حما

CS 4803 / 7643: Deep Learning

Topics:

- Image Classification
- Supervised Learning view
- K-NN

Dhruv Batra Georgia Tech

Administrativia

- Piazza
 - 165/222 people signed up. Please use that for questions.
- Gradescope/Canvas
 - Anybody not have access?
 - See note on Piazza

Python+Numpy Tutorial

CS231n Convolutional Neural Networks for Visual Recognition

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/

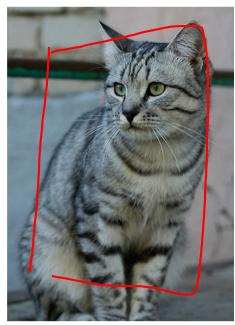
Plan for Today

- Image Classification
- Supervised Learning view
- K-NN

Next time: Linear Classifiers

Image Classification

Image Classification: A core task in Computer Vision

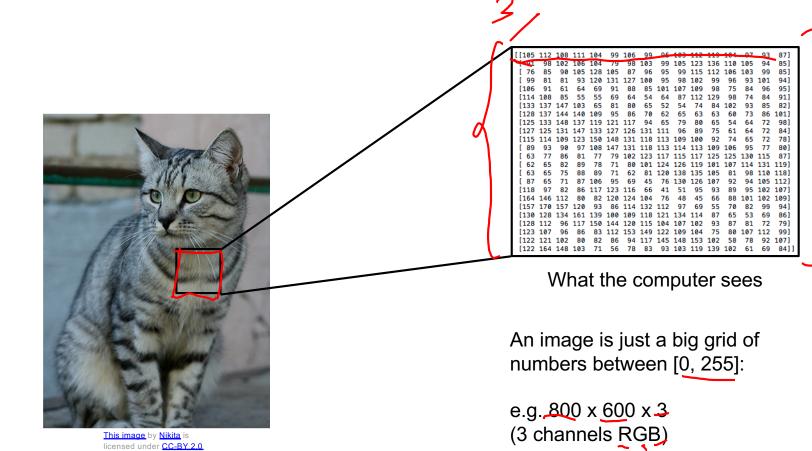


This image by Nikita is licensed under CC-BY 2.0

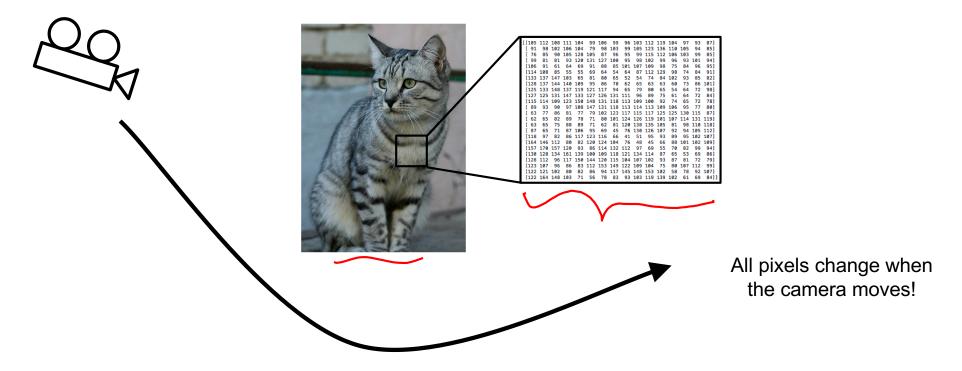
(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

The Problem: Semantic Gap

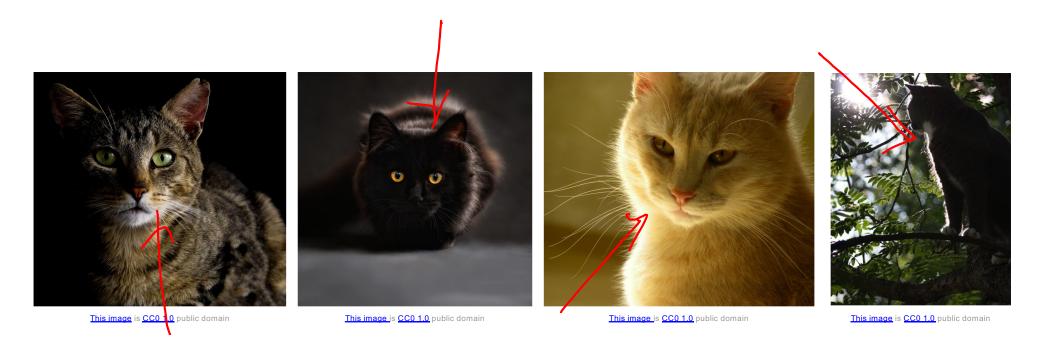


Challenges: Viewpoint variation



This image by Nikita is licensed under CC-BY 2.0

Challenges: Illumination

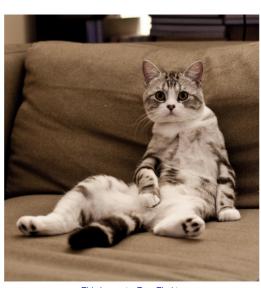


Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0



This image by Tom That is licensed under CC-BY 2.0

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Challenges: Background Clutter

