

CS 4650/7650: Natural Language Processing

Text Classification

Diyi Yang

Some slides borrowed from Jacob Eisenstein (was at GT) and Dan Jurafsky at Stanford

TA Office Hours

- Ian Stewart: Tuesdays, 2-4pm, Coda C1106
- Jiaao Chen: Thursdays, 2-4pm, Coda C1008
- Nihal Singh: Fridays, 9-11am, Coda C1008
- Jingfeng Yang: Mondays, 10am-12pm, Coda 14th common area

Sign Up for Piazza

https://piazza.com/gatech/spring2020/cs7650cs4650/home

Staff Mailing List

cs4650-7650-s20-staff@googlegroups.com

Waiting List

Your Homework 1

Due date: Jan 15th, 3:00pm, EST

Other Questions?

- Event space (e.g., \mathcal{X} , \mathcal{Y}) in this class, usually discrete
- Random variables (e.g., X, Y)
- Random variable X takes value $x, x \in X$ with probability p(X = x) or p(x)

- Joint probability p(X = x, Y = y)
- Conditional probability $p(X = x | Y = y) = \frac{p(X=x,Y=y)}{p(Y=y)}$

Always true:

•
$$p(X = x, Y = y) = p(X = x | Y = y) \cdot p(Y = y) = P(Y = y | X = x) \cdot P(X = x)$$

Sometimes true:

•
$$p(X = x, Y = y) = p(X = x) \cdot p(Y = y)$$

$$\binom{n}{k} = \frac{n!}{n!(n-k)!}$$

 The number of ways to select k words out of n given words ("unordered samples without replacement")

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

- Here, $n, n_1, n_2 \dots, n_k$ are all non-negative integers, and $n_1 + n_2 + n_3 + \dots + n_k = n$
- The number of ways to split n distinct words into k distinct groups of sizes n₁, ..., n_k, respectively

Classification

- A mapping h from input data x (drawn from instance space X) to a label y from some enumerable output space Y
 - \mathcal{X} = set of all documents
 - $\mathcal{Y} = \{ \text{English, Mandarin, Greek, } ... \}$
 - x = a single document
 - y = ancient Greek

Movie Ratings

positive

"... is a film which still causes real, not figurative, chills to run along my spine, and it is certainly the bravest and most ambitious fruit of Coppola's genius"

Roger Ebert, Apocalypse Now_

MDb	<u></u> Mer	1u IM	Db TV	All 👻	Search	n IMDb						
		IMDb (Top 250 a	Charts Rate	d Ma	ovies	8						
		Showing	9 250 Tit	es				Sort	by: Rank	ing		\$! †
			Rank 8	Title					IMDb Rating	Your Rati	ng	
		And the second	1. The	Shawsh	ank Red	lemption ((1994)		☆ 9.2	$\overset{\wedge}{\bowtie}$		Ħ
			2. The	Godfath	<mark>er</mark> (197:	2)			☆ 9.1	$\frac{1}{2}$		Ħ
		200	3. The	Godfath	er: Part	II (1974))		☆ 9.0	숬		Ħ
		R	4. The	Dark Kn	ight (20	008)			☆ 9.0	$\stackrel{\wedge}{\sim}$	13	Ħ
			5. 12 A	ingry Me	en (1957	7)			★ 8.9	☆		Ħ

Customer Review

★☆☆☆☆ NOT DISHWASHER SAFE

Reviewed in the United States on April 5, 2019 Color: Blue Verified Purchase

Used the bottle for one day. There was a slight lid leak, but I was willing to overlook that because I liked the other aspects of the product. Put it in the dishwasher with my other water bottles, air dry, and it melted. There is nothing in the product description that indicates it is not dishwasher safe, nor was there a product sheet included with the bottle indicating to hand wash only. I have a number of plastic water bottles that I routinely send through the dishwasher on this setting and have never had a problem. Extremely disappointed!

19 people found this helpful

Helpful

Comment Report abuse

8

★★★★ Makes Drinking Water Fun
 Reviewed in the United States on March 31, 2019
 Color: Transparent Verified Purchase

It is always a challenge to drink the recommended amount of water each day, so important for health. This bottle makes it fun while serving as a reminder to keep drinking! Bottle is good quality, handle makes it easy to lift.

