CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Analytical Gradients
- Automatic Differentiation
 - Computational Graphs
 - Forward mode vs Reverse mode AD

Dhruv Batra Georgia Tech

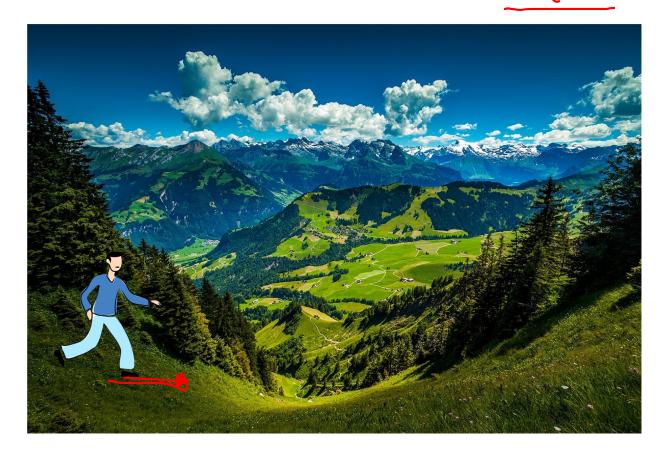
Administrativia

- HW1 Reminder
 - Due: 09/26, 11:55pm
- Fuller schedule + future reading posted
 - https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/
 - Caveat: subject to change;
 please don't make irreversible decisions based on this.

Recap from last time

Now Z(N)

Strategy: Follow the slope



Gradient Descent

```
# Vanilla Gradient Descent

while True:
    (weights grad = evaluate gradient(loss fun, data, weights))
    weights += - step_size * weights_grad # perform parameter update

\[ \lambda(0) = \text{ind} \]

for t=1 -- till d

\[ \lambda(0) = \text{ind} \]

\[ \lambda(0) = \te
```

Stochastic Gradient Descent (SGD)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)}_{V_W L(W)}$$

$$\nabla_W L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)}_{i=1}$$

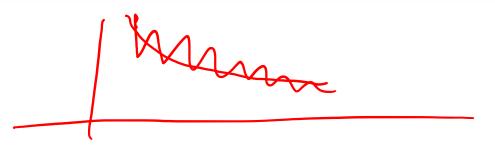
Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
```

while True:

```
data_batch = sample_training data(data, 256) # sample 256 examples
weights_grad = evaluate gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update
```



How do we compute gradients?

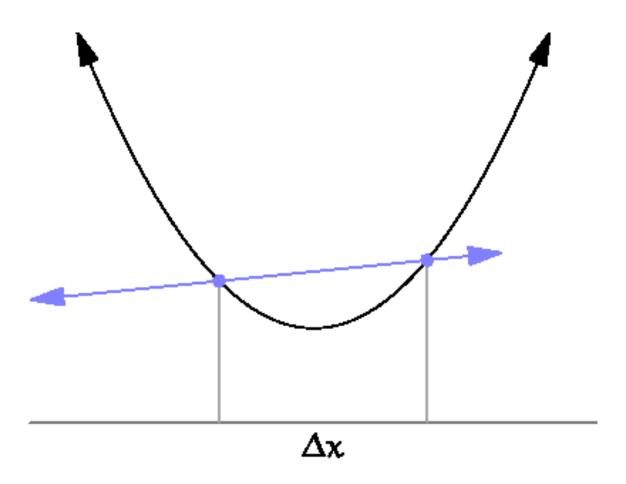
- Analytic or "Manual" Differentiation -
- Symbolic Differentiation X
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

```
f'(x) = 128x(1-x)(-8+16x)(1-2x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1-x)^2(1
                               l_1 = x
                               l_{n+1} = 4l_n(1 - l_n)
                                                                                                                                                                                                                                                        8x + 8x^2 + 64(1-x)(1-2x)^2(1-8x+8x^2)^2 -
                                                                                                                                                                                                                                                        64x(1-2x)^2(1-8x+8x^2)^2-256x(1-x)(1-x)^2
                                                                                                                                                                                                     Manual
                                f(x) = l_4 = 64x(1-x)(1-2x)^2(1-8x+8x^2)^2
                                                                                                                                                                                                                                                        (2x)(1-8x+8x^2)^2
                                                                                                                                                                                           Differentiation
                                                                                                       Coding
                                                                                                                                                                                                                                                                                                                               Coding
                               f(x):
                                                                                                                                                                                                                                                          f'(x):
                                                                                                                                                                                                                                                              return 128*x*(1-x)*(-8+16*x)
                                         v = x
                                                                                                                                                                                                                                                                      *((1-2*x)^2)*(1-8*x+8*x*x)
                                          for i = 1 to 3
                                                                                                                                                                                                                                                                      +64*(1-x)*((1-2*x)^2)*((1
                                                v = 4*v*(1 - v)
                                                                                                                                                                                                                                                                     -8*x + 8*x*x)^2 - (64*x*(1 -
                                          return v
                                                                                                                                                                                                                                                                       2*x)^2 * (1 - 8*x + 8*x*x)^2 -
                                                                                                                                                                                                   Symbolic
                                                                                                                                                                                                                                                                       256*x*(1-x)*(1-2*x)*(1-8*x)
                               or, in closed-form,
                                                                                                                                                                                          Differentiation
                                                                                                                                                                                                                                                                      + 8*x*x)^2
                                                                                                                                                                                     of the Closed-form
                                f(x):
                                       return 64*x*(1-x)*((1-2*x)^2)
                                                                                                                                                                                                                                                                                                                                                 f'(x_0) = f'(x_0)
                                              *(1-8*x+8*x*x)^2
                                                                                                        Automatic
                                                                                                                                                                              Numerical
                                                                                                       Differentiation
                                                                                                                                                                             Differentiation
                                  f'(x):
                                                                                                                                                                                                                                                          f'(x):
                                          (v,dv) = (x,1)
                                                                                                                                                                                                                                                                 h = 0.000001
                                          for i = 1 to 3
                                                 (v,dv) = (4*v*(1-v), 4*dv-8*v*dv)
                                                                                                                                                                                                                                                                 return (f(x + h) - f(x)) / h
                                         return (v,dv)
                                                                                                                                                                                                                                                                                                                                                 f'(x_0) \approx f'(x_0)
                                                                                                                         f'(x_0) = f'(x_0)
                                                                                                                                                                                                                                                                                                                                                          Approximate
                                                                                                                                                        Exact
(C) [
```

8

How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"



current W:

W + h (first dim):

0.33,...]

loss 1.25322

gradient dW:

[-2.5,
?,
?,
$$(1.25322 - 1.25347)/0.0001$$
$$= -2.5$$
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,

current W:

W + h (second dim):

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25347

gradient dW:

[-2.5,
0.6,
?,
?