This image is CC0 1.0 public domain

 $\underline{\text{This image}} \text{ is } \underline{\text{CC0 1.0}} \text{ public domain}$

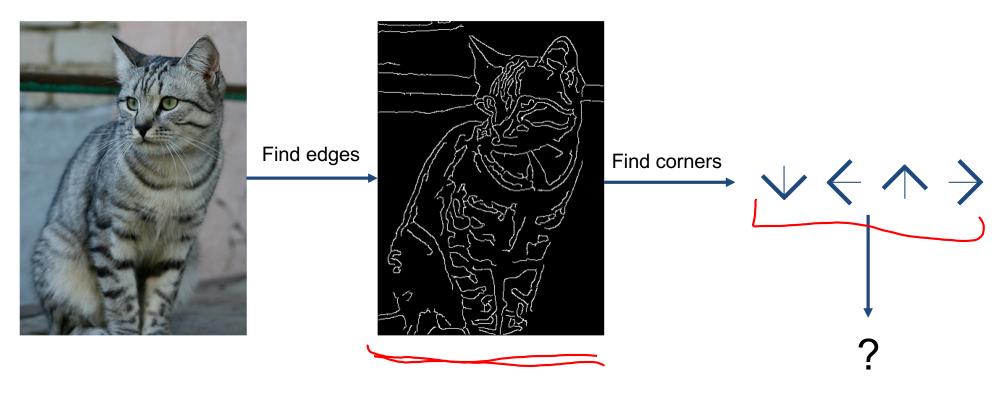
An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made



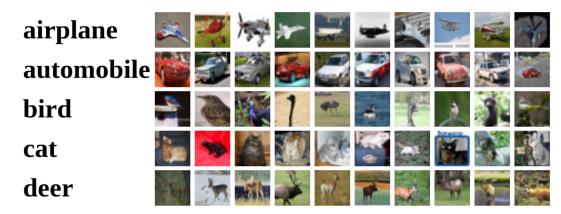
John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

ML: A Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels): # Machine learning! return model def predict(model, test_images): # Use model to predict labels return test_labels

Example training set



Notation

2, y, 2, i, 6 R' Scalars: E IR 元, 寸 Matrices X, Y RV, sol input din output dur K
parameter N, D E Rd
samples n, N

- Supervised Learning

 | Supervised Learning |
- Output: y & d + 1, -1 (spam or non-spam...)
 (Unknown) Target Function
- $f: X \rightarrow Y$ (the "true" mapping / reality)
- Data

$$- \{ \underbrace{(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)}_{\text{CL}} \}$$

God; find f

Supervised Learning

```
• Input: x
                                                        (images, text, emails...)
• Output: y
                                                        (spam or non-spam...)

    (Unknown) Target Function
    f: X → Y

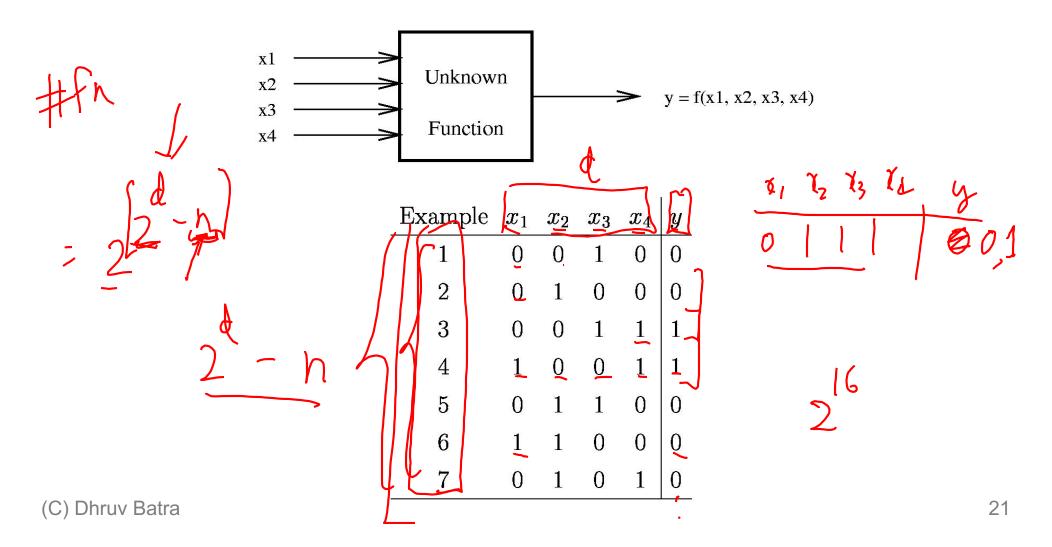
                                                       (the "true" mapping / reality)
  Data
- { (x<sub>1</sub>,y<sub>1</sub>), (x<sub>2</sub>,y<sub>2</sub>), ..., (x<sub>N</sub>,y<sub>N</sub>) }

    Model / Hypothesis Class
    - H = {h: X → Y}
    - e.g. y = h(x) = sign(w<sup>T</sup>x)

    Learning = Search in hypothesis space
    Find best in model class.
```

