CS 4803 / 7643: Deep Learning

Topics:

- Optimization
- Computing Gradients

Dhruv Batra Georgia Tech

Administrativia

- HW1 Reminder
 - Due: 09/26, 11:55pm
 - <u>https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z30</u>
 <u>9P26CwTPZZMDXyWYDj3/hw1.pdf</u>
 - <u>https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z30</u>
 <u>9P26CwTPZZMDXyWYDj3/hw1-q8/</u>
 - <u>https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200</u>

Recap from last time

Regularization

 $\lambda_{.}$ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

7 7

Regularization: Prevent the model from doing *too* well on training data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

Simple examples <u>L2 regularization</u>: $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex: Dropout **Batch normalization**

Stochastic depth, fractional pooling, etc

So far: Linear Classifiers

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else

Class 1: Three modes

Class 2: Everything else

Image features vs Neural Nets

(**Before**) Linear score function:

$$f = Wx$$

(**Before**) Linear score function: (**Now**) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

(Before) Linear score function:

(Now) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ W1 h Χ W2 S 10 100 3072 bird deer dog frog horse ship truck plane car cat

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1x))$

Multilayer Networks M2P

- Cascaded "neurons"
- The output from one layer is the input to the next
- Each layer has its own sets of weights

Impulses carried toward cell body

Activation functions

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

A quick note

Fig. 4. (a) Not recommended: the standard logistic function, $f(x) = 1/(1 + e^{-x})$. (b) Hyperbolic tangent, $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$.

(C) Dhruv Batra

Rectified Linear Units (ReLU)

Plan for Today

- Optimization
- Computing Gradients

Optimization

Supervised Learning

- Input: x
- Output: y
- (Unknown) Target Function
 f: X → Y

(images, text, emails...) (spam or non-spam...)

(the "true" mapping / reality)

Data

(x₁,y₁), (x₂,y₂), ..., (x_N,y_N)

Model / Hypothesis Class

{h: X → Y}
e.g. y = h(x) = sign(w^Tx)

Loss Function

How good is a model wrt my data D?
Softward CF

Learning = Search in hypothesis space

Find best h in model class.

Demo Time

• <u>https://playground.tensorflow.org</u>

Strategy: Follow the slope

min $L(\tilde{n}, \tilde{D})$

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Gradient Descent

Vanilla Gradient Descent while True: weights grad = evaluate gradient(loss fun, data, weights) weights += - step size * weights grad # perform parameter update Tined Rata

Gradient Descent has a problem

$$\underline{L}(W) = \frac{1}{N} \sum_{i=1}^{N} \underline{L}_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

$$When N is large!$$
Approximate sum using a minibatch of examples 32 / 64 / 128 common
$$While True:$$
Hata batch = sample_training_data(data, 156) # sample 256 examples
Weights grad = evaluate gradient(loss_fun, data_batch, weights)
Weights += - step_size * weights_grad # perform parameter update

Stochastic Gradient Descent (SGD)

$$\begin{aligned}
\left| L(W) \right| &= \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) \\
\nabla_W L(W) &= \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) \\
&= \frac{1}{N} \sum_{i=1}^{N} \sum_{i$$

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
    data batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```


How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation X
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001$ $= -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

current W:	W + h (second dim):	
[0.34,	[0.34,	
-1.11,	-1.11 + 0.0001 ,	
0.78,	0.78,	
0.12,	0.12,	
0.55,	0.55,	
2.81,	2.81,	
-3.1,	-3.1,	
-1.5,	-1.5,	
0.33,]	0.33,]	
loss 1.25347	loss 1.25353	

gradient dW:

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25353	[-2.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6

current W:	W + h (third dim):	gradie
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34, -1.11, 0.78 + 0.0001 , 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?, ?,]
1033 1.20071		

gradient dW:

Numerical vs Analytic Gradients

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient. This is called a gradient check.

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

Extension to Tensors . . Om XER RCI.X-Cn YF i........... y-vec=Y(:) x-vec=x(:) (m (C) Dhruv Batra 58

