
Neural Networks

Wei Xu
(many slides from Greg Durrett and Philipp Koehn)



Recap: Loss Func.ons

Hinge (SVM)

Logis.c
Perceptron

0-1 (ideal)

Lo
ss

w>x



Recap: Logis.c Regression

‣ To learn weights: maximize discrimina.ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

 
1 + exp

 
nX

i=1

wixji

!!

sum over features



Recap: Mul.class Logis.c Regression

sum over output 
space to normalize

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Health: +2.2
Sports: +3.1

Science: -0.6

w>f(x, y)

Why? Interpret raw classifier scores as probabili(es

exp
6.05
22.2
0.55

probabiliBes 
must be >= 0

unnormalized 
probabiliBes

normalize
 0.21

  0.77
 0.02

probabiliBes 
must sum to 1

probabiliBes

1.00
0.00
0.00

correct (gold) 
probabiliBes

too many drug trials,  
too few pa4ents

compare

L(x, y) =
nX

j=1

logP (y⇤j |xj)L(xj , y
⇤
j ) = w>f(xj , y

⇤
j )� log

X

y

exp(w>f(xj , y))

log(0.21) =  - 1.56



sum over output 
space to normalize

‣ Training: maximize

=
nX

j=1

 
w>f(xj , y

⇤
j )� log

X

y

exp(w>f(xj , y))

!
L(x, y) =

nX

j=1

logP (y⇤j |xj)

Pw(y|x) =
exp

�
w>f(x, y)

�
P

y02Y exp (w>f(x, y0))

Recap: Mul.class Logis.c Regression



This Lecture

‣ Feedforward neural networks + backpropaga.on

‣ Neural network basics

‣ Applica.ons

‣ Neural network history

‣ Implemen.ng neural networks (if .me)



History: NN “dark ages”
‣ ConvNets: applied to MNIST by LeCun in 1998

‣ LSTMs: Hochreiter and Schmidhuber (1997)

‣ Henderson (2003): neural shiW-reduce parser, not SOTA

hLps://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be

hLps://www.andreykurenkov.com/wriBng/ai/a-brief-history-of-neural-nets-and-deep-learning/

https://www.youtube.com/watch?v=FwFduRA_L6Q&feature=youtu.be
https://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/


2008-2013: A glimmer of light…

‣ Collobert and Weston 2011: “NLP (almost) from scratch”

‣ Feedforward neural nets induce features for 
sequen.al CRFs (“neural CRF”)

‣ 2008 version was marred by bad experiments, 
claimed SOTA but wasn’t, 2011 version .ed SOTA

‣ Socher 2011-2014: tree-structured RNNs working okay

‣ Krizhevskey et al. (2012): AlexNet for vision



2014: Stuff starts working

‣ Sutskever et al. (2014) + Bahdanau et al. (2015) : seq2seq + aden.on for 
neural MT (LSTMs work for NLP?)

‣ Kim (2014) + Kalchbrenner et al. (2014): sentence classifica.on / sen.ment 
(convnets work for NLP?)

‣ 2015: explosion of neural nets for everything under the sun

‣ Chen and Manning (2014) transi.on-based dependency parser (even 
feedforward networks work well for NLP?)



Why didn’t they work before?
‣ Datasets too small: for MT, not really beder un.l you have 1M+ parallel 

sentences (and really need a lot more)

‣Op(miza(on not well understood: good ini.aliza.on, per-feature scaling 
+ momentum (AdaGrad / AdaDelta / Adam) work best out-of-the-box

‣ Regulariza(on: dropout is predy helpful

‣ Inputs: need word representa.ons to have the right con.nuous seman.cs

‣ Computers not big enough: can’t run for enough itera.ons



Neural Net Basics



Neural Networks: mo.va.on

‣ How can we do nonlinear classifica.on? Kernels are too slow…

‣ Want to learn intermediate conjunc.ve features of the input

argmaxyw
>f(x, y)‣ Linear classifica.on:

the movie was not all that good

I[contains not & contains good]