Learning is hard!

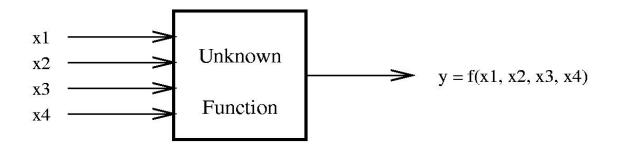
A Learning Problem



Learning is hard!

No assumptions = No learning

A Learning Problem



Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Procedural View

- Training Stage:
 - Training Data $\{(x_i, y_i)\} \rightarrow h$

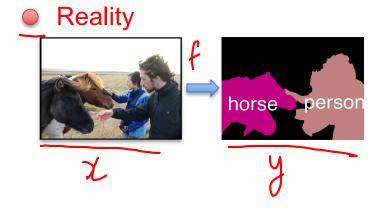
(Learning)

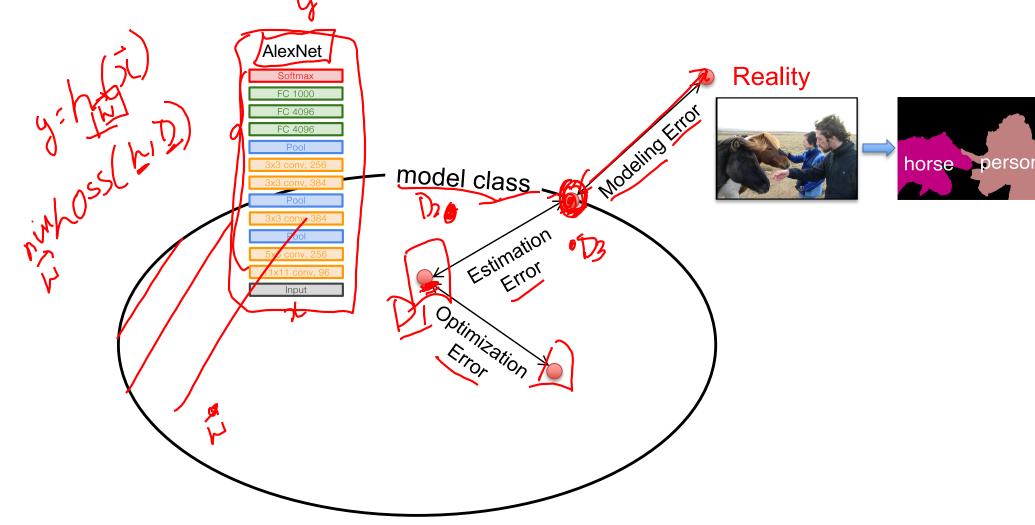
- Testing Stage
 - Test Data $x \rightarrow h(x)$