Customer reviews

★★★★★ 4.5 out of 5 -

451 customer ratings

5 star	78%
4 star	9%
3 star	5%
2 star	2%
1 star	6%

By feature

Sturdiness	★★★★☆ 4.5
Flavor	★★★★☆ 4.5
Durability	★★★★☆ 4.4

14 people found this helpful

Political Opinion Mining

emilia @PoliticalEmilia · 43m

As somebody whose immediate family are **immigrants** from Iran, I want to remind that this isn't the fault of Iranian Americans. Most of us want no more war in the Middle East.

♡ 1.9K

<u>,</u>↑,

 \sim

Take your anger out at your government leaders, not at us. We have nothing to do with it. *#IranAttacks*

 \bigcirc 81

Nithya Raman 🤣 @nithyavraman · Jan 6 LA is one of the most **immigrant**-rich cities in the US.

1े 239

Almost 50% of residents are foreign-born. 10% are undocumented.

As Trump works to implement his racist agenda, what are our elected officials doing to defend **immigrant** Angelenos?

The answer: infuriatingly little. (thread)

♀ 55 138 ♡ 606 1

Brigitte Gabriel 🤣 @ACTBrigitte · 3m

Thank Goodness there were ZERO U.S. casualties from the attacks Iran made tonight.

President **Trump** is monitoring the situation with his top leaders right now.

仚

 \sim

I've never felt more comfortable with a leader at the helm, than I do tonight with President **Trump** in office.

\supset	21	145 145	♡ 413

Palmer Report 📀 @PalmerReport · 1m

♀ 15 17,74 ♡ 225 1

Andrea Chalupa 🤣 @AndreaChalupa · 7m

♀ 47	147	♡ 425	个
------	-----	-------	---

Female or Male Author?

- By 1925 present-day Vietnam was divided into three parts under French colonial rule. The southern region embracing Saigon and the Mekong delta was the colony of Cochin-China; the central area with its imperial capital at Hue was the protectorate of Annam...
- 2. Clara never failed to be astonished by the extraordinary felicity of her own name. She found it hard to trust herself to the mercy of fate, which had managed over the years to convert her greatest shame into one of her greatest assets...

S. Argamon, M. Koppel, J. Fine, A. R. Shimoni, 2003. "Gender, Genre, and Writing Style in Formal Written Texts," Text, volume 23, number 3, pp. 321–346

Is This Spam?

Subject: Important notice!

From: Stanford University <newsforum@stanford.edu>

Date: October 28, 2011 12:34:16 PM PDT

To: undisclosed-recipients:;

Greats News!

You can now access the latest news by using the link below to login to Stanford University News Forum.

http://www.123contactform.com/contact-form-StanfordNew1-236335.html

Click on the above link to login for more information about this new exciting forum. You can also copy the above link to your browser bar and login for more information about the new services.

© Stanford University. All Rights Reserved.

What Is the Subject of This Article?

?

MEDLINE Article

	Contractive Cognition					
Syntactic frame and verb bias in of undergoer-w Susana Gabl,* Lise Mans, ¹ Gall Ramble	t aphasia: Plausibility judgments ubject sentences gat ^h David S. Justiky ³ Elesteth Edet ³					
Monty Representation	L. Hairand Audrey Seekig as, the Audret's structure In New 49, the Hair See					
where a detect the μ of large γ^{2} map. We be basic to get a day is detected by the detection of the second						
profession profession in the second state of the second state for a state of springs. The state with a shark the state state spranch structure is hard as of particular for a state state state state state structures matching in the state of the state state tas is an exact. These indirect suggest the "second form" 8 2000 Research & All spins second.	while papers was an one has a mini paper of system the factor of the factor of the system as generally help the ty base of the factor of the system as the system is a part by part of the paper of an inclusion of the system is a part of part of the paper of an inclusion of the system and the system of the system of the system is a system of the system					
performing performing there is construction for any particular form and the special. The store that the store is stored and special construction that the special store and the store store of the store store is stored and the store of the store that the base store is stored in the store of the store store of the base store is stored. These helps a special for "store store if the base store is stored in the store store of the store of the store store of the store store of the store of the store store of the store store of the store of the store store of the store store of the the store of the store store of the store store of the store store of the store of the store store of the store store of the store st	while players with an electric to a most proper of plane to be one on the latencies of a second second second second to the latencies of the latencies of the latencies provide and the latencies plane to be an electric to the second second to be because of the latencies of the latencies of the latencies beginning out in the latencies of the latencies to be been plane to be a power of the latencies of panels as					
b) a set of the set	while places will be able to be a read pair of places by the read of the places of the places of places of the read of the places of the places of the places of the read of the places of the places of the places of the read of the places of					
The second system is a second state of the second system is a second state of particular seco	while places will be able to be a reading pain of places by search test, the final bills or and test points of prior of places the set of the final bills or the set of the set					
In the Carl and th	The property way and the first sector of the sector provided provided and the sector of the sector o					
I have been a set of the set of t	The property way and the first sector provide provide provide the providence of the					
between particular sector of the sector of t	while product we have been and provide provide the providence of the providence o					
be a set of the set of	which have been been as made proof of states particularly been been been been been been been bee					
before the second secon	which produces with a set for the camp proof of probably and provide the camp provide provide provide the camp provide provide the provide provide provide provide the provide					
between the second seco	the property way, as the lock area proof proof property of pro- ting of the lock area to the lock area to proof proof pro- ting of the lock area to the lock ar					
be and the second secon	while the second provide the second provide provide the second provide provide the second provide provide the second provide					

