CS 4803 / 7643: Deep Learning

Topics:

- Regularization
- Neural Networks

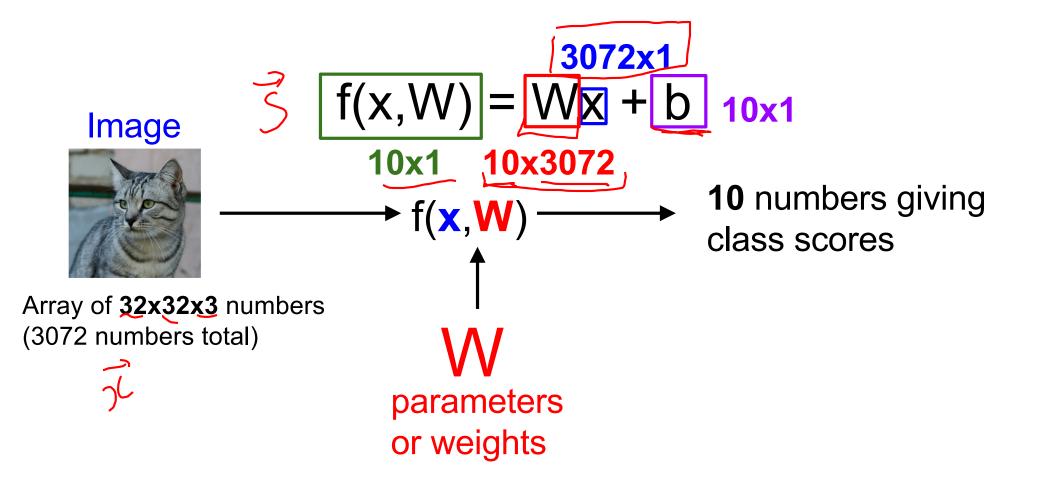
Dhruv Batra Georgia Tech

Administrativia

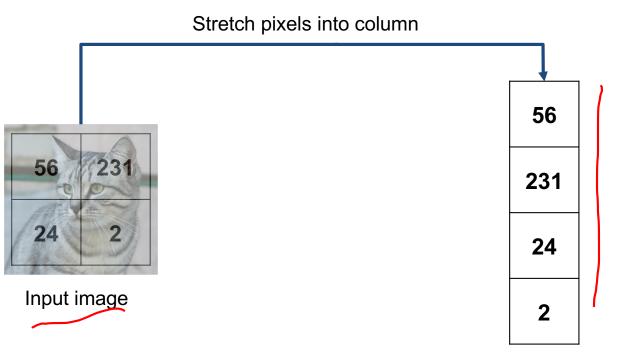
- PS1/HW1 out
 - Available later today on Canvas
 - Due in 4 weeks
 - Asks about topics coming in the next couple of weeks
 - Please please please start early
 - More details next class

Recap from last time

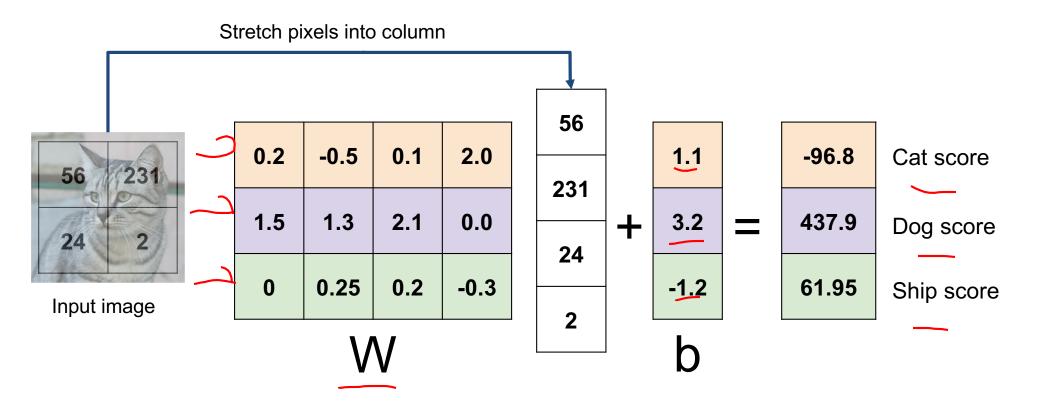
Parametric Approach: Linear Classifier

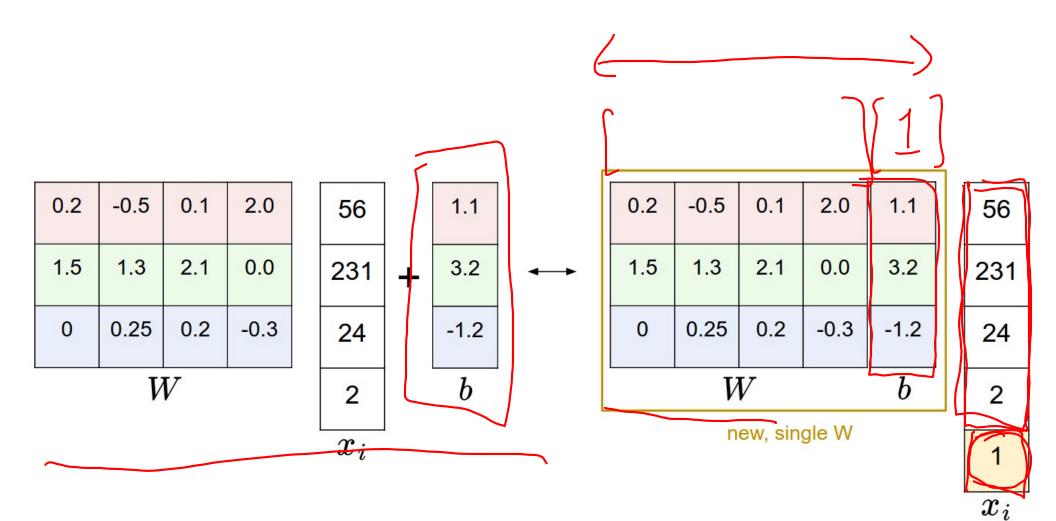


Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

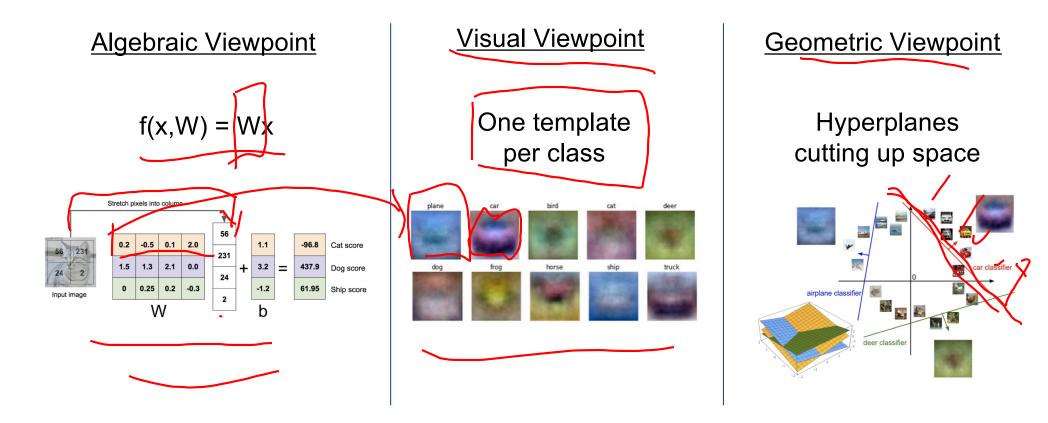


Example with an image with 4 pixels, and 3 classes (cat/dog/ship)





Linear Classifier: Three Viewpoints



Recall from last time: Linear Classifier

automobile	0.07	0.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

airplane

Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Erog image is in the public domair

