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Some slides borrowed from Jacob Eisenstein (was at GT) and Dan Jurafsky at Stanford 



TA Office Hours

¡ Ian Stewart: Tuesdays, 2-4pm, Coda C1106

¡ Jiaao Chen: Thursdays, 2-4pm, Coda C1008

¡ Nihal Singh: Fridays, 9-11am, Coda C1008

¡ Jingfeng Yang: Mondays, 10am-12pm,  Coda 14th common area
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Sign Up for Piazza

https://piazza.com/gatech/spring2020/cs7650cs4650/home
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Staff Mailing List

cs4650-7650-s20-staff@googlegroups.com
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Waiting List
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Your Homework 1

¡ Due date: Jan 15th, 3:00pm, EST
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¡Other Questions? 
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Very Quick Review on Probabilities

¡ Event space (e.g., !,#) – in this class, usually discrete 

¡ Random variables (e.g., %, &)

¡ Random variable % takes value ', ' ∈ ! with probability ) % = ' or ) '
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Very Quick Review on Probabilities

¡ Joint probability ! " = $, & = '

¡ Conditional probability ! " = $ & = ') = )(+,-,.,/)
)(.,/)
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Very Quick Review on Probabilities

¡ Always true:
¡ ! " = $, & = ' = ! " = $ & = ' ⋅ ! & = ' = ) & = ' " = $ ⋅ )(" = $)

¡ Sometimes true:

¡ ! " = $, & = ' = !(" = $) ⋅ ! & = '
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Very Quick Review on Probabilities

!
" = !!

!! !%" !
¡ The number of ways to select k words out of n given words (“unordered samples without 

replacement”)

&
&', &), … , &"

= &!
&'! &)!⋯&"!

¡ Here, &, &', &) … , &" are all non-negative integers, and &' + &) + &- + ⋯&" = &
¡ The number of ways to split n distinct words into k distinct groups of sizes n1, . . . , nk, respectively
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Classification

¡ A mapping ℎ from input data x (drawn from instance space #) to a label y from 
some enumerable output space%
¡ # = set of all documents

¡ % = {English, Mandarin, Greek, …}

¡ x = a single document

¡ y = ancient Greek
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Movie Ratings
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Customer Review
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Political Opinion Mining
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Female or Male Author?
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Is This Spam?
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What Is the Subject of This Article? 

18



This Class

¡ Basic representations of text data for classification

¡ Three linear classifiers

¡ Naïve Bayes

¡ Perception

¡ Logistic regression
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The Text Classification Problem

¡ Given a text ! = #$,#&,… ,#( ∈ *∗, predict a label , ∈ -
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Some Direct Text Classification Applications

Task ! "
Language identification text {English, Mandarin, Greek, …}

Spam classification email {spam, not spam}
Authorship attribution text {jk rowling, james joyce, …}

Genre classification novel {detective, romance, gothic, …}
Sentiment classification text {positive, negative, neutral, mixed}
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Some Direct Text Classification Applications

Task ! "
Language identification text {English, Mandarin, Greek, …}

Spam classification email {spam, not spam}
Authorship attribution text {jk rowling, james joyce, …}

Genre classification novel {detective, romance, gothic, …}
Sentiment classification text {positive, negative, neutral, mixed}

Indirectly, methods from text classification apply to a huge range of settings in natural language 
processing, and will appear again and again throughout the course.
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Bag-of-Words
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The Bag-of-Words

¡ One challenge is that the sequential representation !",!$,… ,!& may have a 
different length ' for every document.

¡ The bag-of-words is a fixed-length representation, which consists of a vector of 
word counts:

¡ The length of ( is equal to the size of the vocabulary )
¡ For each (, there may be many possible w, depending on word order.
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Linear Classification on the Bag of Words

¡ Let !(#, %) score the compatibility of bag-of-words # and label %, then 
'% = argmax

.
!(#, %)

¡ In a linear classifier, this scoring function has a simple form:

! #, % = / ⋅ 1 #, % = 2
345

63 ⋅ 73 #, %

¡ where / is a vector of weights, and 1 is a feature function
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Feature Functions

¡ In classification, the feature function is usually a simple combination of 
! and ", such as:

#$ !, " = '()*+,-, if y = FICTION
0, otherwise
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Summary and Next Steps

¡ To summarize, our classification function is:
!" = argmax

)
* ⋅ , -, "

where - is the bag-of-words representation, and , is a feature function

¡ The learning problem is to find the right weights *, assuming a labeled 
dataset (-(0), "(0)) 023

4
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Probabilistic Classification

¡ Naïve Bayes is a probabilistic classifier. It takes the following strategy:
¡ Define a probability model !(#, %)
¡ Estimate the parameters of the probability model by maximum likelihood – that 

is, by maximizing the likelihood of the dataset
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A Probability Model for Text Classification

¡ First, assume each instance is independent of the others

¡ ! " #:% , ' #:% = ∏*+#
% !("(*), '(*))

¡ Apply the chain rule of the probability

¡ ! ", ' = ! " ' ⋅ !(')
¡ Define the parametric form of each probability

¡ ! ' = Categorical 9 ! " ' = Multinomail(>)
¡ The multinomial is a distribution over vectors of counts

¡ The parameters 9 and > are vectors of probabilities
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The Multinomial Distribution

¡ Suppose the word whale has probability !"
¡ What is the probability that this word appears 3 times?
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The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62
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The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62

¡ The coefficient is the count of the number of possible orderings of +. 
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The Multinomial Distribution

Each word’s probability is exponentiated by its count,

¡ Multinomail(+, -, .) = ∑2345 62 !
∏2345 (62!)