MeSH Subject Category Hierarchy

- Antogonists and Inhibitors
- Blood Supply
- Chemistry
- Drug Therapy
- Embryology
- Epidemiology
- ...

This Class

- Basic representations of text data for classification
- Three linear classifiers
 - Naïve Bayes
 - Perception
 - Logistic regression

The Text Classification Problem

Given a text $w = (w_1, w_2, ..., w_T) \in \mathcal{V}^*$, predict a label $y \in \mathcal{Y}$

Some Direct Text Classification Applications

Task	x	у
Language identification	text	{English, Mandarin, Greek, }
Spam classification	email	{spam, not spam}
Authorship attribution	text	<pre>{jk rowling, james joyce, }</pre>
Genre classification	novel	{detective, romance, gothic, }
Sentiment classification	text	<pre>{positive, negative, neutral, mixed}</pre>

Some Direct Text Classification Applications

Task	x	у
Language identification	text	{English, Mandarin, Greek, }
Spam classification	email	{spam, not spam}
Authorship attribution	text	<pre>{jk rowling, james joyce, }</pre>
Genre classification	novel	{detective, romance, gothic, }
Sentiment classification	text	{positive, negative, neutral, mixed}

Indirectly, methods from text classification apply to a huge range of settings in natural language processing, and will appear again and again throughout the course.

Bag-of-Words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

The Bag-of-Words

- One challenge is that the sequential representation (w₁, w₂, ..., w_T) may have a different length T for every document.
- The bag-of-words is a fixed-length representation, which consists of a vector of word counts:
 - $\pmb{w}=\!\!\mathrm{It}$ was the best of times, it was the worst of times

- The length of x is equal to the size of the vocabulary V
- For each *x*, there may be many possible **w**, depending on word order.

Linear Classification on the Bag of Words

- Let $\psi(\mathbf{x}, y)$ score the compatibility of bag-of-words \mathbf{x} and label y, then $\hat{y} = \underset{y}{\operatorname{argmax}} \psi(\mathbf{x}, y)$
- In a linear classifier, this scoring function has a simple form:

$$\psi(\mathbf{x}, \mathbf{y}) = \boldsymbol{\theta} \cdot \boldsymbol{f}(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} \theta_j \cdot f_j(\mathbf{x}, \mathbf{y})$$

where *θ* is a vector of weights, and *f* is a feature function

Feature Functions

In classification, the feature function is usually a simple combination of x and y, such as:

$$f_j(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} x_{whale}, & \text{if } \boldsymbol{y} = \text{FICTION} \\ 0, & \text{otherwise} \end{cases}$$

Summary and Next Steps

To summarize, our classification function is:

$$\hat{y} = \underset{y}{\operatorname{argmax}} \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y)$$

where x is the bag-of-words representation, and f is a feature function

• The learning problem is to find the right weights $\boldsymbol{\theta}$, assuming a labeled dataset $\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^{N}$