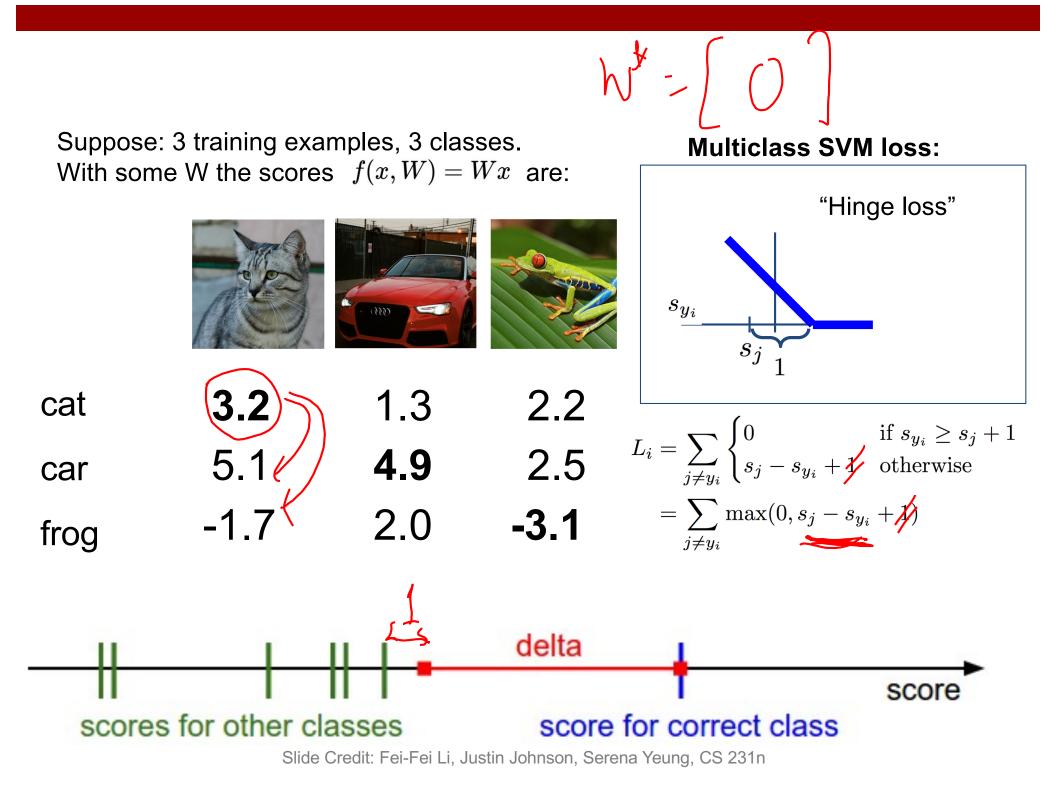
TODO:

Define a loss function that quantifies our unhappiness with the scores across the training data.

Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$



Softmax vs. SVM

$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

car frog

cat

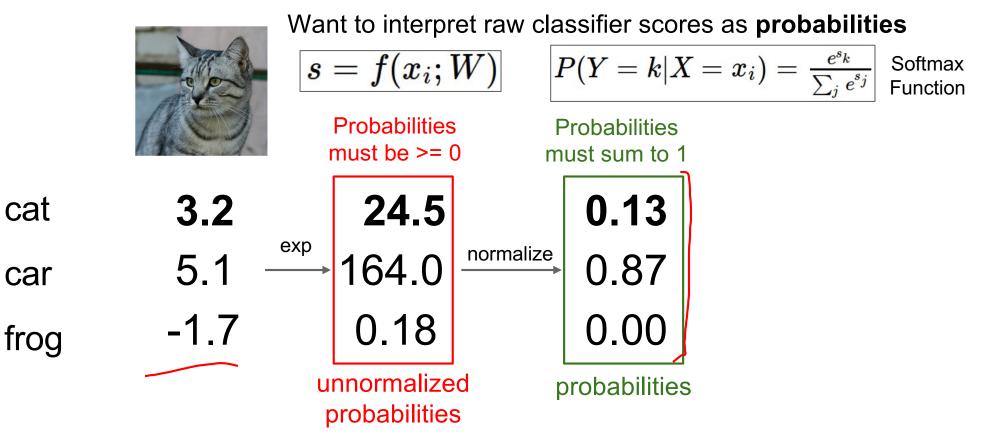
cat car

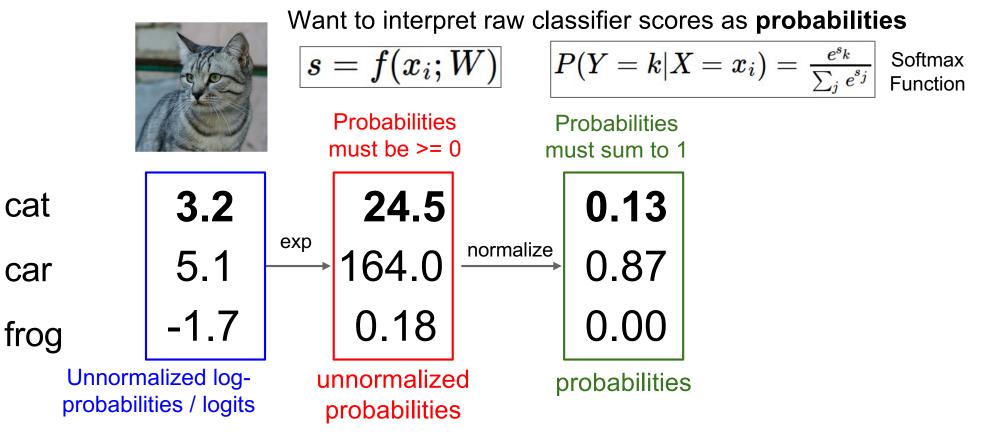
frog

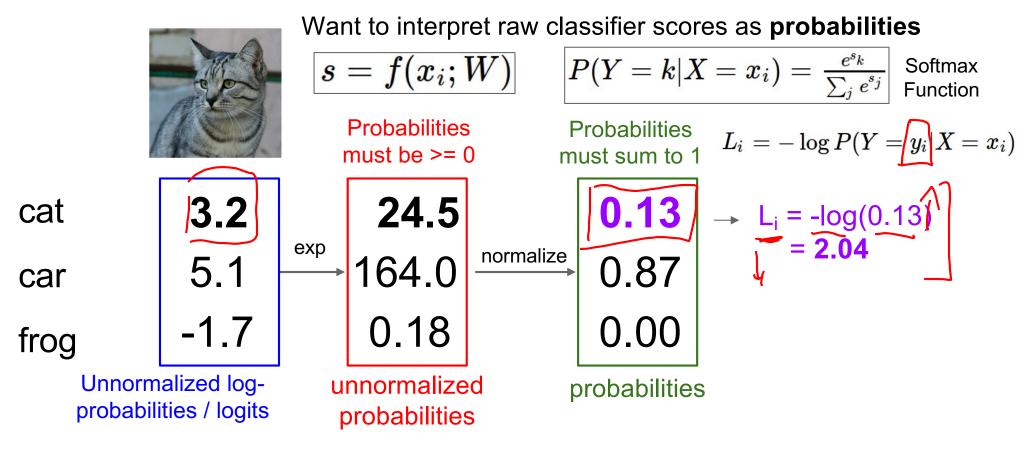
$$s = f(x_i; W)$$

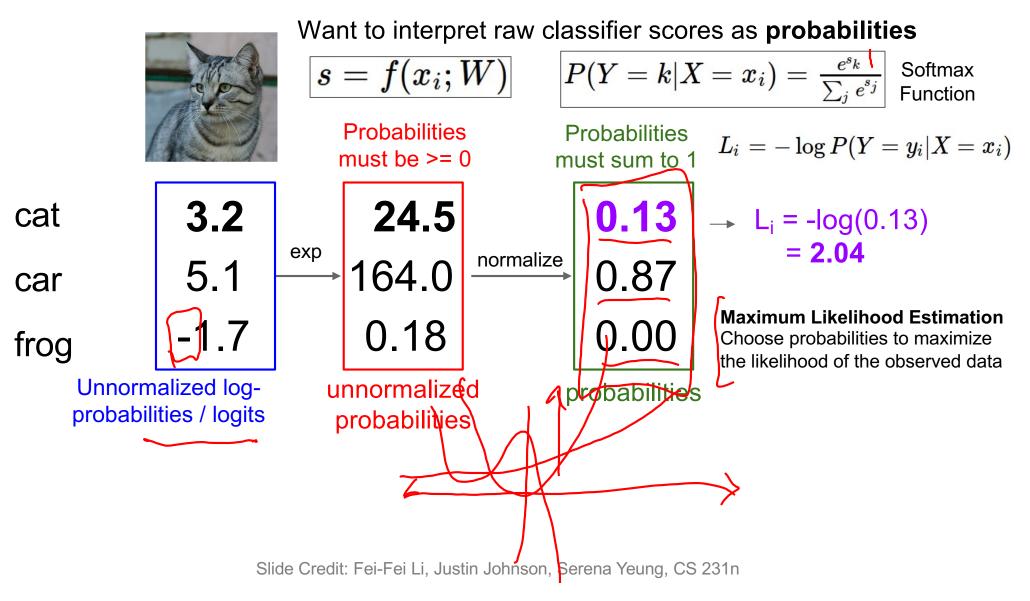
Probabilities must be >= 0

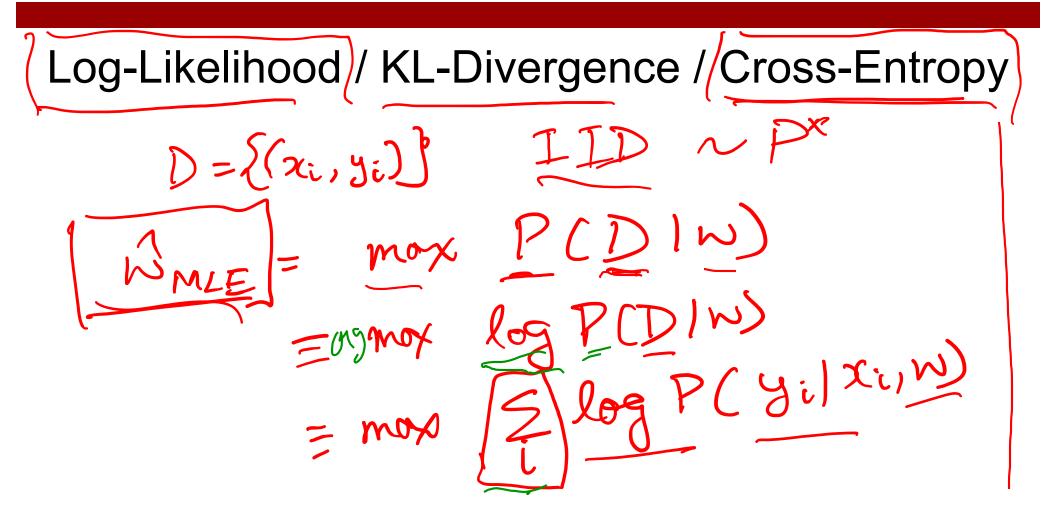
$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

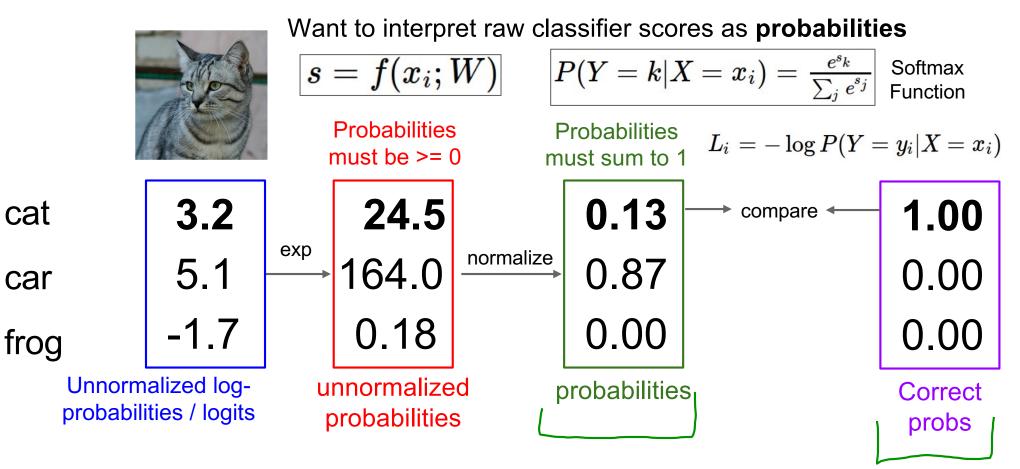


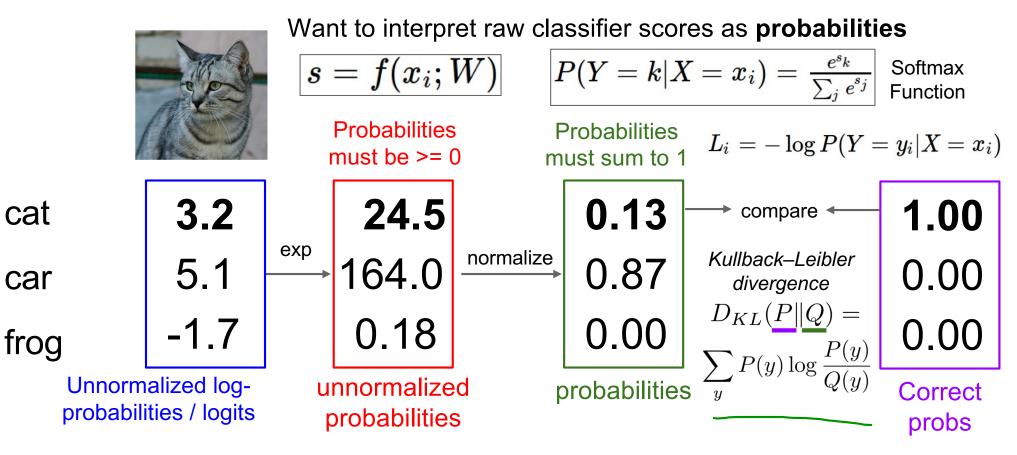


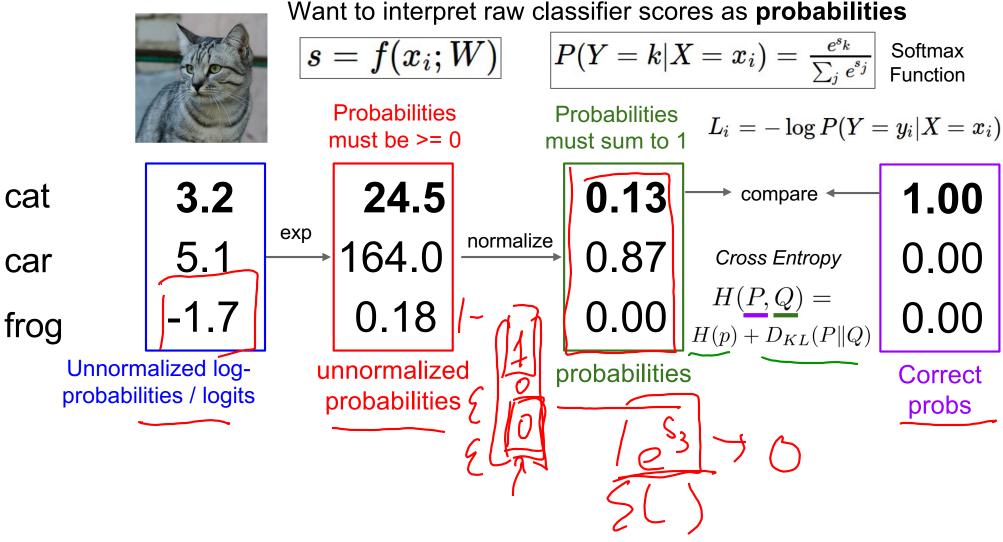












Plan for Today

- (Finish) Loss Functions
- Regularization
- Neural Networks

cat

car

frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct classPutting it all together: $L_i = -\log P(Y = y_i | X = x_i)$ $L_i = -\log((\sum_{j=0}^{e^{sy}} (x_j - 1)))$ 5.1
possible loss L_i?Q: What is the min/max
possible loss L_i?

3.2

5.1

-1.7

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

 $ig| P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_i e^{s_j}}$

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$

Dutting it all together

Softmax **Function**

car

cat

frog

Q: What is the min/max possible loss L i? A: min 0, max infinity

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class $L_i = -\log P(Y = y_i | X = x_i)$ $L_i = -\log(\frac{\int e^{sy_i}}{\sum_j | e^{sy_j}})$ Q2: At initialization all s will be approximately equal; what is the loss?

cat $\frac{1}{2} 0$ **3.2** car $\frac{1}{2} 0$ **5.1** frog $\frac{1}{2} 0$ **-1.7**

3.2

5.1

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class Putting it all together: $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$ $L_i = -\log P(Y = y_i | X = x_i)$