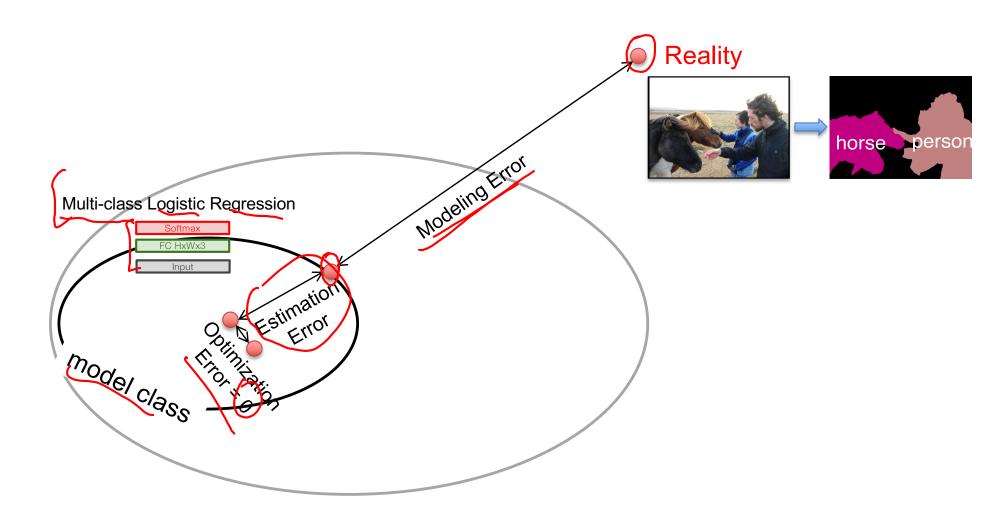
(Apply function, Evaluate error)

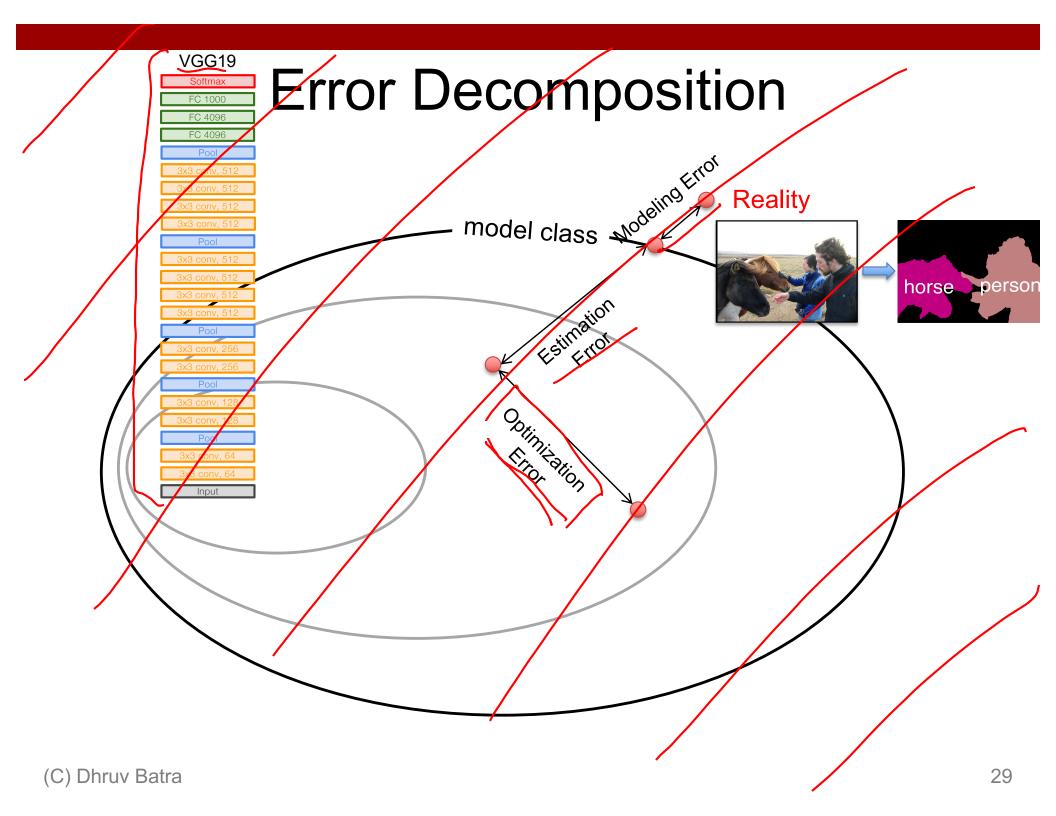
Statistical Estimation View

- Probabilities to rescue:
 - X and Y are random variables
 - $-D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim P(X, Y)$
- IID: Independent Identically Distributed
 - Both training & testing data sampled IID from P(X,Y)
 - Learn on training set
 - Have some hope of generalizing to test set