Probabilistic Classification

- Naïve Bayes is a probabilistic classifier. It takes the following strategy:
 - Define a probability model p(x, y)
 - Estimate the parameters of the probability model by maximum likelihood that is, by maximizing the likelihood of the dataset

A Probability Model for Text Classification

- First, assume each instance is independent of the others
 - $p(\mathbf{x}^{(1:N)}, y^{(1:N)}) = \prod_{i=1}^{N} p(\mathbf{x}^{(i)}, y^{(i)})$
- Apply the chain rule of the probability
 - $p(\mathbf{x}, y) = p(\mathbf{x}|y) \cdot p(y)$
- Define the parametric form of each probability
 - $p(y) = \text{Categorical}(\mu)$ $p(\mathbf{x}|y) = \text{Multinomail}(\phi)$
 - The multinomial is a distribution over vectors of counts
 - The parameters μ and ϕ are vectors of probabilities

- Suppose the word *whale* has probability ϕ_j
 - What is the probability that this word appears 3 times?

Each word's probability is exponentiated by its count,

 $\prod_{j=1}^V \phi_j^{x_j}$

• Multinomail($\boldsymbol{x}, \boldsymbol{\phi}, T$) =

Each word's probability is exponentiated by its count,

- Multinomail($\boldsymbol{x}, \boldsymbol{\phi}, T$) = $\prod_{j=1}^{V} \boldsymbol{\phi}_{j}^{x_{j}}$
- The coefficient is the count of the number of possible orderings of x.

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

Each word's probability is exponentiated by its count,

• Multinomail
$$(\boldsymbol{x}, \boldsymbol{\phi}, T) = \frac{(\sum_{j=1}^{V} x_j)!}{\prod_{j=1}^{V} (x_j!)} \prod_{j=1}^{V} \boldsymbol{\phi}_j^{x_j}$$

- The coefficient is the count of the number of possible orderings of x.
- Crucially, it does not depend on the frequency parameter ϕ

Estimating Naïve Bayes

In relative frequency estimation, the parameters are set to empirical frequencies:

$$\hat{\phi}_{y,j} = \frac{\operatorname{count}(y,j)}{\sum_{j'=1}^{V} \operatorname{count}(y,j')} = \frac{\sum_{i:y(i)=y} x_j^{(i)}}{\sum_{j'=1}^{V} \sum_{i:y(i)=y} x_{j'}^{(i)}}$$
$$\hat{\mu}_y = \frac{\operatorname{count}(y)}{\sum_{y'} \operatorname{count}(y')}.$$

This turns out to be identical to the maximum likelihood estimate:

$$\hat{\phi}, \hat{\boldsymbol{\mu}} = \operatorname*{argmax}_{\phi, \boldsymbol{\mu}} \prod_{i=1}^{N} \operatorname{p}(\boldsymbol{x}^{(i)}, y^{(i)}) = \operatorname*{argmax}_{\phi, \boldsymbol{\mu}} \sum_{i=1}^{N} \log \operatorname{p}(\boldsymbol{x}^{(i)}, y^{(i)})$$

Quick Question (1)

Multiplying lots of small probabilities (all are under 1) can lead to numerical underflow ...

Quick Question (1)

Multiplying lots of small probabilities (all are under 1) can lead to numerical underflow ...

 $\log | x_i = \sum \log x_i$

Low Count Issue

What if we have seen no training documents with the word fantastic and classified in the topic positive ?

•
$$\hat{p}("fantastic" | positive) = \frac{count("fantastic", positive)}{\sum_{w \in V} count(w, positive)} = 0$$

Zero probabilities cannot be conditioned away

Smoothing

To deal with low counts, it can be helpful to smooth probabilities

$$\hat{\phi}_{y,j} = \frac{\alpha + \operatorname{count}(y,j)}{V\alpha + \sum_{j'=1}^{V} \operatorname{count}(y,j')}$$

Smoothing term α is a hyperparameter, which must be tuned on a development set

Laplace (add-1) smoothing: widely used

Too Naïve?