Q2: At initialization all s will be approximately equal; what is the loss? A: $\log(C)$, eg $\log(10) \approx 2.3$

car

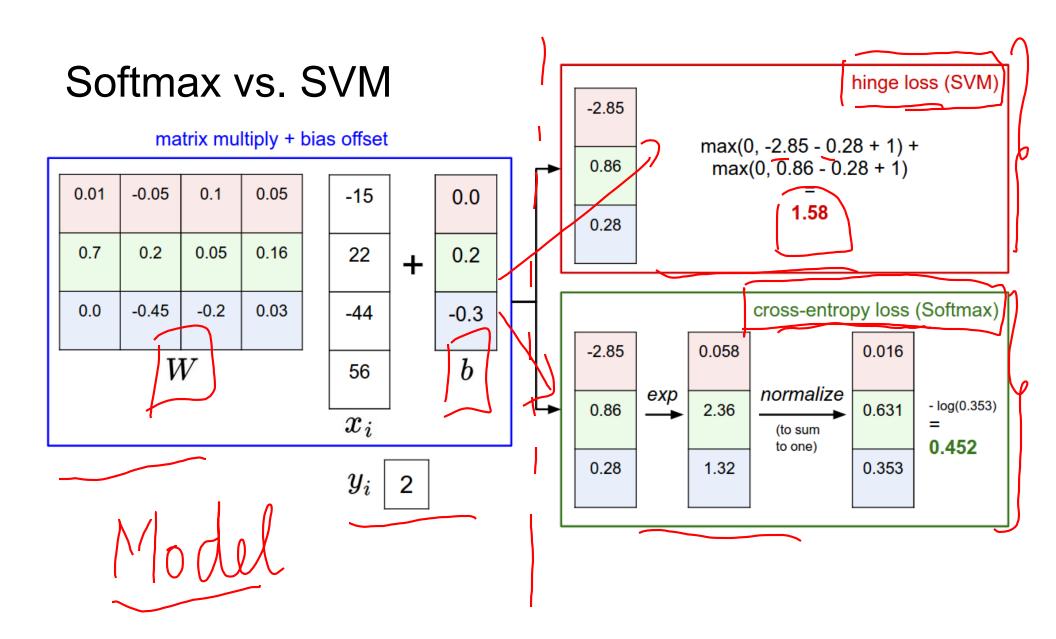
frog

cat

-1.7

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$



Softmax vs. SVM
$$L_i = -\log(\frac{e^{sy_i + i}}{\sum_j e^{s_j + i}})$$
 is $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores:

$$[10, -2, 3] \neq \{\xi, \xi\}$$

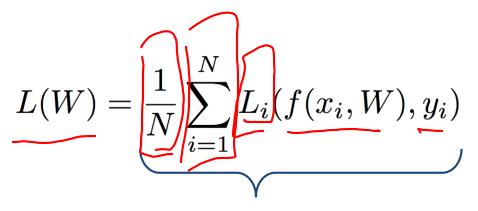
 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