(1.25353 - 1.25347)/0.0001
= 0.6

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Numerical vs Analytic Gradients

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

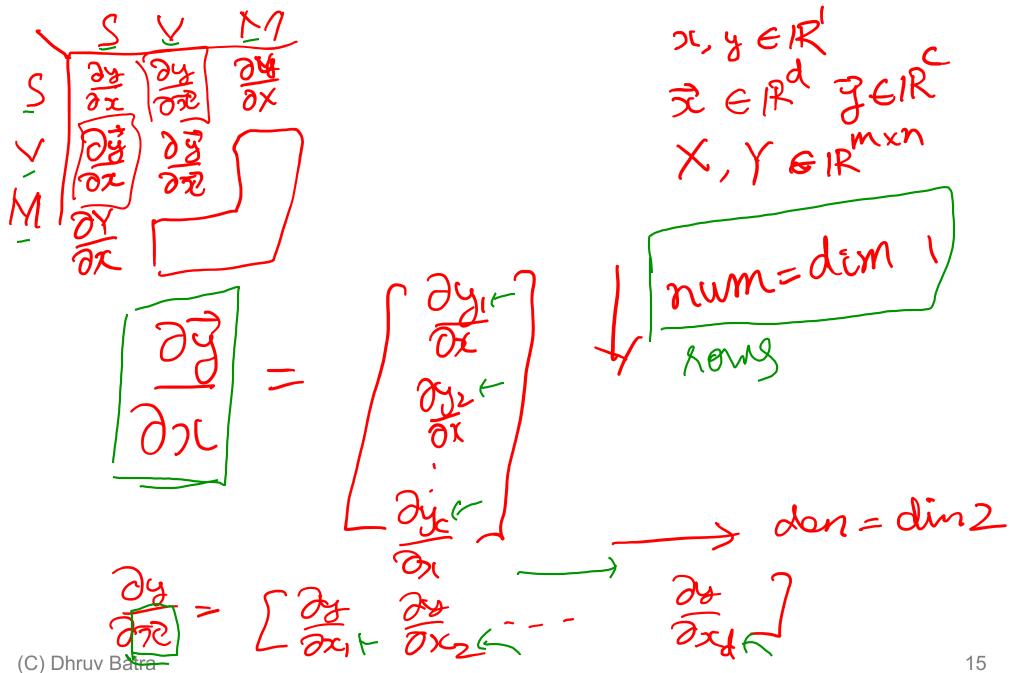
Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient.
This is called a **gradient check.**

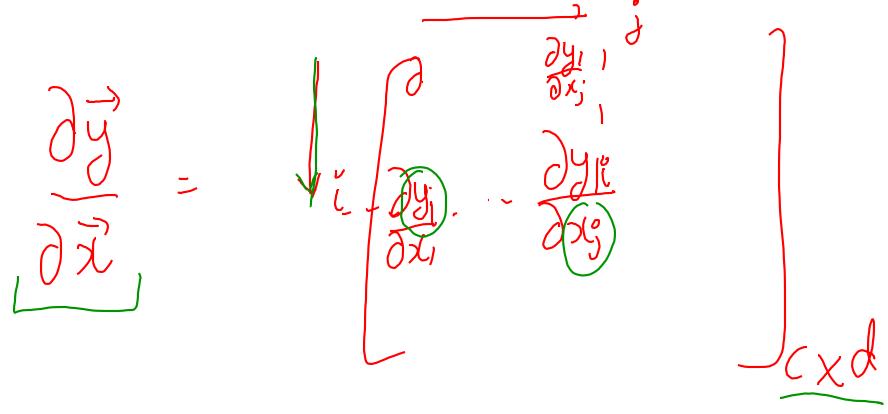
How do we compute gradients?

- Analytic or "Manual" Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

Matrix/Vector Derivatives Notation



Vector/Matrix Derivatives Notation

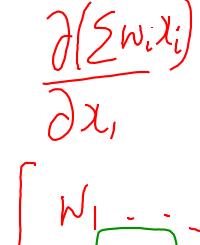


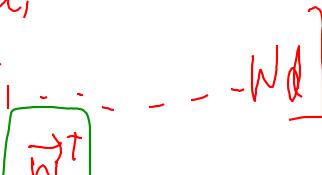
Vector Derivative Example

$$\frac{1}{2} = \left(\frac{y}{y} \right) = \left(\frac{x}{x^2} \right)$$

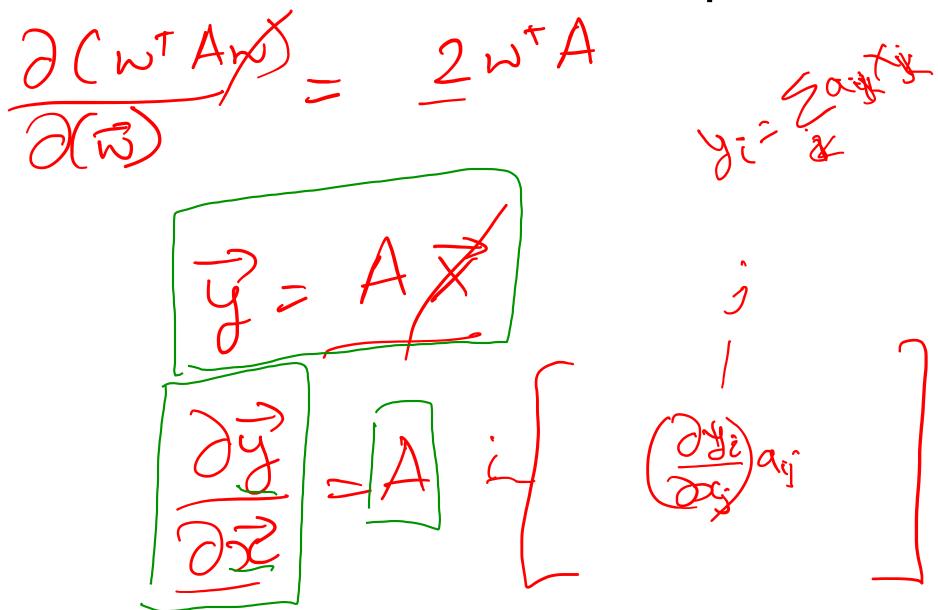
$$\frac{\partial \vec{y}}{\partial x} = \begin{bmatrix} 1 \\ 2x \end{bmatrix}$$