Neural Networks: XOR

x1

x2

x1 x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

x1, x2

(generally x = (x1, . . . , xm))

y

(generally y = (y1, . . . , yn)) y = x1 XOR x2

‣ Let’s see how we can use neural nets 
to learn a simple nonlinear func.on

‣ Inputs

‣ Output



Neural Networks: XOR

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1
“or”

y = a1x1 + a2x2 X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

(looks like action 
potential in neuron)



Neural Networks: XOR
y = a1x1 + a2x2

x1

x2

x1 x2 x1 XOR x2

1 1
1
11

1
0
0 0

0
0

0

0

1 0

1

X
y = a1x1 + a2x2 + a3 tanh(x1 + x2)

x2

x1

“or”
y = �x1 � x2 + 2 tanh(x1 + x2)



Neural Networks: XOR

x1

x2

0

1 -1

0

x2

x1

[not]

[good] y = �2x1 � x2 + 2 tanh(x1 + x2)

I

I

the movie was not all that good



Neural Networks

Taken from hLp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp 
space

ShiftNonlinear 
transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

tanh



Neural Networks

Taken from hLp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear classifier Neural network
…possible because 
we transformed the 
space!



Deep Neural Networks

Adopted from Chris Dyer

}
output of first layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second 
Layer

First 
Layer

“Feedforward” computa.on (not 
recurrent)

z = V(Wx+ b) + c

Check: what happens if no nonlinearity? 
More powerful than basic linear models?



Deep Neural Networks

Taken from hLp://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Feedforward Networks, 
BackpropagaBon



Simple Neural Network 9Simple Neural Network

11

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• One innovation: bias units (no inputs, always value 1)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

https://inst.eecs.berkeley.edu/~cs182/sp06/notes/backprop.pdf

-4.5



Simple Neural Network

‣ Try out two input values

10Sample Input

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Try out two input values

• Hidden unit computation

sigmoid(1.0 ⇥ 3.7 + 0.0 ⇥ 3.7 + 1 ⇥�1.5) = sigmoid(2.2) =
1

1 + e�2.2
= 0.90

sigmoid(1.0 ⇥ 2.9 + 0.0 ⇥ 2.9 + 1 ⇥�4.5) = sigmoid(�1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5



Simple Neural Network

‣ Try out two input values 
‣ Hidden unit computa.on

11Computed Hidden

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Try out two input values

• Hidden unit computation

sigmoid(1.0 ⇥ 3.7 + 0.0 ⇥ 3.7 + 1 ⇥�1.5) = sigmoid(2.2) =
1

1 + e�2.2
= 0.90

sigmoid(1.0 ⇥ 2.9 + 0.0 ⇥ 2.9 + 1 ⇥�4.5) = sigmoid(�1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

11Computed Hidden

.90

.17

1

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Try out two input values

• Hidden unit computation

sigmoid(1.0 ⇥ 3.7 + 0.0 ⇥ 3.7 + 1 ⇥�1.5) = sigmoid(2.2) =
1

1 + e�2.2
= 0.90

sigmoid(1.0 ⇥ 2.9 + 0.0 ⇥ 2.9 + 1 ⇥�4.5) = sigmoid(�1.6) =
1

1 + e1.6
= 0.17

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5



Simple Neural Network

‣ Output unit computa.on

13Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit computation

sigmoid(.90 ⇥ 4.5 + .17 ⇥�5.2 + 1 ⇥�2.0) = sigmoid(1.17) =
1

1 + e�1.17
= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

13Computed Output

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Output unit computation

sigmoid(.90 ⇥ 4.5 + .17 ⇥�5.2 + 1 ⇥�2.0) = sigmoid(1.17) =
1

1 + e�1.17
= 0.76

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5



Simple Neural Network

‣ Network implements XOR   
‣ h0 is OR, h1 is AND

14Output for all Binary Inputs

Input x0 Input x1 Hidden h0 Hidden h1 Output y0
0 0 0.12 0.02 0.18 ! 0
0 1 0.88 0.27 0.74 ! 1
1 0 0.73 0.12 0.74 ! 1
1 1 0.99 0.73 0.33 ! 0

• Network implements XOR

– hidden node h0 is OR
– hidden node h1 is AND
– final layer operation is h0 ��h1

• Power of deep neural networks: chaining of processing steps
just as: more Boolean circuits ! more complex computations possible

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Computed output:    
‣ Correct output:  

‣ Q: how do we adjust the weights?

