterior
- Want to find simple *q* that approximates *p*
- KL divergence not symmetric
- D(p||q)
 - true distribution p defines support of diff.
 - the "correct" direction
 - will be intractable to compute
- D(q||p)
 - approximate distribution defines support
 - tends to give overconfident results
 - will be tractable



Example 1

- p = 2D Gaussian with arbitrary co-variance
- q = 2D Gaussian with diagonal co-variance



Example 2