$$\frac{\partial y}{\partial x} = \int \frac{\partial y}{\partial x_i} - \frac{\partial y}{\partial x_i}$$

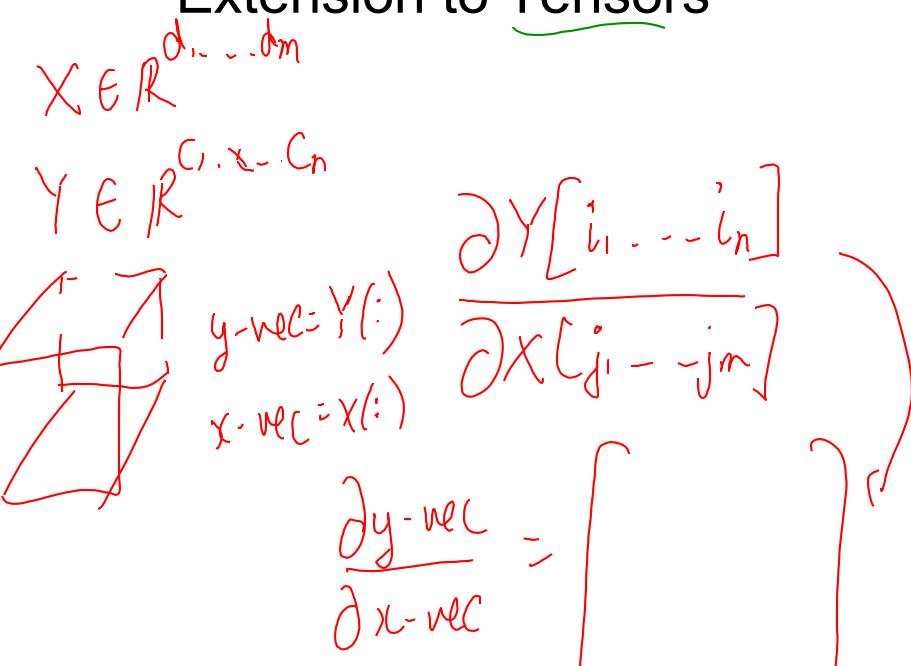




Vector Derivative Example



Extension to Tensors



Plan for Today

- (Finish) Analytical Gradients
- Automatic Differentiation
 - Computational Graphs
 - Forward mode vs Reverse mode AD
 - Patterns in backprop

Chain Rule: Composite Functions

$$\left(\angle(x) = f(g(x)) = (f \circ g)(x)\right)$$

$$f(x) = ge(ge_1 - - g_1(x))$$

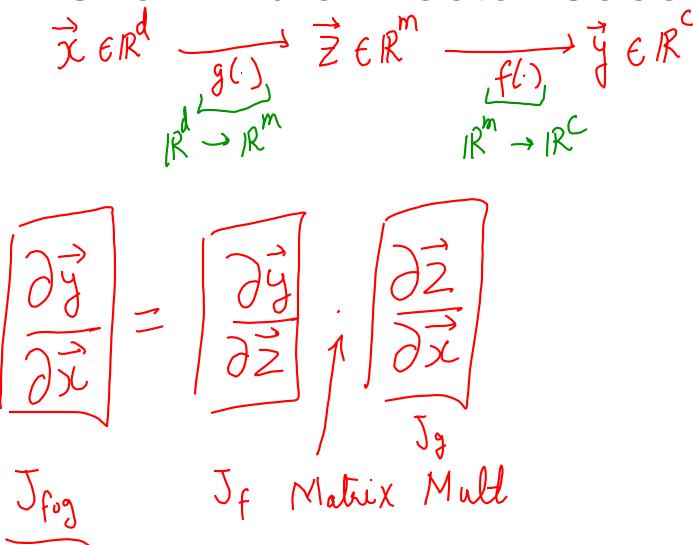
$$L(h) = geoge_1 - - og_1(x)$$

Chain Rule: Scalar Case

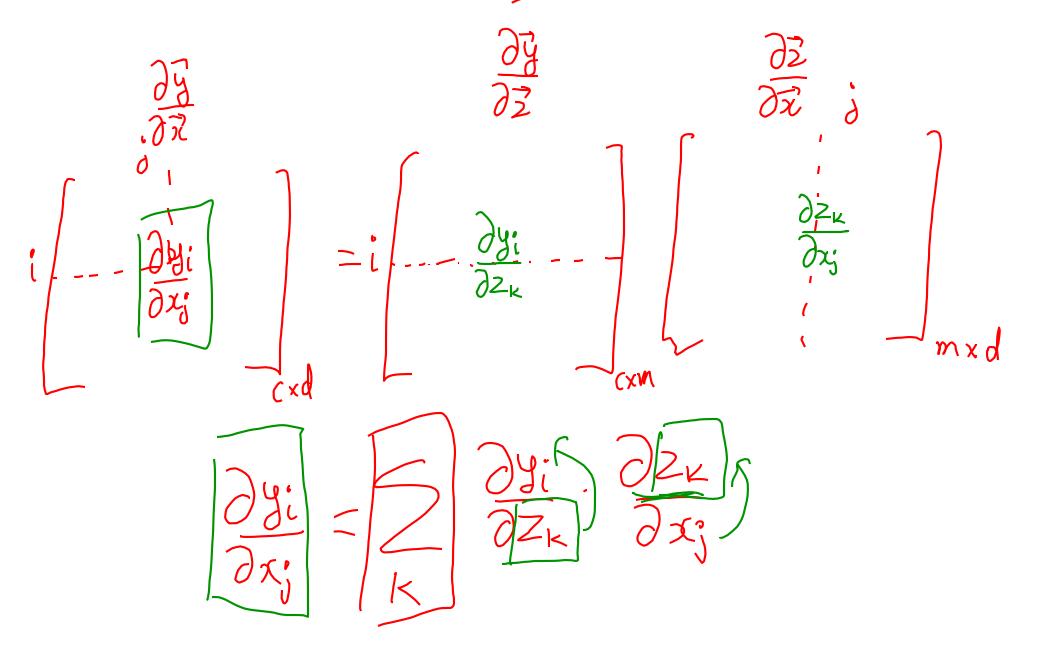
$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z}, \frac{\partial z}{\partial x}$$

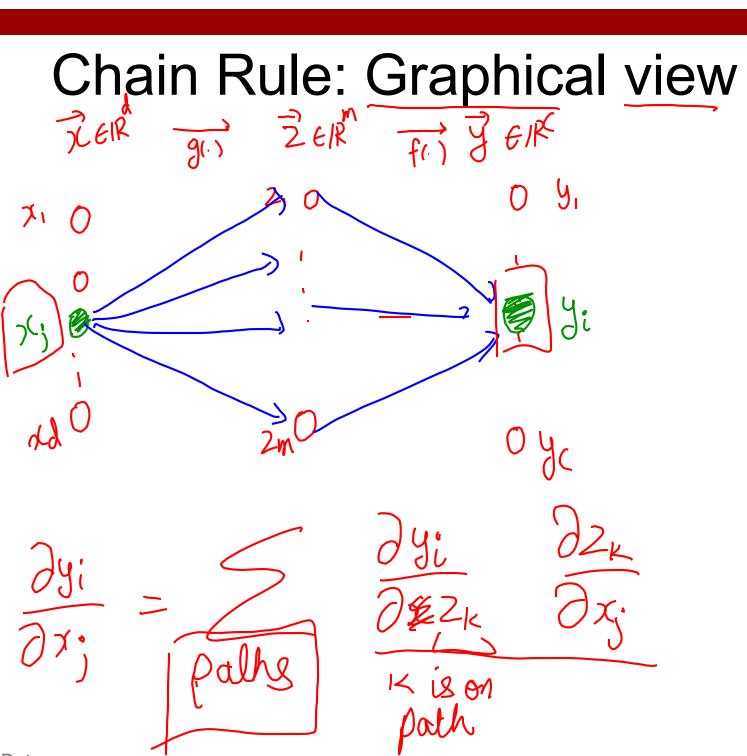
$$\frac{\partial z}{\partial x} = \frac{\partial y}{\partial x}, \frac{\partial z}{\partial x}$$
Scalar prod.

