
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Regularization
– Neural Networks



Administrativia
• PS1/HW1 out 

– Available later today on Canvas
– Due in 4 weeks
– Asks about topics coming in the next couple of weeks
– Please please please please start early
– More details next class

(C) Dhruv Batra 2



Recap from last time
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Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
3072x1

10x1 10x3072
10x1

Parametric Approach: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=
Cat score

Dog score

Ship score

b

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Linear Classifier: Three Viewpoints
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f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1. Define a loss function
that quantifies our 
unhappiness with the 
scores across the training 
data.

1. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Recall from last time: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg


Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

Multiclass SVM loss:

Given an example
where        is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

“Hinge loss”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

exp

unnormalized 
probabilities

Probabilities 
must be >= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

Li = -log(0.13)
= 2.04

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose probabilities to maximize 
the likelihood of the observed data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Log-Likelihood / KL-Divergence / Cross-Entropy
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Kullback–Leibler 
divergence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

24.5
164.0
0.18

0.13
0.87
0.00

exp normalize

unnormalized 
probabilities

Probabilities 
must be >= 0

Probabilities 
must sum to 1

probabilitiesUnnormalized log-
probabilities / logits

1.00
0.00
0.00
Correct 
probs

compare

Cross Entropy

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Loss Functions
• Regularization
• Neural Networks
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q: What is the min/max 
possible loss L_i?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q: What is the min/max 
possible loss L_i?
A: min 0, max infinity

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 
approximately equal; what is the loss?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax Classifier (Multinomial Logistic Regression)

cat

frog

car

3.2
5.1
-1.7

Want to interpret raw classifier scores as probabilities
Softmax 
Function

Maximize probability of correct class Putting it all together:

Q2: At initialization all s will be 
approximately equal; what is the loss?
A: log(C), eg log(10) ≈ 2.3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: Suppose I take a datapoint 
and I jiggle a bit (changing its 
score slightly). What happens to 
the loss in both cases?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Loss Functions
• Regularization
• Neural Networks
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Regularization
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Data loss: Model predictions 
should match training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
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Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
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Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization Intuition in 
Polynomial Regression

35

x

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression
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x

y f

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression
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Polynomial Regression
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Error Decomposition
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Reality

Estimation

ErrorOptimization

Error = 0

Modeling Erro
r

model class

Input

Softmax

FC HxWx3

Multi-class Logistic Regression



Polynomial Regression
• Demo: https://arachnoid.com/polysolve/

• You are a scientist studying runners. 
– You measure average speeds of the best runners at different ages. 

• Data: Age (years), Speed (mph)
– 10 6
– 15 9
– 20 11
– 25 12
– 29 13
– 40 11
– 50 10
– 60 9

(C) Dhruv Batra 40

https://arachnoid.com/polysolve/


Regularization

42

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
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Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
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Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Stochastic depth, fractional pooling, etc

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization
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Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap



Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far: Linear Classifiers
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f(x) = Wx
Class 
scores



Hard cases for a linear classifier
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Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Aside: Image Features
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f(x) = Wx
Class 
scores

Feature Representation



Image Features: Motivation
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x

y

Cannot separate red 
and blue points with 
linear classifier



Image Features: Motivation

55

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier



Example: Color Histogram

56

+1



Example: Histogram of Oriented 
Gradients (HoG)
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Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Example: 320x240 image gets divided 
into 40x30 bins; in each bin there are 
9 numbers so feature vector has 
30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Feature Extraction

Image features vs Neural Nets

59

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.



Error Decomposition
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Reality

Estimation

ErrorOptimization

Error = 0

Modeling Erro
r

model class

Input

Softmax

FC HxWx3

Multi-class Logistic Regression



(Before) Linear score function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff
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(Before) Linear score function:

(Now) 2-layer Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff
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x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Before) Linear score function:

(Now) 2-layer Neural Network



64

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x hW1 sW2

3072 100 10

(Before) Linear score function:

(Now) 2-layer Neural Network
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(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Multilayer Networks
• Cascaded “neurons”
• The output from one layer is the input to the next
• Each layer has its own sets of weights

(C) Dhruv Batra 66Image Credit: Andrej Karpathy, CS231n



“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Be very careful with your brain analogies!

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system
● Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions



Activation Functions
• sigmoid vs tanh
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A quick note

(C) Dhruv Batra 76Image Credit: LeCun et al. ‘98



Rectified Linear Units (ReLU)

(C) Dhruv Batra 77

[Krizhevsky et al., NIPS12]



Demo Time
• https://playground.tensorflow.org

https://playground.tensorflow.org/