- Naïve Bayes is so called because:
 - Bayes rule is used to convert the observation probability p(x|y) into the label probability p(y|x)
 - The multinomial distribution naively ignores dependencies between words, and treats every word as equally informative
 - Discriminative classifiers avoid this problem by not attempting to model the "generative" probability p(x)

The Perceptron Classifier

Error-driven rather than independence assumption

The Perceptron Classifier

- A simple learning rule:
 - Run the current classifier on an instance in the training data, obtaining $\hat{y} = \underset{y}{\operatorname{argmax}} \psi(x^{(i)}, y)$
 - If the prediction is incorrect:
 - Increase the weights for the features of the true label
 - Decrease the weights for the features of the predicted label

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{f}(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) - \boldsymbol{f}(\boldsymbol{x}^{(i)}, \hat{\boldsymbol{y}})$$

Repeat until all training instances are correctly classified, or run out of time

The Perceptron Classifier (Online Learning)

Algorithm 3 Perceptron learning algorithm 1: procedure PERCEPTRON($x^{(1:N)}, y^{(1:N)}$) $t \leftarrow 0$ 2: $\boldsymbol{\theta}^{(0)} \leftarrow \mathbf{0}$ 3: repeat 4: $t \leftarrow t + 1$ 5: Select an instance *i* 6: $\hat{y} \leftarrow \operatorname{argmax}_{y} \boldsymbol{\theta}^{(t-1)} \cdot \boldsymbol{f}(\boldsymbol{x}^{(i)}, y)$ 7: if $\hat{y} \neq y^{(i)}$ then 8: $\boldsymbol{\theta}^{(t)} \leftarrow \boldsymbol{\theta}^{(t-1)} + \boldsymbol{f}(\boldsymbol{x}^{(i)}, y^{(i)}) - \boldsymbol{f}(\boldsymbol{x}^{(i)}, \hat{y})$ 9: 10: else $\boldsymbol{\theta}^{(t)} \leftarrow \boldsymbol{\theta}^{(t-1)}$ 11: until tired 12: return $\boldsymbol{\theta}^{(t)}$ 13:

Loss Function

- Many classifiers can be viewed as minimizing a loss function on the weights.
- Such a function should have two properties:
 - It should be a good proxy for the accuracy of the classifier
 - It should be easy to optimize

Perceptron as Gradient Descent

This perceptron can be viewed as optimizing the loss function

$$\ell_{\text{PERCEPTRON}}(oldsymbol{ heta};oldsymbol{x}^{(i)},y^{(i)}) = \max_{y\in\mathcal{Y}}oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y) - oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y^{(i)}).$$

Perceptron as Gradient Descent

This perceptron can be viewed as optimizing the loss function

$$\ell_{ ext{PERCEPTRON}}(oldsymbol{ heta};oldsymbol{x}^{(i)},y^{(i)}) = \max_{y\in\mathcal{Y}}oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y) - oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y^{(i)}),$$

The gradient of the perceptron loss is part of the perceptron update

$$\begin{split} \frac{\partial}{\partial \theta} \ell_{\text{perceptron}} &= -f(\mathbf{x}^{(i)}, y^{(i)}) + f(\mathbf{x}^{(i)}, \hat{y}) \\ \theta^{(t+1)} \leftarrow \theta^{(t)} - \frac{\partial}{\partial \theta} \ell_{\text{perceptron}} & \text{(gradient descent!)} \\ &= \theta^{(t)} + f(\mathbf{x}^{(i)}, y^{(i)}) - f(\mathbf{x}^{(i)}, \hat{y}). \end{split}$$

Logistic Regression

- Perceptron classification is discriminative learns to discriminate correct and incorrect labels
- Naïve Bayes is probabilistic: it assigns calibrated confidence scores to its predictions
- Logistic regression is both discriminative and probabilistic. It directly computes the conditional probability of the label:

$$p(y \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y))}{\sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y'))}$$

Logistic Regression

Logistic regression is both discriminative and probabilistic. It directly computes the conditional probability of the label:

$$p(y \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y))}{\sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y'))}$$

Exponentiation ensures that the probabilities are non-negative.

Logistic Regression

Logistic regression is both discriminative and probabilistic. It directly computes the conditional probability of the label:

$$p(y \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y))}{\sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y'))}$$

- Exponentiation ensures that the probabilities are non-negative.
- Normalization ensures that the probabilities sum to one.