Chain Rule: Vector Case



Chain Rule: Jacobian view





Linear Classifier: Logistic Regression

Input: $x \in R^D$

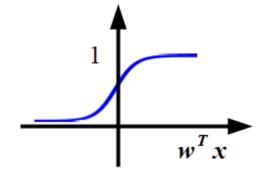
Binary label: $y \in \{-1, +1\}$

Parameters: $\mathbf{w} \in \mathbb{R}^D$

Output prediction: p(y=1|x)=

$$p(\underline{y=1}|\underline{x}) = \frac{1}{1+e^{-w^Tx}}$$

Loss: $L = \frac{1}{2} ||\mathbf{w}||^2 - \lambda \log(p(y|\mathbf{x}))$



 $\overline{w}^T x y$

Logistic Regression Derivatives
$$Li = -\log(1 + e^{-w^{T}x}) = \log(1 + e^{-w^{T}x})$$

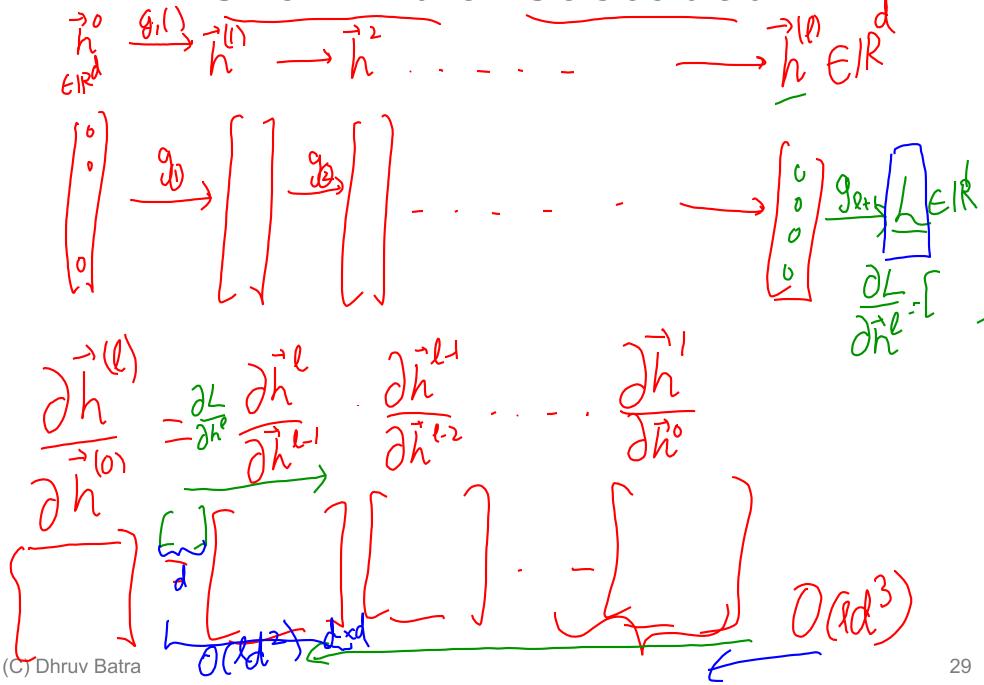
$$2Li = -\log(1 + e^{-w^{T}x}) = \log(1 + e^{-w^{T}x})$$

$$2Li = -\log(1 + e^{-w^{T}x}) = \log(1 + e^{-w^{T}x})$$

$$=\left(\frac{1}{1+e^{-w^{T}x}}\right)\left(\frac{-\vec{w}^{T}\vec{x}}{e}\right)\left(\frac{-\vec{w}^{T}\vec{x}}{e}\right)$$

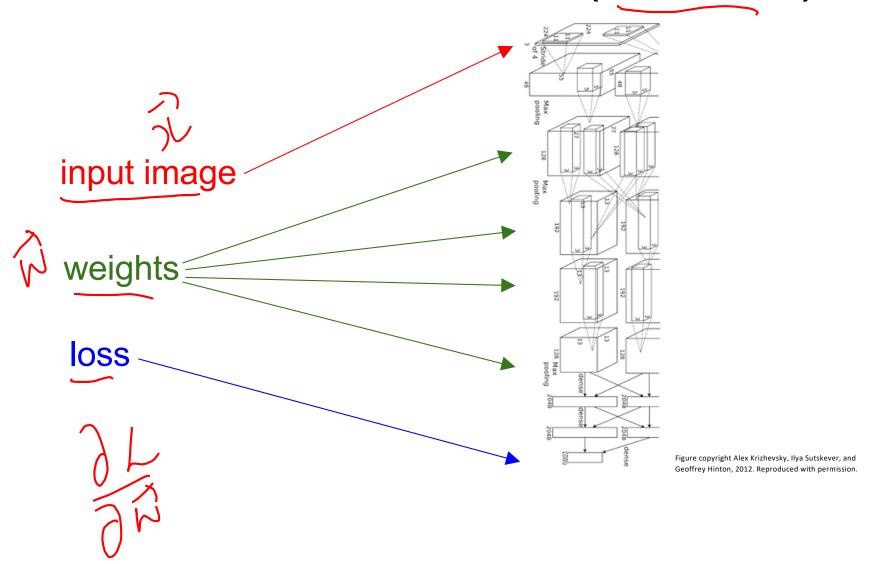
Logistic Regression Derivatives

Chain Rule: Cascaded



Chain Rule: How should we multiply?

Convolutional network (AlexNet)



Neural Turing Machine

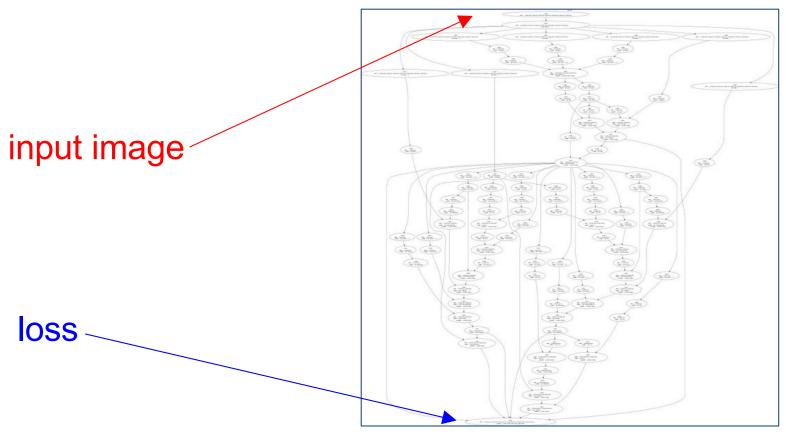


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

How do we compute gradients?

- Analytic or "Manual" Differentiation.