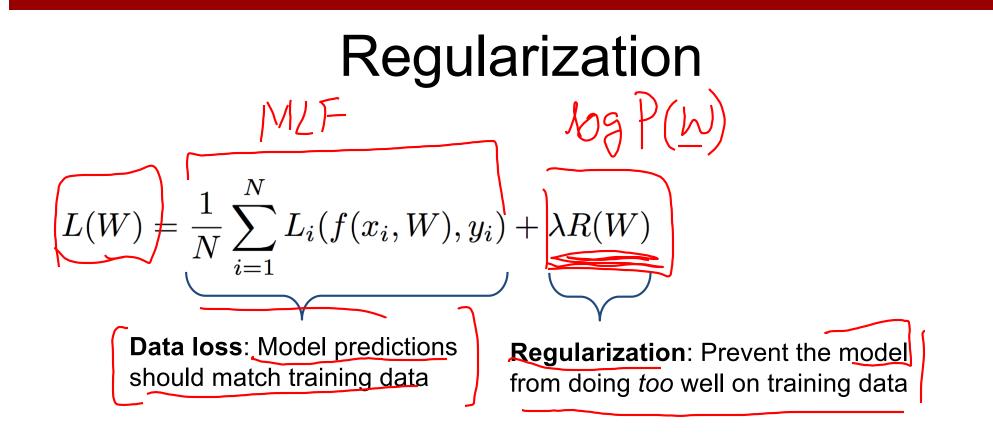
Plan for Today

- (Finish) Loss Functions
- Regularization
- Neural Networks

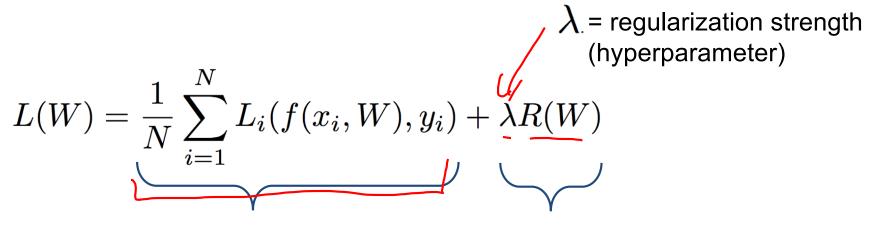
Regularization



Data loss: Model predictions should match training data

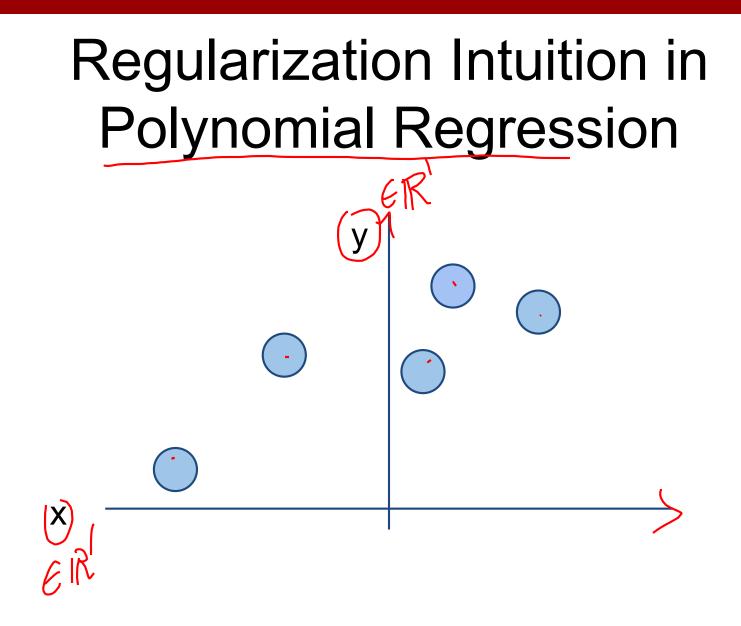


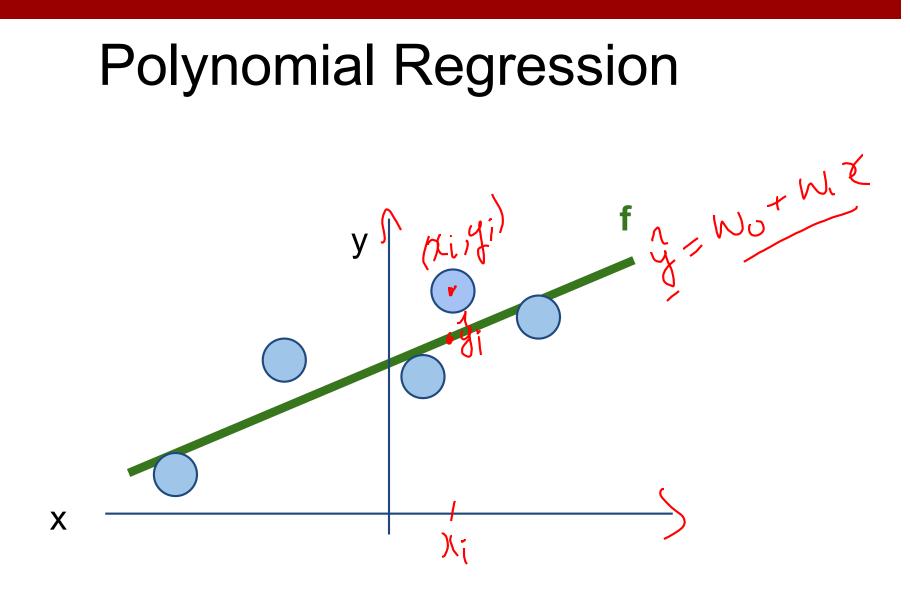
Regularization



Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data



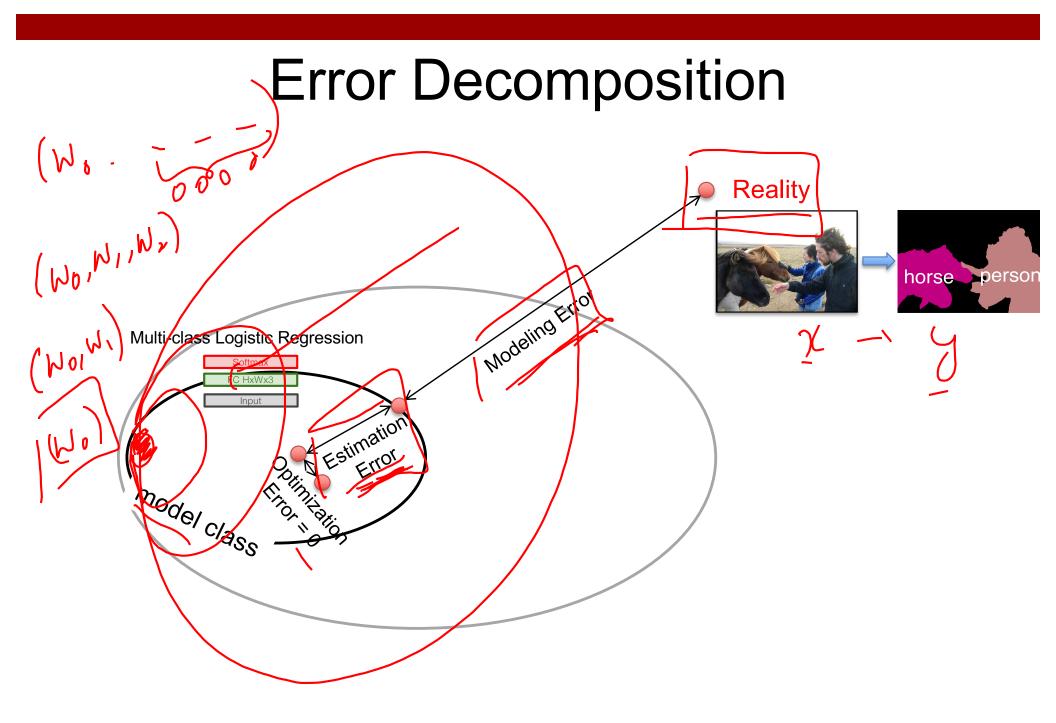


Polynomial Regression

$$\dot{y} = W_0 + W_1 \chi \qquad 1$$

 $= W_0 + W_1 + H W_2 \chi^2$
 $= W_0 + \dots + H W_2 \chi^2$
 $= W_0 + \dots + H W_2 \chi^2$
 $= [W_0 \dots M_d] \begin{pmatrix} 1 \\ x_1^2 \\ y_d \end{pmatrix} = \tilde{W}^T \tilde{\psi}(\chi)$

Polynomial Regression



Polynomial Regression

- Demo: <u>https://arachnoid.com/polysolve/</u>
- You are a scientist studying runners.
 - You measure average speeds of the best runners at different ages.
- Data: Age (years), Speed (mph)
 - <u>10 6</u>
 - 159
 - 20 11
 - 25 12
 - 29 13
 - 40 11
 - 50 10

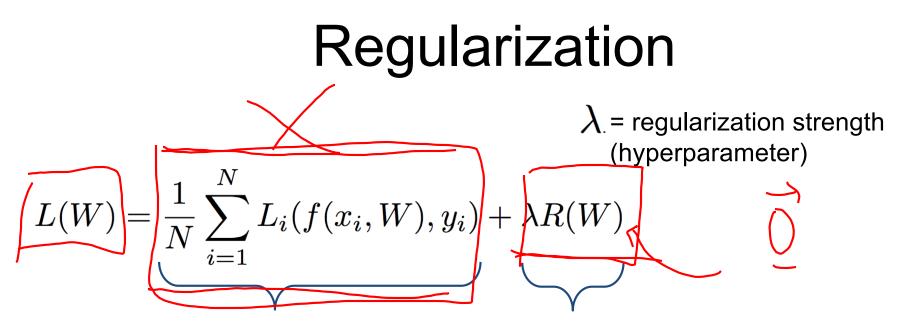
Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data



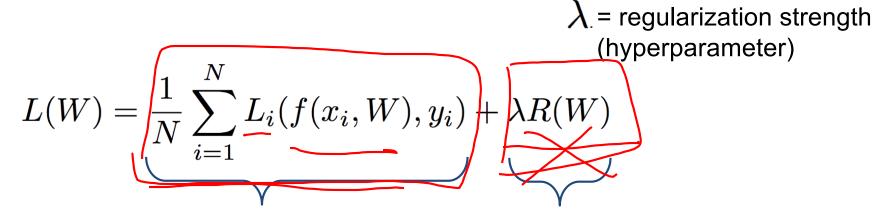
Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples
L2 regularization:
$$R(W) = \sum_{k} \sum_{k} W_{k,l}^2$$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$
Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

Regularization



Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$

More complex: Dropout Batch normalization Stochastic depth, fractional pooling, etc

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

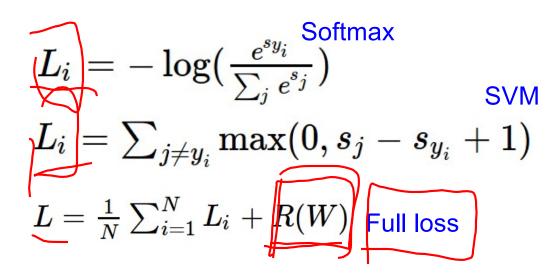
Regularization: Prevent the model from doing too well on training data

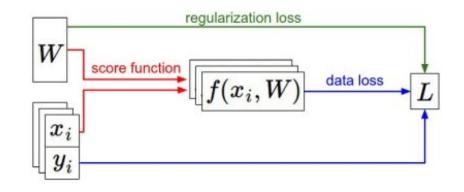
Why regularize?

- Express preferences over weights Make the model *simple* so it works on test data Improve optimization by adding curvature

Recap

- We have some dataset of (x,y)
- We have a score function: $s = f(x; W) \stackrel{\text{e.g}}{=} Wx$
- We have a **loss function**:





Recap

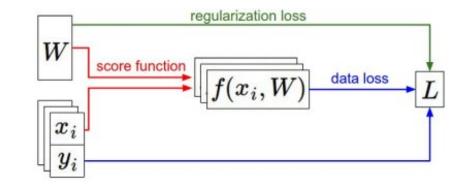
How do we find the best W?

- We have some dataset of (x,y)
- We have a score function:

$$s = f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

- We have a loss function:

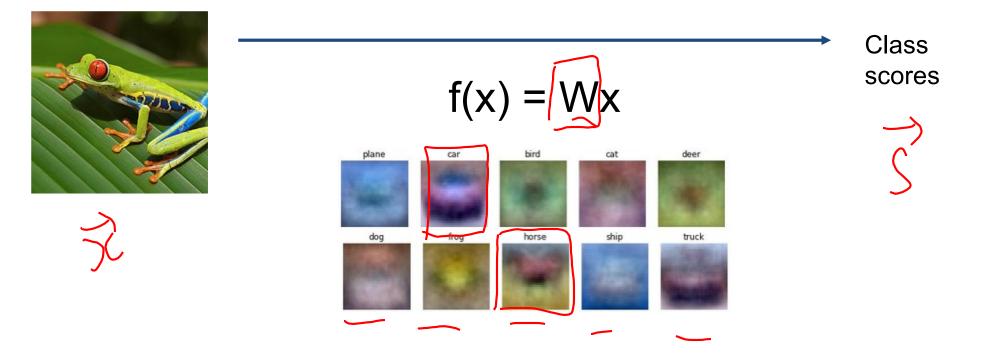
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss



Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

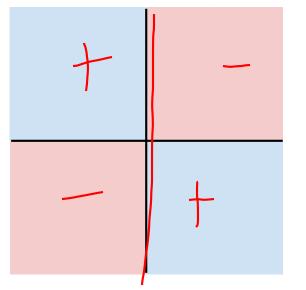
So far: Linear Classifiers



Hard cases for a linear classifier

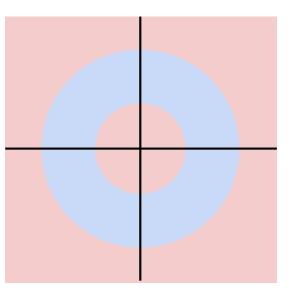
Class 1: First and third quadrants

Class 2: Second and fourth quadrants



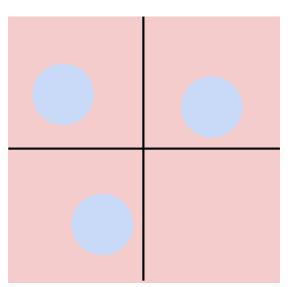
Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

