
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– (Finish) Analytical Gradients
– Automatic Differentiation

– Computational Graphs
– Forward mode vs Reverse mode AD



Administrativia
• HW1 Reminder

– Due: 09/26, 11:55pm

• Fuller schedule + future reading posted
– https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/
– Caveat: subject to change; 

please don’t make irreversible decisions based on this. 
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https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/


Recap from last time
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Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 9



(C) Dhruv Batra 10By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Matrix/Vector Derivatives Notation
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Vector/Matrix Derivatives Notation
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Vector Derivative Example
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Vector Derivative Example
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Extension to Tensors
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Plan for Today
• (Finish) Analytical Gradients

• Automatic Differentiation
– Computational Graphs
– Forward mode vs Reverse mode AD
– Patterns in backprop
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Graphical view

(C) Dhruv Batra 25



(C) Dhruv Batra 26



Logistic Regression Derivatives
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Logistic Regression Derivatives
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Chain Rule: Cascaded
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Chain Rule: How should we multiply?
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


How do we compute gradients?
• Analytic or “Manual” Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Plan for Today
• (Finish) Analytical Gradients

• Automatic Differentiation
– Computational Graphs
– Forward mode vs Reverse mode AD
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Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

implementing chain-rule on computation graphs
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x

W

hinge 
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph



Any DAG of differentiable modules is 
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 37

Computational Graph



Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay
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Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Directed Acyclic Graphs (DAGs)
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Computational Graphs
• Notation
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



HW0

(C) Dhruv Batra 43



(C) Dhruv Batra 44

HW0 Submission by Samyak Datta



Logistic Regression as a Cascade
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Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w|x

◆

w
|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• Auto-Diff
– A family of algorithms for

implementing chain-rule on computation graphs
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Forward mode vs Reverse Mode
• Key Computations
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g

Forward mode AD
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Reverse mode AD



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1



Forward Pass vs 
Forward mode AD vs Reverse Mode AD
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+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin( )

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin( )

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)



Forward mode vs Reverse Mode
• What are the differences? 
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+

sin( )

x2

*

+

sin( )

x1 x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2 w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

ẇ1 = cos(x1)ẋ1

x1



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is faster to compute? 
– Forward or backward?

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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