- Symbolic Differentiation X
- Numerical Differentiation

Automatic Differentiation

- Forward mode AD
- Reverse mode AD
 - aka "backprop"

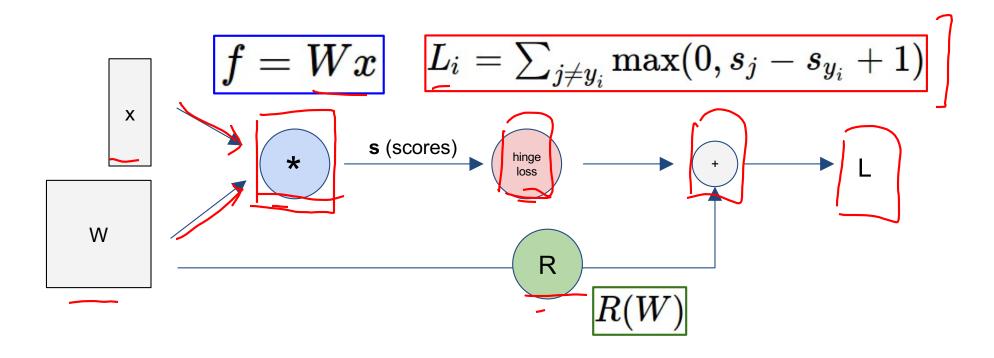
Plan for Today

- (Finish) Analytical Gradients
- Automatic Differentiation
 - Computational Graphs
 - Forward mode vs Reverse mode AD

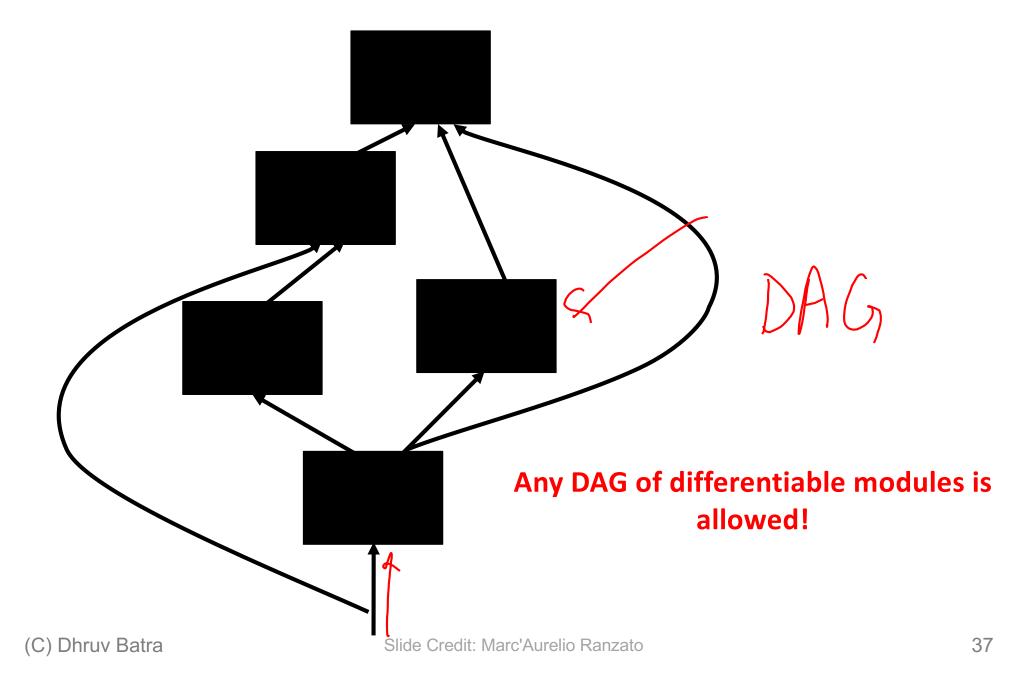
Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- Auto-Diff
 - A family of algorithms for implementing chain-rule on computation graphs

Computational Graph

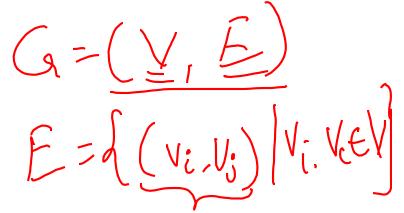


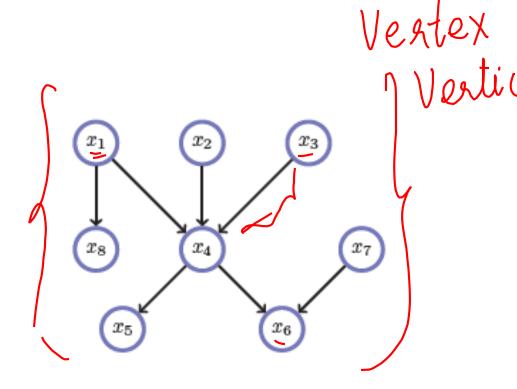
Computational Graph

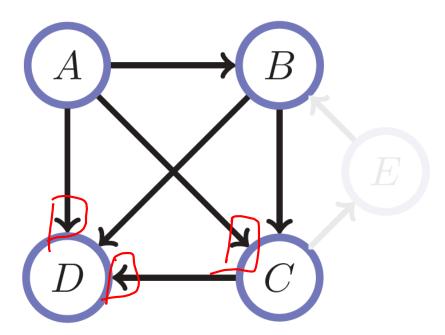


Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
 - Directed edges
 - No (directed) cycles
 - Underlying undirected cycles okay







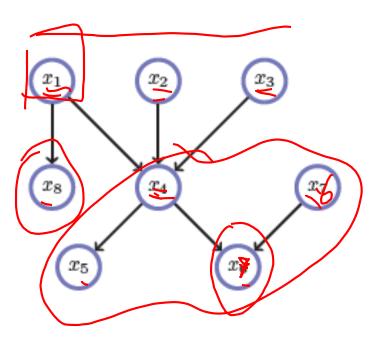
Directed Acyclic Graphs (DAGs)

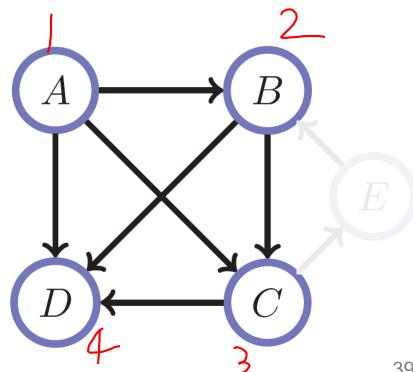
- Concept
 - Topological Ordering

$$\exists$$
 bijochion $6: V \rightarrow U_{i,j}$.