- Approximation/Modeling Error

 You approximated reality with model
- Estimation Error

 You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion

First classifier: Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels

Predict the label
    of the most similar
    training image
```

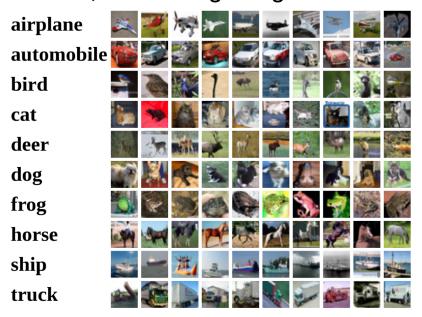
Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Nearest Neighbours

Nearest Neighbours

Instance/Memory-based Learning

Four things make a memory based learner:

• A distance metric d(x; xy)

How many nearby neighbors to look at?

A weighting function (optional)

How to fit with the local points?

1-Nearest Neighbour

Four things make a memory based learner:

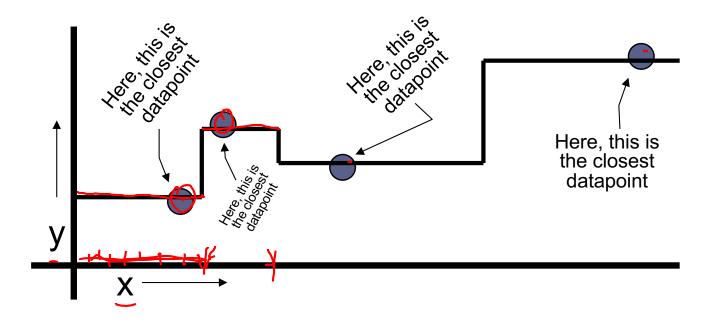
- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - __1
- A weighting function (optional)
 - unused
- How to fit with the local points?
 - Just predict the same output as the nearest neighbour.

k-Nearest Neighbour

Four things make a memory based learner:

- A distance metric
 - Euclidean (and others)
- How many nearby neighbors to look at?
 - __ k
- A weighting function (optional)
 - unused
- How to fit with the local points?
 - Just predict the average output among the nearest neighbours.

1-NN for Regression



Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2)=\sum_p |I_{\underline{1}}^p- \underline{I}_{\underline{2}}^p|$$

test image

22	200		
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

```
import numpy as np
class NearestNeighbor:
  def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Memorize training data

```
import numpy as np
class NearestNeighbor:
  def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

For each test image:
Find closest train image
Predict label of nearest image

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
  fef predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Q: With N examples, how fast are training and prediction?

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

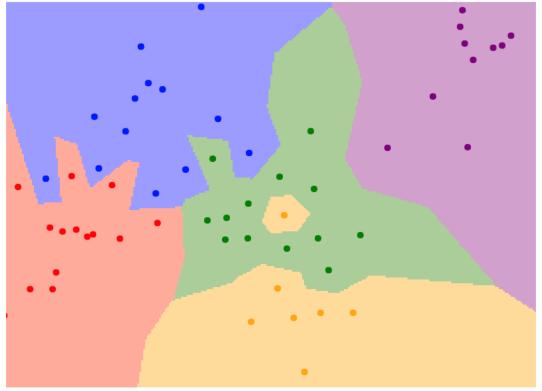
```
import numpy as np
class NearestNeighbor:
 def __init__(self):
   pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
      # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

What does this look like?



Nearest Neighbour

- Demo
 - http://vision.stanford.edu/teaching/cs231n-demos/knn/

(C) Dhruv Batra 49

Parametric vs Non-Parametric Models

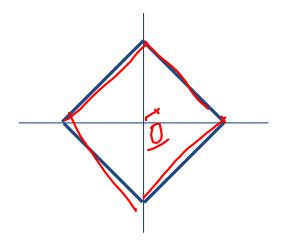
- Yes = Non-Parametric Models
- No = Parametric Models

(C) Dhruv Batra 50

K-Nearest Neighbors: Distance Metric

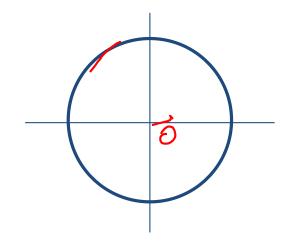
L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p \left(I_1^p-I_2^p
ight)^2}$$



What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent.

Must try them all out and see what works best.