Learning Logistic Regression

Maximization of the conditional log-likelihood

$$\log \mathbf{p}(\mathbf{y}^{(1:N)} \mid \mathbf{x}^{(1:N)}; \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \mathbf{p}(y^{(i)} \mid \mathbf{x}^{(i)}; \boldsymbol{\theta})$$
$$= \sum_{i=1}^{N} \boldsymbol{\theta} \cdot \boldsymbol{f}(\mathbf{x}^{(i)}, y^{(i)}) - \log \sum_{y' \in \mathcal{Y}} \exp\left(\boldsymbol{\theta} \cdot \boldsymbol{f}(\mathbf{x}^{(i)}, y')\right)$$

Learning Logistic Regression

- Maximization of the conditional log-likelihood
- Minimization of the negative log-likelihood/logistic loss

$$\ell_{ ext{LOGREG}}(oldsymbol{ heta};oldsymbol{x}^{(i)},y^{(i)}) = -oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y^{(i)}) + \log\sum_{y'\in\mathcal{Y}}\exp(oldsymbol{ heta}\cdotoldsymbol{f}(oldsymbol{x}^{(i)},y'))$$

Regularization

- Learning can often be made more robust by regularization: penalizing large weights $\min_{\theta} \sum_{i=1}^{N} \ell_{\text{LogReg}}(\theta; \mathbf{x}^{(i)}, y^{(i)}) + \lambda ||\theta||_2^2$
- where the scalar λ controls the strength of regularization, and $||\theta||_2^2 = \sum_j \theta_j^2$.

Gradient Descent (Batch Optimization)

 Logistic regression, perceptron both learn by minimizing a loss function. A general strategy for minimization is gradient descent

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \eta^{(t)} \nabla_{\boldsymbol{\theta}} L$$

• where $\eta^{(t)} \in \mathbb{R}_+$ is the learning rate at iteration t

Stochastic Gradient Descent (Online Optimization)

- Computing the gradient over all instances is expensive
- Stochastic gradient descent approximates the gradient by its value on a single data:

$$\sum_{i=1}^{N} \ell(\boldsymbol{\theta}; \boldsymbol{x}^{(i)}, y^{(i)}) \approx N \times \ell(\boldsymbol{\theta}; \boldsymbol{x}^{(j)}, y^{(j)})$$

• $(\mathbf{x}^{(i)}, y^{(i)})$ is sampled at random from the training set $(\mathbf{x}^{(j)}, y^{(j)}) \sim \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$

Online Optimization

- Gradient descent computes the gradient over all instances
- Stochastic gradient descent approximates the gradient by its value on a single data
- Minibatch gradient descent approximates the gradient by its value on small number of instances. This is suited to GPU architectures, widely used in deep learning.

Generalized Gradient Descent

Algorithm 5 Generalized gradient descent. The function BATCHER partitions the training set into *B* batches such that each instance appears in exactly one batch. In gradient descent, B = 1; in stochastic gradient descent, B = N; in minibatch stochastic gradient descent, 1 < B < N.

```
1: procedure GRADIENT-DESCENT(\boldsymbol{x}^{(1:N)}, \boldsymbol{y}^{(1:N)}, L, \eta^{(1...\infty)}, BATCHER, T_{max})
              \theta \leftarrow 0
  2:
              t \leftarrow 0
  3:
              repeat
  4:
                      (\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \dots, \boldsymbol{b}^{(B)}) \leftarrow \text{BATCHER}(N)
  5:
                      for n \in \{1, 2, ..., B\} do
  6:
  7:
                              t \leftarrow t + 1
                              \boldsymbol{\theta}^{(t)} \leftarrow \boldsymbol{\theta}^{(t-1)} - \eta^{(t)} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{(t-1)}; \boldsymbol{x}^{(b_1^{(n)}, b_2^{(n)}, \dots)}, \boldsymbol{y}^{(b_1^{(n)}, b_2^{(n)}, \dots)})
  8:
                              if Converged(\theta^{(1,2,...,t)}) then
  9:
                                      return \boldsymbol{\theta}^{(t)}
10:
               until t \geq T_{\max}
11:
               return \boldsymbol{\theta}^{(t)}
12:
```

Summary of Linear Classification

	Pros	Cons
Naive Bayes	Simple, probabilistic, fast Closed-form solution	Not very accurate
Perceptron	Simple, accurate	Not probabilistic, may overfit
Logistic Regression	Error-driven learning, regularized	More difficult to implement