Sit $\forall (v_i, v_j) \in E$

$$\sigma(v_i) \subset \sigma(v_j)$$

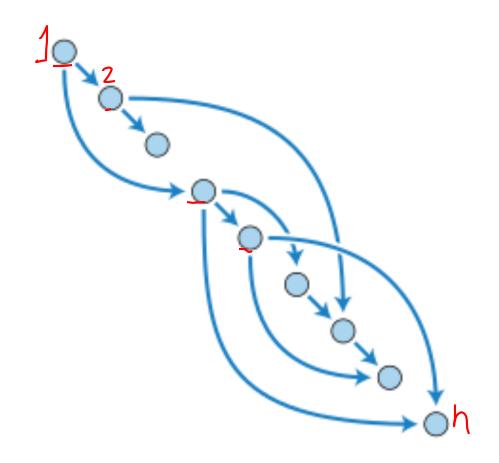




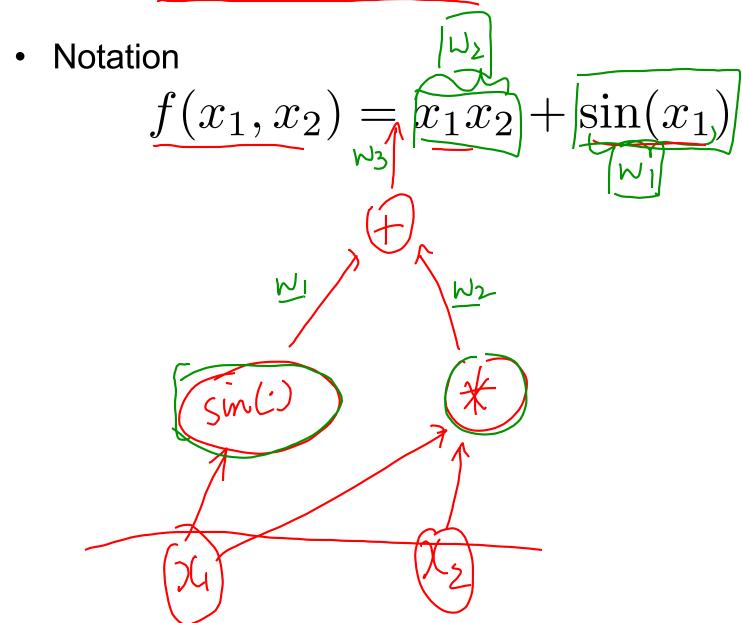
(C) Dhruv Batra

39

Directed Acyclic Graphs (DAGs)

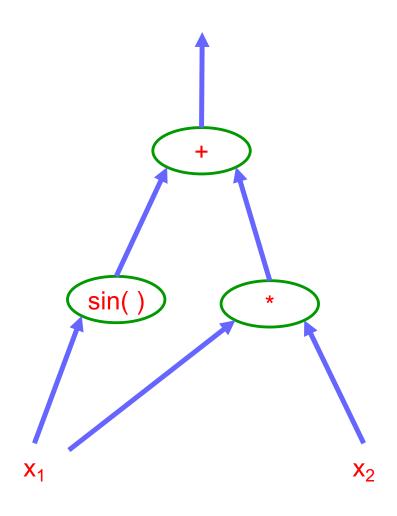


Computational Graphs



Example

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$

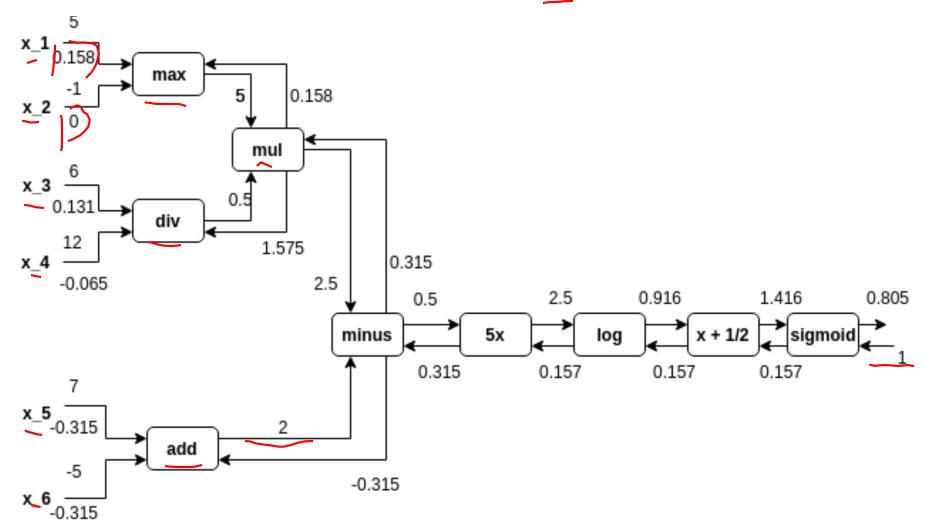


HW0

$$\underline{f(\mathbf{x})} = \sigma \left(\log \left(5 \left(\max\{x_1, x_2\} \cdot \frac{x_3}{x_4} - (x_5 + x_6) \right) \right) + \frac{1}{2} \right)$$

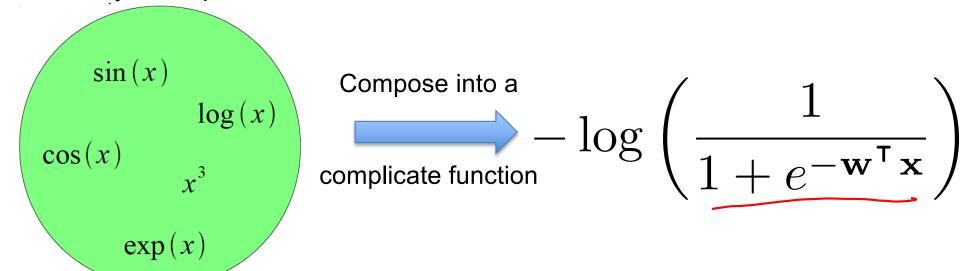
HW0 Submission by Samyak Datta

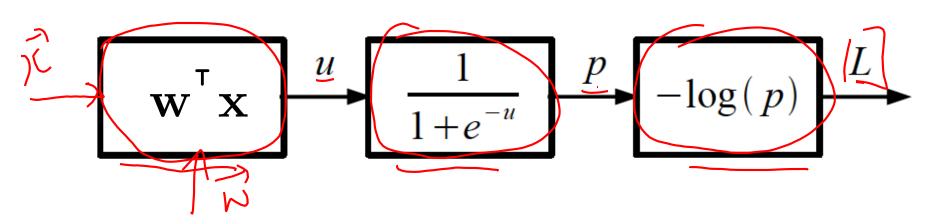
$$f(\mathbf{x}) = \sigma \left(\log \left(5 \left(\underbrace{\max\{x_1, x_2\}}_{} \cdot \frac{x_3}{x_4} - (x_5 + x_6) \right) \right) + \frac{1}{2} \right)$$



Logistic Regression as a Cascade

Given a library of simple functions

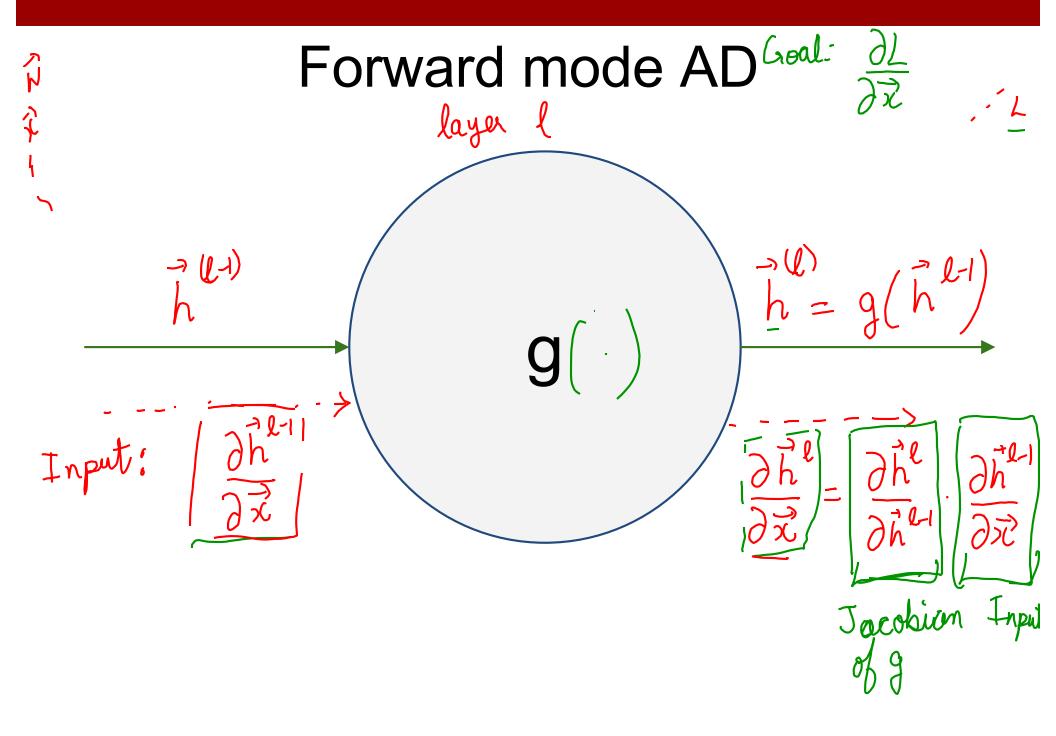