Idea #1: Choose hyperparameters

that work best on the data

Your Dataset

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

train

test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

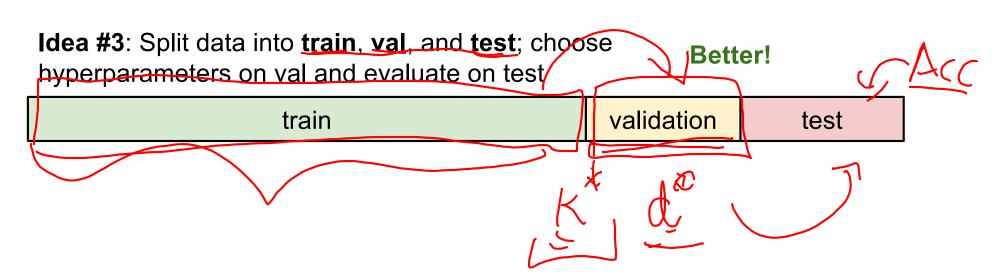
Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test



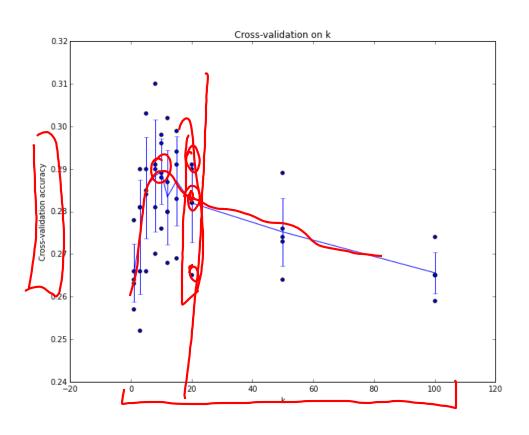
Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

1				/				
+	fold 1	fold 2	fold 3	fold 4	fold 5	test		
	fold 1	fold 2	fold 3	fold 4	fold 5	test		
7	fold 1	fold 2	fold 3	fold 4	fold 5	test		

Useful for small datasets, but not used too frequently in deep learning

Setting Hyperparameters



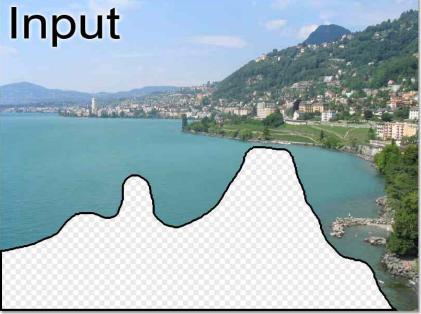
Example of 5-fold cross-validation for the value of **k**.

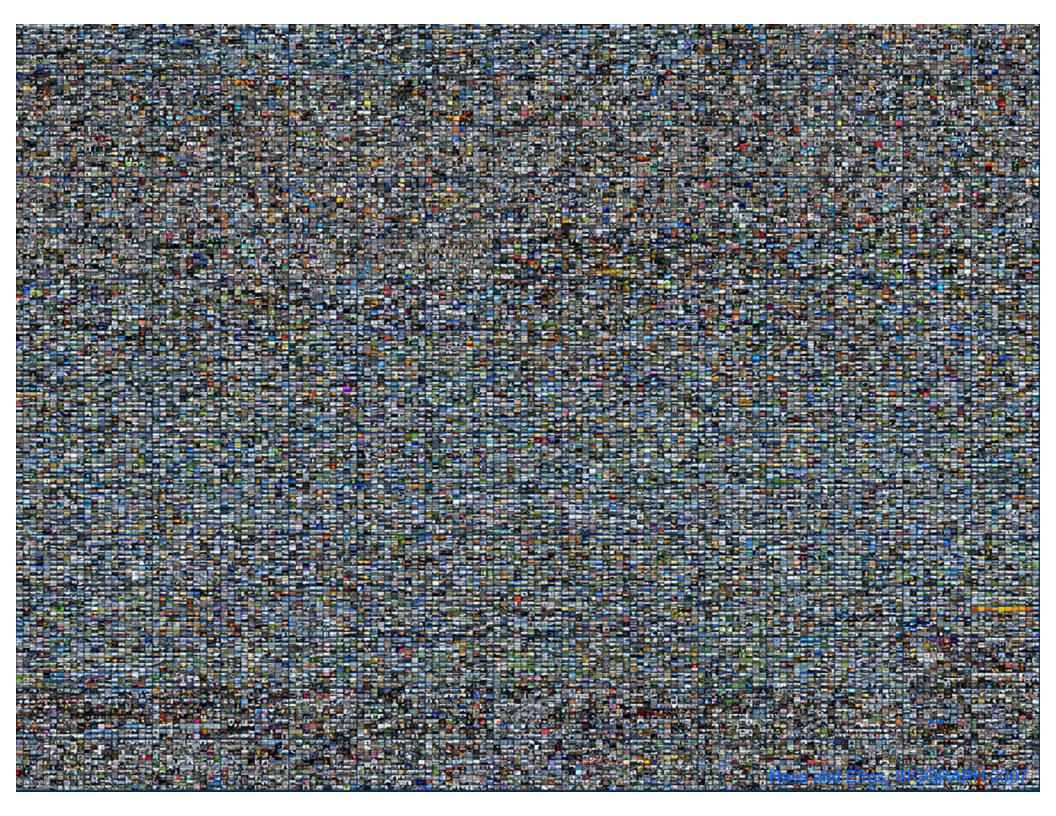
Each point: single outcome.