∏9:;
< -9

62

¡ The coefficient is the count of the number of possible orderings of +. 

¡ Crucially, it does not depend on the frequency parameter -
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Estimating Naïve Bayes

¡ In relative frequency estimation, the parameters are set to empirical frequencies:

¡ This turns out to be identical to the maximum likelihood estimate: 
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Quick Question (1)  

Multiplying lots of small probabilities (all are under 1) can 
lead to numerical underflow … 
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Quick Question (1) 

Multiplying lots of small probabilities (all are under 1) can 
lead to numerical underflow … 
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Low Count Issue

¡ What if we have seen no training documents with the word fantastic 
and classified in the topic positive ?

¡ "̂ “$%&'%(')*” ",()')-.) = 12345(“7845895:1”, <29:5:=>)
∑@∈B 12345(C,<29:5:=>) = 0

¡ Zero probabilities cannot be conditioned away
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Smoothing

¡ To deal with low counts, it can be helpful to smooth probabilities

¡ Smoothing term ! is a hyperparameter, which must be tuned on a development set

¡ Laplace (add-1)smoothing: widely used
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Too Naïve? 

¡ Naïve Bayes is so called because:

¡ Bayes rule is used to convert the observation probability !(#|%) into the label 
probability ! ' #

¡ The multinomial distribution naively ignores dependencies between words, and 
treats every word as equally informative

¡ Discriminative classifiers avoid this problem by not attempting to model the 
“generative” probability !(#)
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The Perceptron Classifier

¡ Error-driven rather than independence assumption
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The Perceptron Classifier

¡ A simple learning rule:

¡ Run the current classifier on an instance in the training data, obtaining !" =
argmax

)
*(,(-), ")

¡ If the prediction is incorrect:

¡ Increase the weights for the features of the true label 

¡ Decrease the weights for the features of the predicted label 

¡ 0 ← 0 + 3 , 4 , "(-) − 3 , 4 , !"
¡ Repeat until all training instances are correctly classified, or run out of time41



The Perceptron Classifier (Online Learning)
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Loss Function

¡ Many classifiers can be viewed as minimizing a loss function on the weights.

¡ Such a function should have two properties:

¡ It should be a good proxy for the accuracy of the classifier

¡ It should be easy to optimize
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Perceptron as Gradient Descent

¡ This perceptron can be viewed as optimizing the loss function
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Perceptron as Gradient Descent

¡ This perceptron can be viewed as optimizing the loss function

¡ The gradient of the perceptron loss is part of the perceptron update
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Logistic Regression

¡ Perceptron classification is discriminative – learns to discriminate correct and 
incorrect labels

¡ Naïve Bayes is probabilistic: it assigns calibrated confidence scores to its predictions

¡ Logistic regression is both discriminative and probabilistic. It directly computes the 
conditional probability of the label:
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Logistic Regression

¡ Logistic regression is both discriminative and probabilistic. It directly computes the 
conditional probability of the label:

¡ Exponentiation ensures that the probabilities are non-negative.

48



Logistic Regression

¡ Logistic regression is both discriminative and probabilistic. It directly computes the 
conditional probability of the label:

¡ Exponentiation ensures that the probabilities are non-negative.

¡ Normalization ensures that the probabilities sum to one.
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Learning Logistic Regression

¡ Maximization of the conditional log-likelihood
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Learning Logistic Regression

¡ Maximization of the conditional log-likelihood

¡ Minimization of the negative log-likelihood/logistic loss
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Regularization

¡ Learning can often be made more robust by regularization: penalizing large weights

¡ where the scalar ! controls the strength of regularization, and 
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Gradient Descent (Batch Optimization)

¡ Logistic regression, perceptron both learn by minimizing a loss function. A general 
strategy for minimization is gradient descent 

¡ where !(#) ∈ ℝ' is the learning rate at iteration t
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Stochastic Gradient Descent (Online Optimization)

¡ Computing the gradient over all instances is expensive

¡ Stochastic gradient descent approximates the gradient by its value on a single data:

¡ ! " , $ " is sampled at random from the training set
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Online Optimization

¡ Gradient descent computes the gradient over all instances

¡ Stochastic gradient descent approximates the gradient by its value on a single data

¡ Minibatch gradient descent approximates the gradient by its value on small number 
of instances. This is suited to GPU architectures,  widely used in deep learning.
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Generalized Gradient Descent
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Summary of Linear Classification

Pros Cons

Naive Bayes Simple, probabilistic, fast
Closed-form solution

Not very accurate

Perceptron Simple, accurate Not probabilistic, may overfit

Logistic Regression Error-driven learning, regularized More difficult to implement 
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