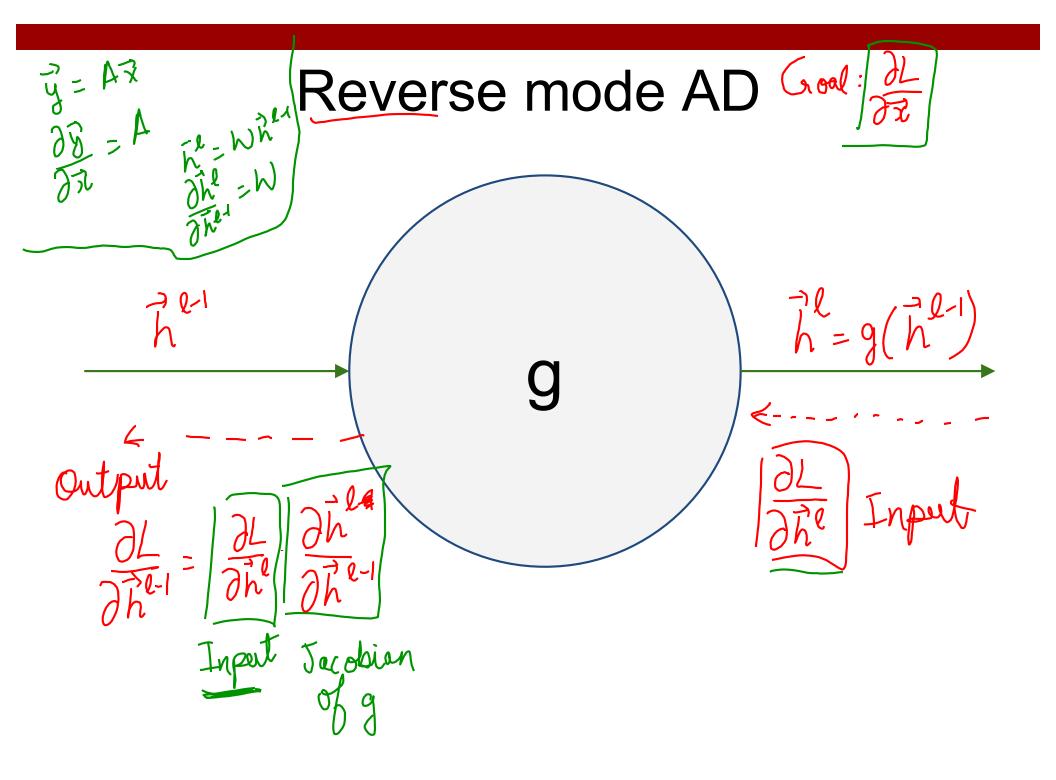


Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- Auto-Diff
 - A family of algorithms for implementing/chain-rule on computation graphs

Key Computations





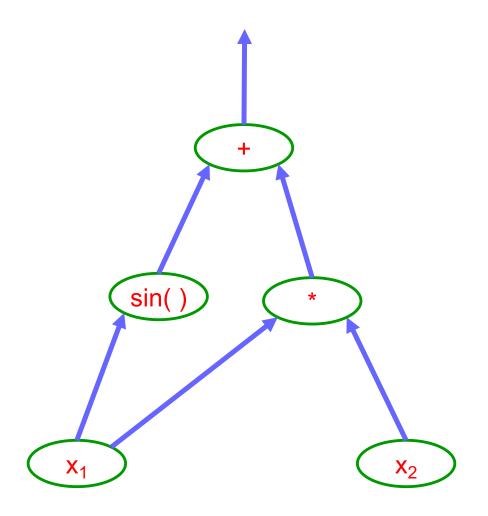
$$f(x_1, x_2) = \overline{x_1 x_2} + \overline{\sin(x_1)} \quad \frac{\partial f}{\partial x_1} = \overline{\frac{\partial f}{\partial x_1}} \quad \frac{\partial f}{\partial x_2}$$

$$\frac{\partial x_1}{\partial a} = \overline{x_1}$$

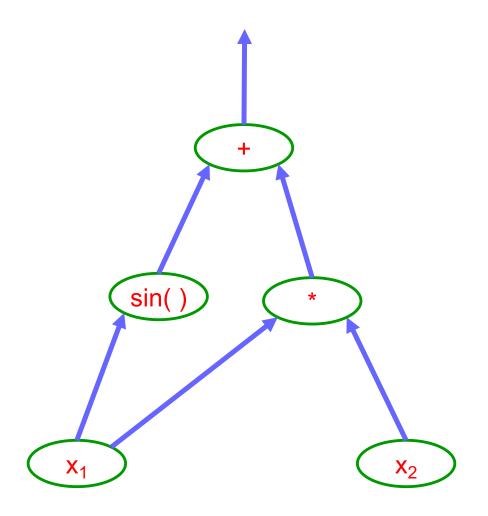
$$\frac{\partial x_2}{\partial a} = \overline{\frac{\partial x_1}{\partial x_1}} = \overline{\frac{\partial x_2}{\partial a}} + \overline{\frac{\partial x_2}{\partial a}} + \overline{\frac{\partial x_2}{\partial a}}$$

$$\frac{\partial x_1}{\partial a} = \overline{\frac{\partial x_2}{\partial a}} + \overline{\frac{\partial x_2}{\partial a$$

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



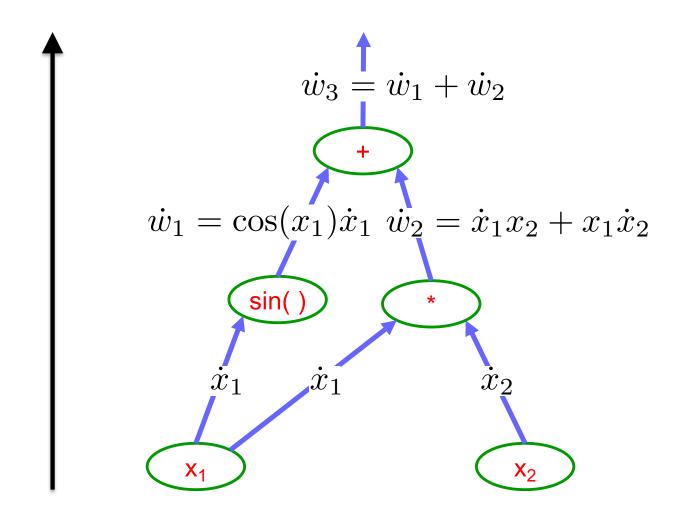