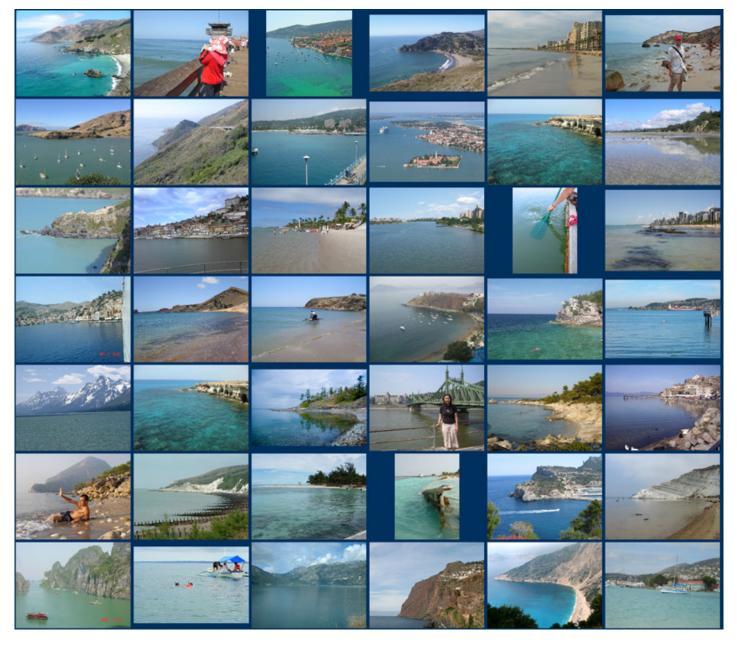
The line goes through the mean, bars indicated standard deviation

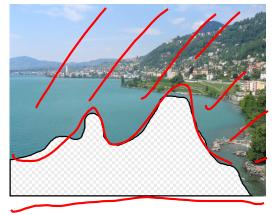
(Seems that $k \sim = 7$ works best for this data)

Scene Completion [Hayes & Efros, SIGGRAPH07]