Class 2: Everything else



Aside: Image Features

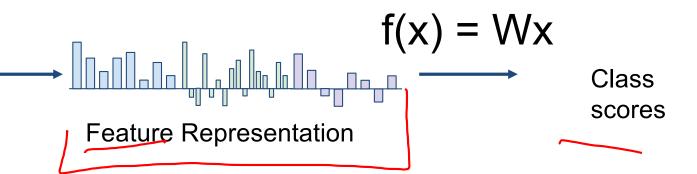
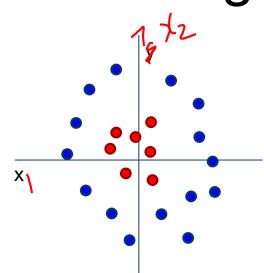
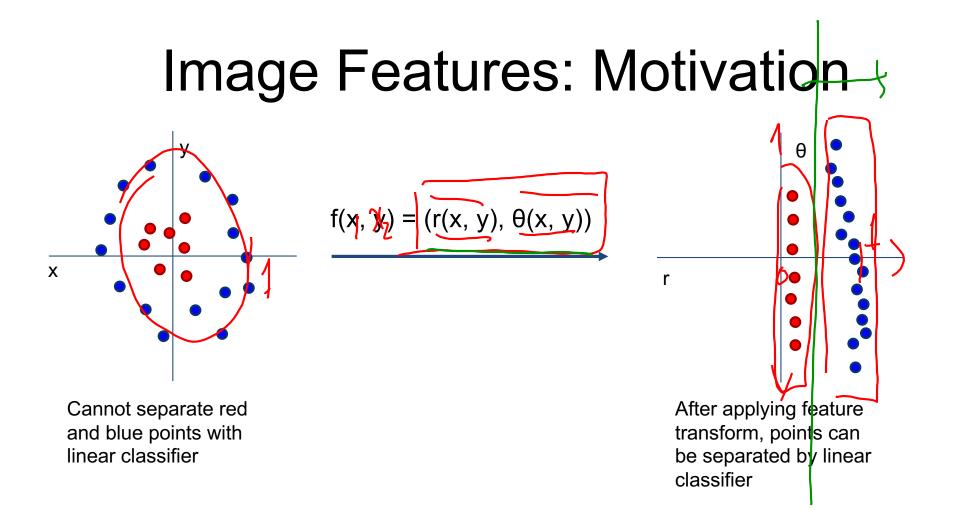


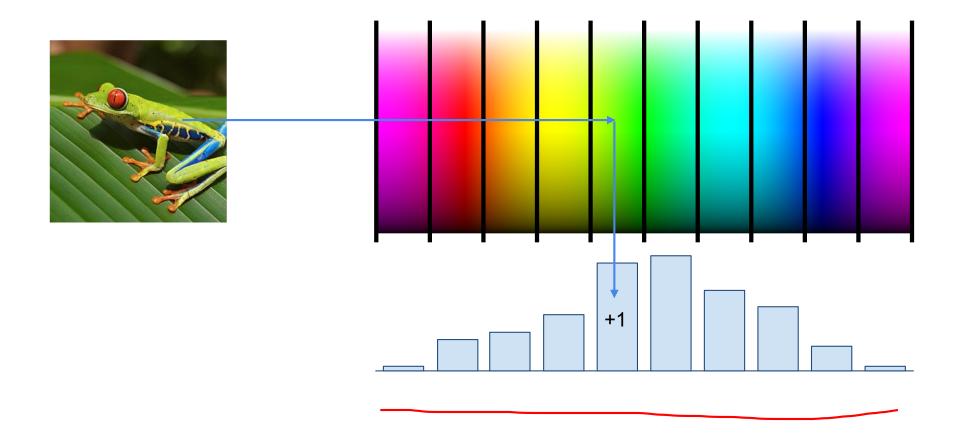
Image Features: Motivation



Cannot separate red and blue points with linear classifier



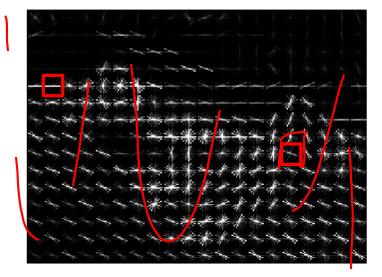
Example: Color Histogram



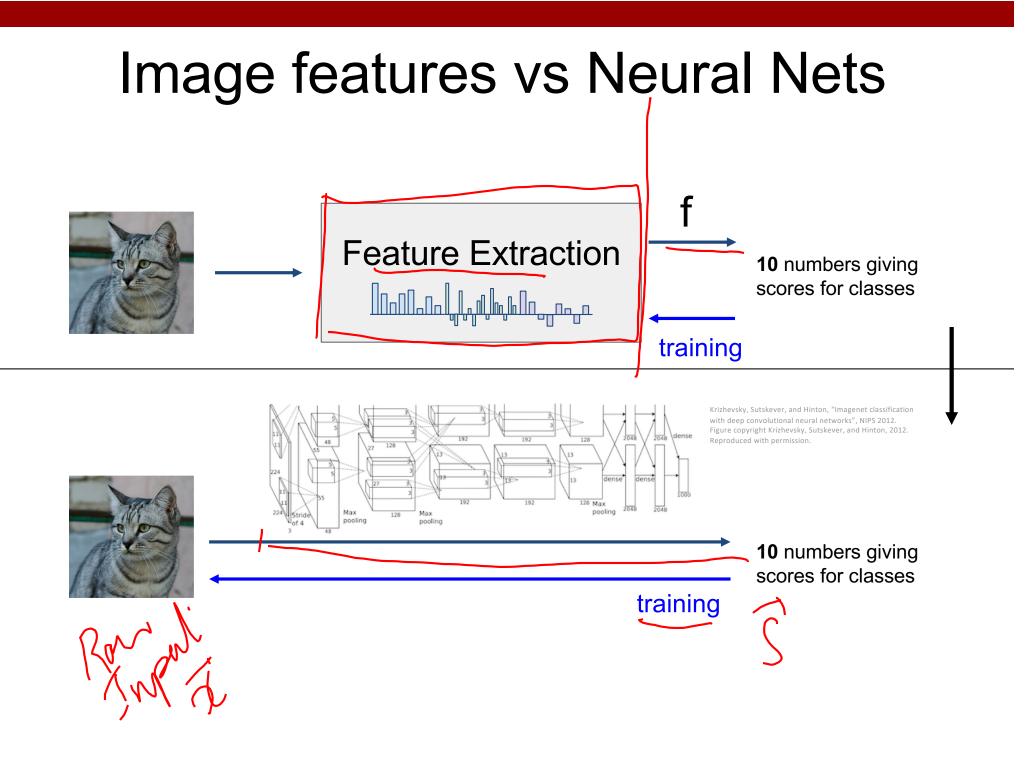
Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

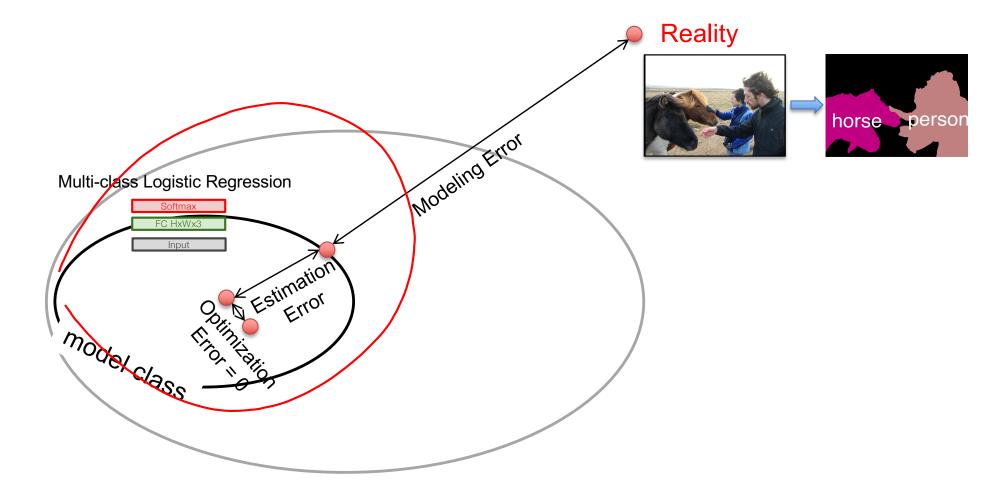
Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



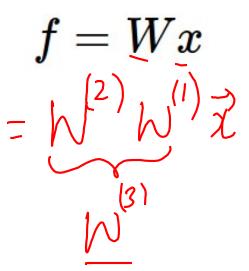
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers



Error Decomposition



(**Before**) Linear score function:



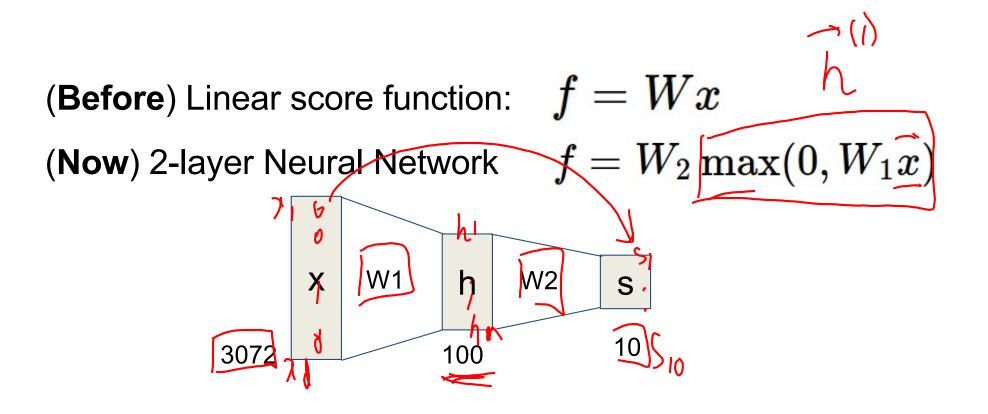
(Before) Linear score function:

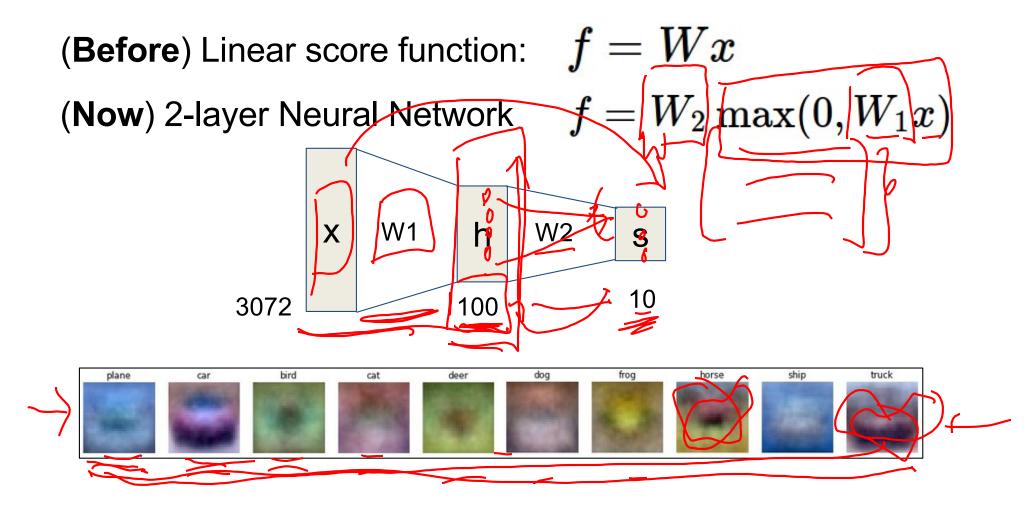
(Now) 2-layer Neural Network

$$f = Wx \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$f = W_2 \max(0, W_1 x)$$

$$(3) \chi$$



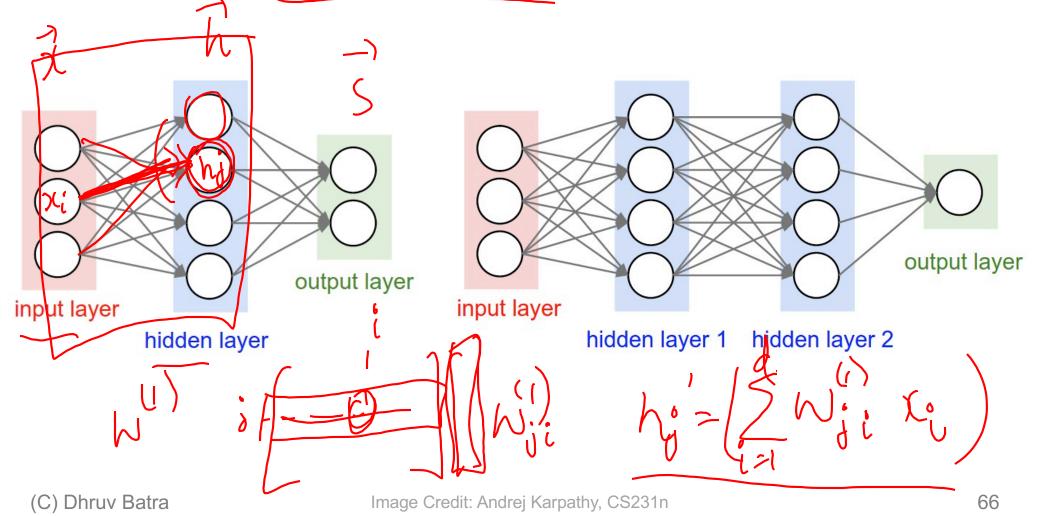


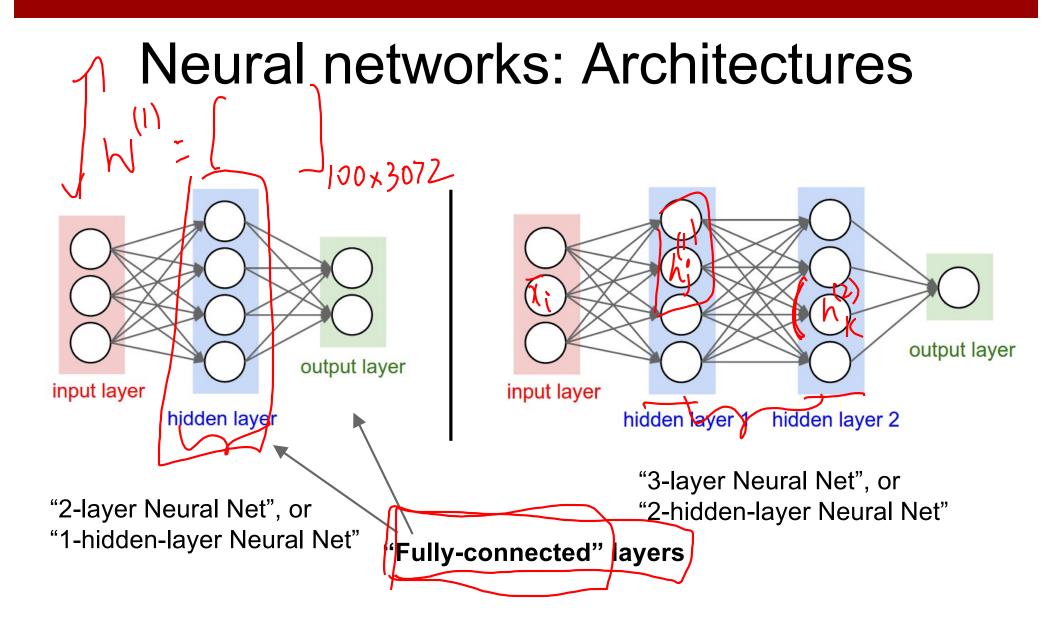
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff (**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$ Non-lineauty

Multilayer Networks

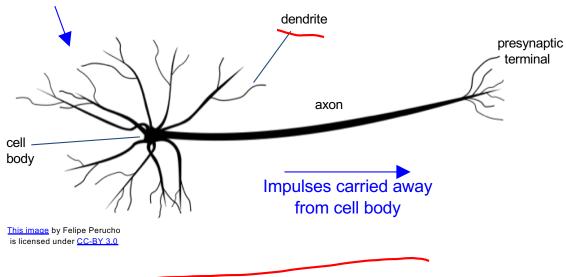
- Cascaded "neurons"
- The output from one layer is the input to the next
- · Each layer has its own sets of weights



