
CS 4803 / 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Optimization
– Computing Gradients

Administrativia
• HW1 Reminder

– Due: 09/26, 11:55pm
– https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z3o

9P26CwTPZZMDXyWYDj3/hw1.pdf
– https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z3o

9P26CwTPZZMDXyWYDj3/hw1-q8/
– https://evalai.cloudcv.org/web/challenges/challenge-

page/431/leaderboard/1200

(C) Dhruv Batra 2

https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z3o9P26CwTPZZMDXyWYDj3/hw1.pdf
https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/Z3o9P26CwTPZZMDXyWYDj3/hw1-q8/
https://evalai.cloudcv.org/web/challenges/challenge-page/431/leaderboard/1200

Recap from last time

(C) Dhruv Batra 3

Regularization

4

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Occam’s Razor:
“Among competing hypotheses,
the simplest is the best”
William of Ockham, 1285 - 1347

Regularization

5

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization:
L1 regularization:
Elastic net (L1 + L2):

More complex:
Dropout
Batch normalization
Stochastic depth, fractional pooling, etc

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So far: Linear Classifiers

6

f(x) = Wx
Class
scores

Hard cases for a linear classifier

7

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Feature Extraction

Image features vs Neural Nets

8

f
10 numbers giving
scores for classes

training

training

10 numbers giving
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

(Before) Linear score function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff

10

(Before) Linear score function:

(Now) 2-layer Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff

11

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Before) Linear score function:

(Now) 2-layer Neural Network

12

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x hW1 sW2

3072 100 10

(Before) Linear score function:

(Now) 2-layer Neural Network

13

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Multilayer Networks
• Cascaded “neurons”
• The output from one layer is the input to the next
• Each layer has its own sets of weights

(C) Dhruv Batra 14Image Credit: Andrej Karpathy, CS231n

15

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

16

sigmoid activation function

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions

Activation Functions
• sigmoid vs tanh

(C) Dhruv Batra 18

A quick note

(C) Dhruv Batra 19Image Credit: LeCun et al. ‘98

Rectified Linear Units (ReLU)

(C) Dhruv Batra 20

[Krizhevsky et al., NIPS12]

Plan for Today
• Optimization
• Computing Gradients

(C) Dhruv Batra 21

Optimization

Supervised Learning
• Input: x (images, text, emails…)
• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X à Y (the “true” mapping / reality)

• Data
– (x1,y1), (x2,y2), …, (xN,yN)

• Model / Hypothesis Class
– {h: X à Y}
– e.g. y = h(x) = sign(wTx)

• Loss Function
– How good is a model wrt my data D?

• Learning = Search in hypothesis space
– Find best h in model class.

(C) Dhruv Batra 23

Demo Time
• https://playground.tensorflow.org

https://playground.tensorflow.org/

Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Strategy: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

original W

negative gradient direction
W_1

W_2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Full sum expensive
when N is large!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Gradient Descent has a problem

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

(C) Dhruv Batra 37

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 38

(C) Dhruv Batra 39Figure Credit: Baydin et al. https://arxiv.org/abs/1502.05767

(C) Dhruv Batra 40Figure Credit: Baydin et al. https://arxiv.org/abs/1502.05767

(C) Dhruv Batra 41Figure Credit: Baydin et al. https://arxiv.org/abs/1502.05767

(C) Dhruv Batra 42Figure Credit: Baydin et al. https://arxiv.org/abs/1502.05767

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 43

(C) Dhruv Batra 44By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

How do we compute gradients?
• Analytic or “Manual” Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 53

Vector/Matrix Derivatives Notation

(C) Dhruv Batra 54

Vector/Matrix Derivatives Notation

(C) Dhruv Batra 55

Vector Derivative Example

(C) Dhruv Batra 56

Vector Derivative Example

(C) Dhruv Batra 57

Extension to Tensors

(C) Dhruv Batra 58

Chain Rule: Composite Functions

(C) Dhruv Batra 59