$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$

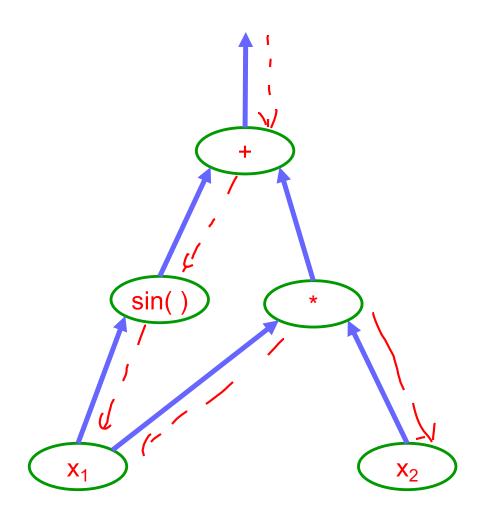
$$f(x_1, x_2) = x_1 x_2 + x_1 x_2$$

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



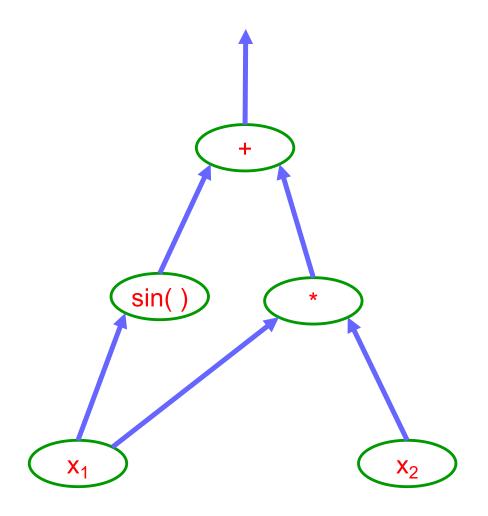
Example: Reverse mode AD

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



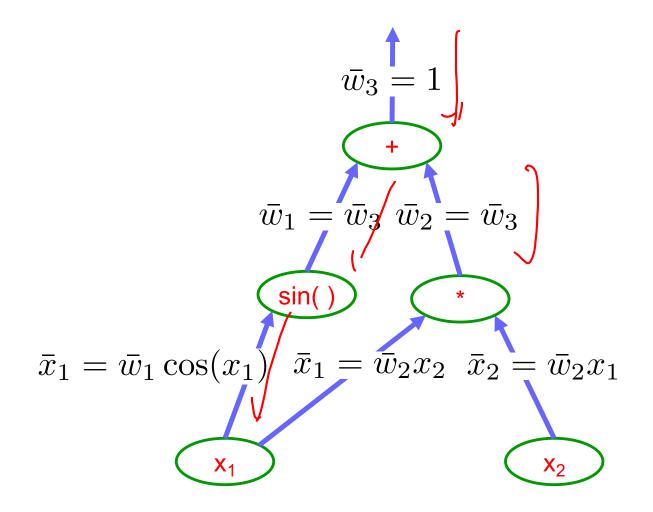
Example: Reverse mode AD

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



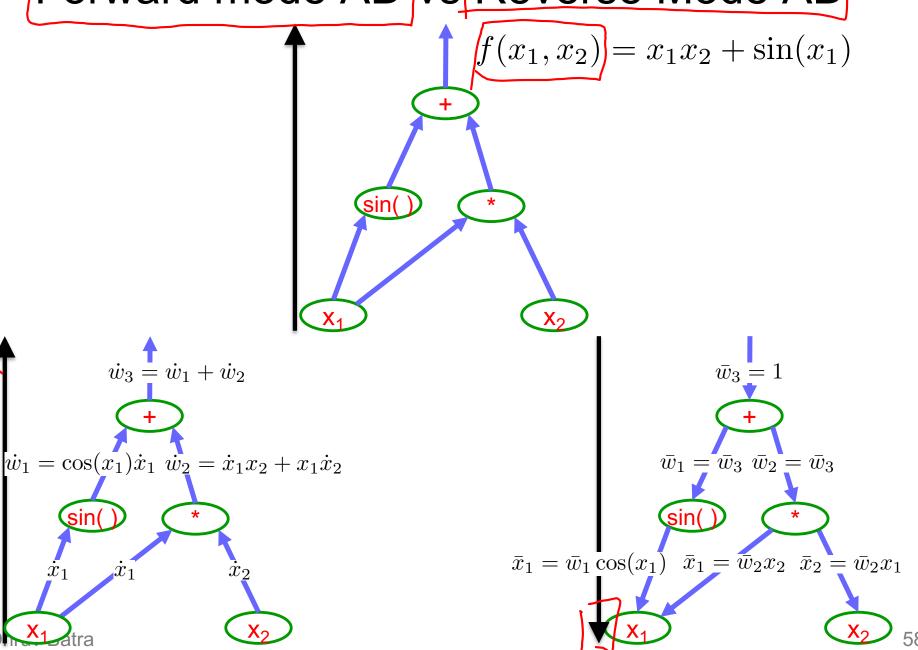
Example: Reverse mode AD

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$

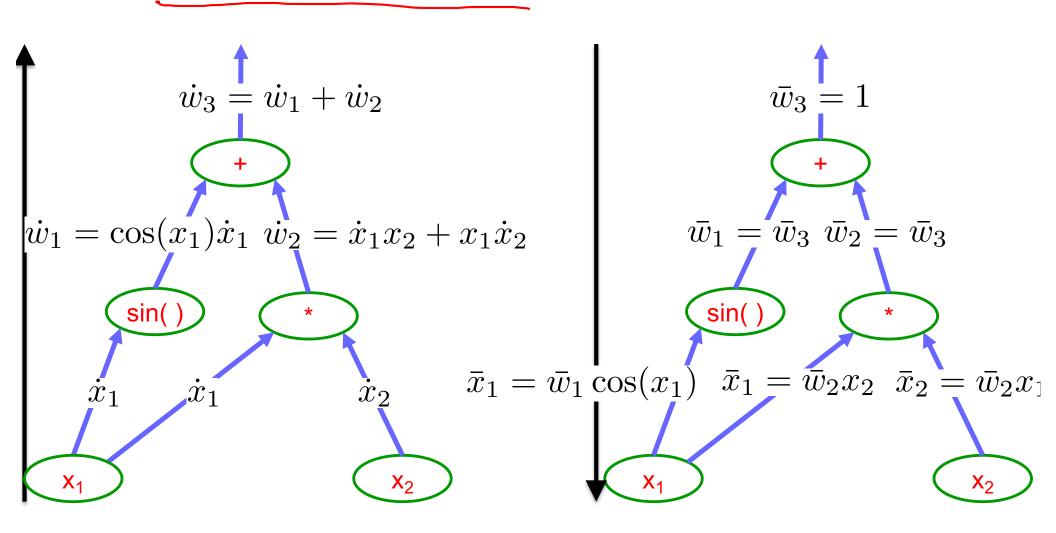


Forward Pass vs

Forward mode AD vs Reverse Mode AD



What are the differences?



What are the differences?

- Which one is faster to compute?
 - Forward or backward?

- What are the differences?
- Which one is faster to compute?
 - Forward or backward?
- Which one is more memory efficient (less storage)?
 - Forward or backward?