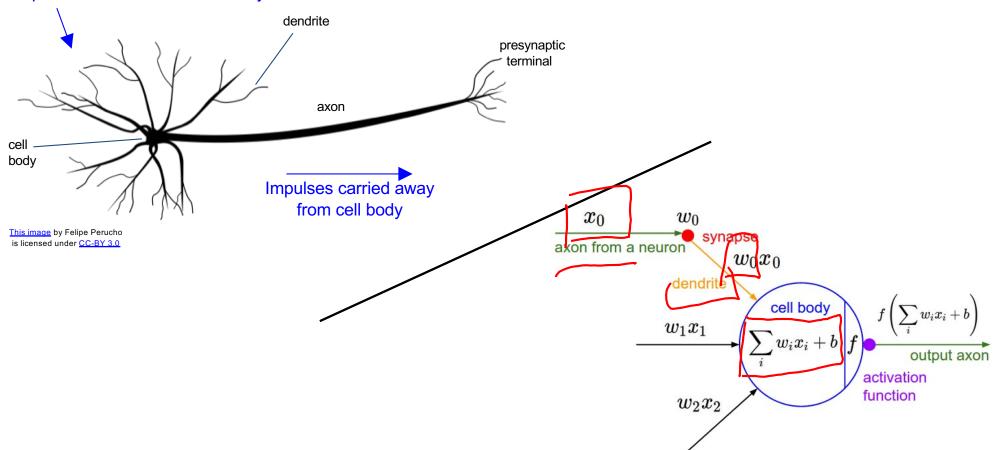


This image by Fotis Bobolas is licensed under CC-BY 2.0

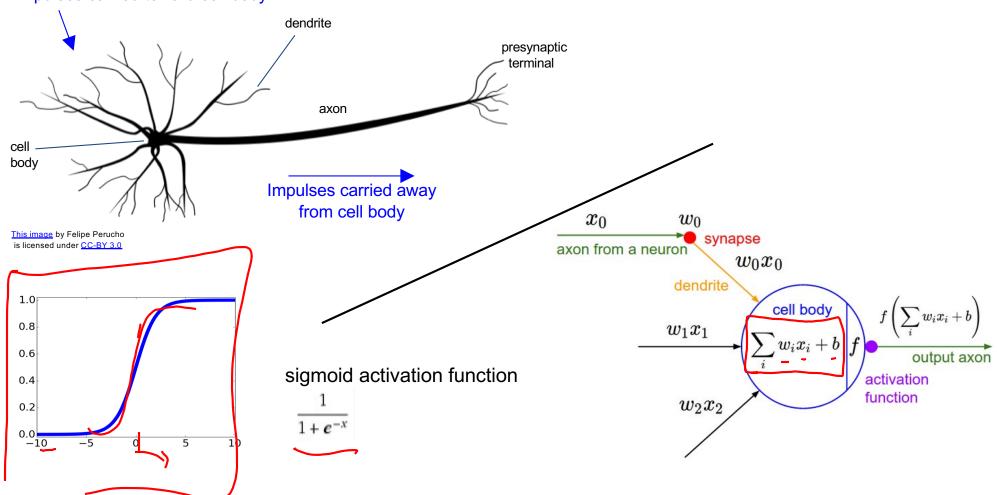
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Impulses carried toward cell body



Impulses carried toward cell body



Impulses carried toward cell body

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

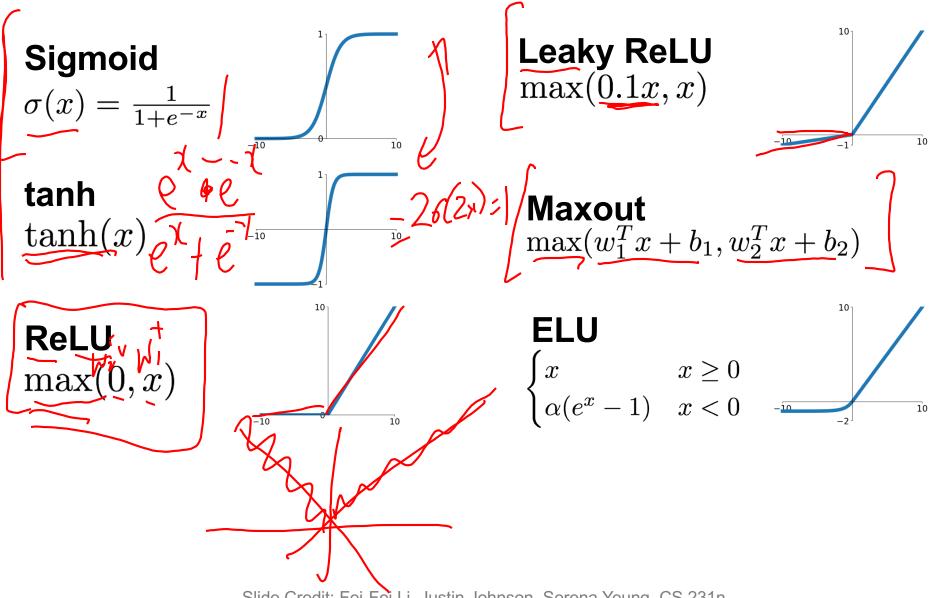
Be very careful with your brain analogies!

Biological Neurons:

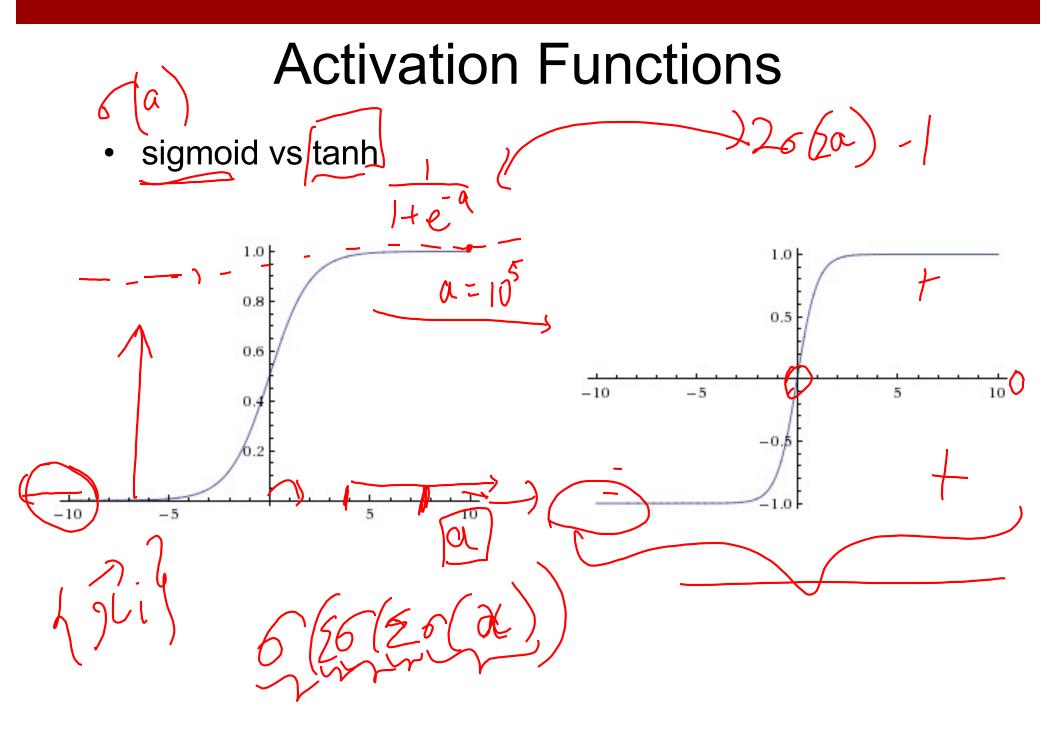
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Activation functions



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A quick note

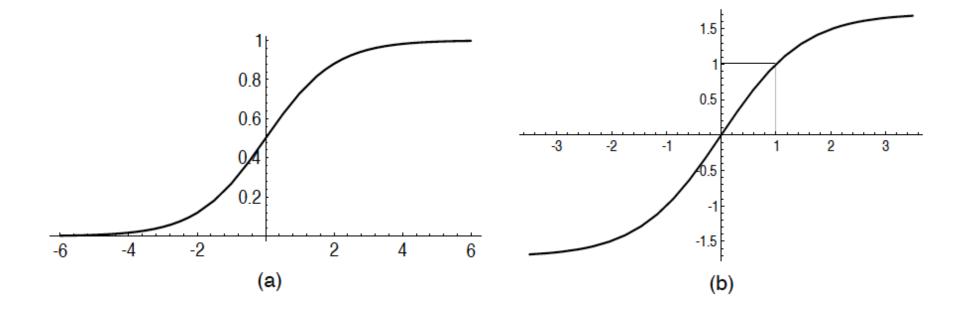


Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

Rectified Linear Units (ReLU)



[Krizhevsky et al., NIPS12]

Demo Time

• <u>https://playground.tensorflow.org</u>