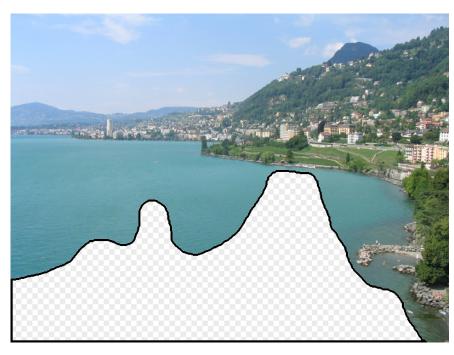




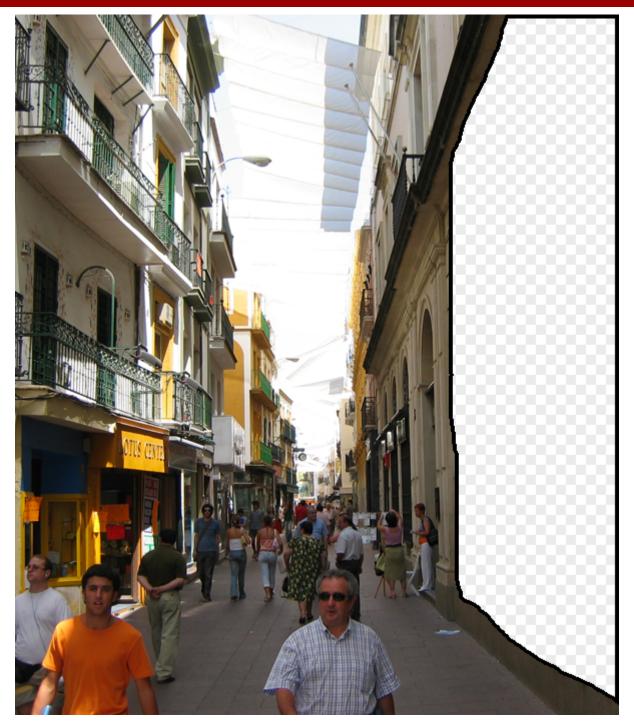


..<u>.</u> 200 total

Context Matching







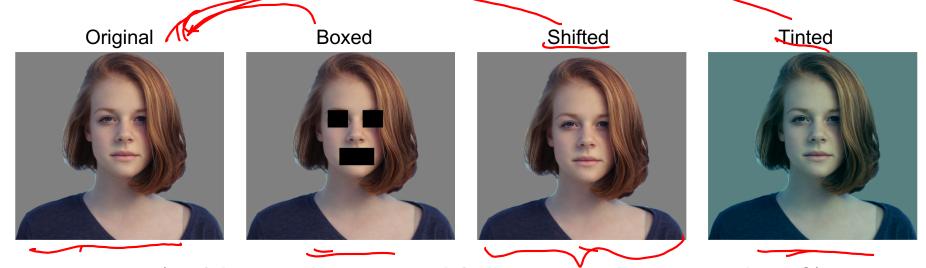
Problems with Instance-Based Learning

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 - Distances become meaningless in high dimensions
 - (See proof next)

(C) Dhruv Batra

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative



<u>Original image</u> is <u>CC0 public domain</u>

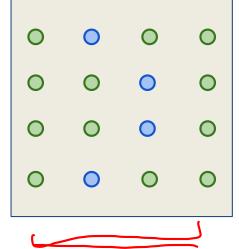
(all 3 images have same L2 distance to the one on the left)

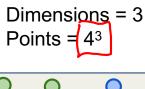
k-Nearest Neighbor on images never used.

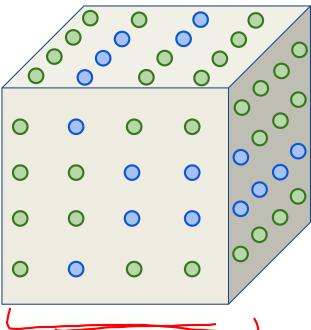
Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2 Points = 4²

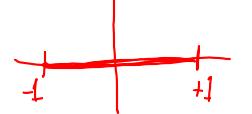






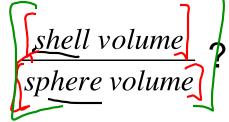
Curse of Dimensionality

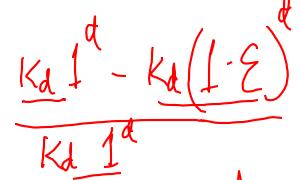
Consider: Sphere of radius 1 in d-dims 2η



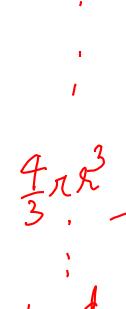
Consider: an outer ε-shell in this sphere

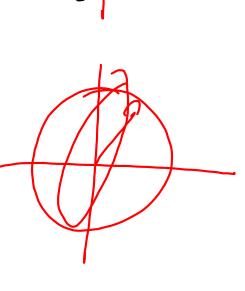
What is



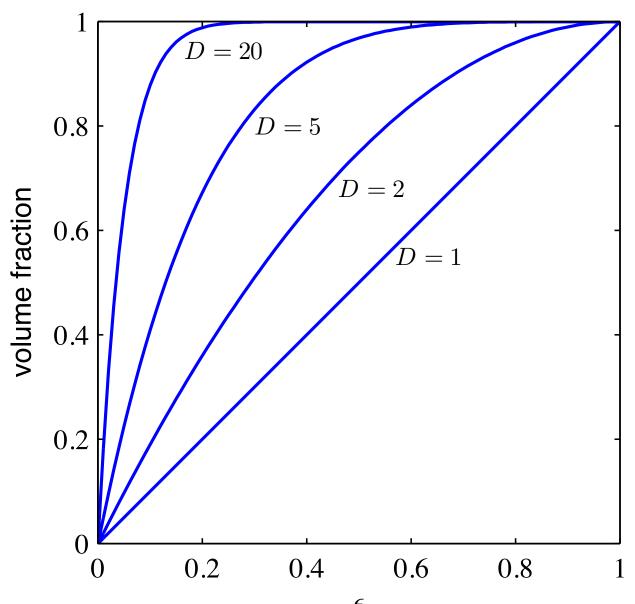


$$\int_{0}^{\infty} \int_{0}^{\infty} = \int_{0}^{\infty} -\left(1-\xi\right)^{\frac{1}{2}}$$





Curse of Dimensionality



K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!