Error
20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

-4.5



Deriva.ve of Sigmoid

‣ Deriva.ve: 

‣ Sigmoid func.on:
24Derivative of Sigmoid

• Sigmoid sigmoid(x) =
1

1 + e�x

• Reminder: quotient rule
⇣f(x)

g(x)

⌘0
=

g(x)f 0(x) � f(x)g0(x)

g(x)2

• Derivative d sigmoid(x)
dx

=
d

dx

1

1 + e�x

=
0 ⇥ (1 � e�x) � (�e�x)

(1 + e�x)2

=
1

1 + e�x

⇣ e�x

1 + e�x

⌘

=
1

1 + e�x

⇣
1 �

1

1 + e�x

⌘

= sigmoid(x)(1 � sigmoid(x))

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

24Derivative of Sigmoid
• Sigmoid sigmoid(x) =

1

1 + e�x

• Reminder: quotient rule
⇣f(x)

g(x)

⌘0
=

g(x)f 0(x) � f(x)g0(x)

g(x)2

• Derivative d sigmoid(x)
dx

=
d

dx

1

1 + e�x

=
0 ⇥ (1 � e�x) � (�e�x)

(1 + e�x)2

=
1

1 + e�x

⇣ e�x

1 + e�x

⌘

=
1

1 + e�x

⇣
1 �

1

1 + e�x

⌘

= sigmoid(x)(1 � sigmoid(x))

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Error (L2 norm):  
‣ Deriva.ve of error with regard to one weight       :

Final Layer Update
‣ Linear combina.on of weights: 
‣ Ac.va.on func.on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Error (L2 norm):  
‣ Deriva.ve of error with regard to one weight       : 

‣ Error        is defined with respect to     :

Final Layer Update (1)
‣ Linear combina.on of weights: 
‣ Ac.va.on func.on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Error (L2 norm):  
‣ Deriva.ve of error with regard to one weight       : 

‣       with respect to     is                     : 

Final Layer Update (2)
‣ Linear combina.on of weights: 
‣ Ac.va.on func.on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

26Final Layer Update (1)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• Error E is defined with respect to y

dE

dy
=

d

dy

1

2
(t� y)2 = �(t� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Error (L2 norm):  
‣ Deriva.ve of error with regard to one weight       : 

‣     is weighted linear combina.on of hidden node values       : 

Final Layer Update (3)
‣ Linear combina.on of weights: 
‣ Ac.va.on func.on:

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

27Final Layer Update (2)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• y with respect to x is sigmoid(s)

dy

ds
=

d sigmoid(s)
ds

= sigmoid(s)(1� sigmoid(s)) = y(1� y)

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

28Final Layer Update (3)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• x is weighted linear combination of hidden node values hk

ds

dwk
=

d

dwk

X

k

wkhk = hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

28Final Layer Update (3)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• x is weighted linear combination of hidden node values hk

ds

dwk
=

d

dwk

X

k

wkhk = hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

28Final Layer Update (3)
• Linear combination of weights s =

P
kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

• x is weighted linear combination of hidden node values hk

ds

dwk
=

d

dwk

X

k

wkhk = hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Deriva.ve of error with regard to one weight       :

Purng it All Together

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

‣ Weighted adjustment will be scaled by a fixe learning rate      : 

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



Mul.ple Output Nodes

‣ Weights are adjusted according to the node they point to: 

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

‣ Error is computed over all j output nodes:

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

‣ Previous slides discussed the situa.on with only one output node:

‣ But, typically neural networks have mul.ple output nodes

29Putting it All Together

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

= �(t� y) y(1� y) hk

– error
– derivative of sigmoid: y0

• Weight adjustment will be scaled by a fixed learning rate µ

�wk = µ (t� y) y0 hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

25Final Layer Update

• Linear combination of weights s =
P

kwkhk

• Activation function y = sigmoid(s)

• Error (L2 norm) E = 1
2(t� y)2

• Derivative of error with regard to one weight wk

dE

dwk
=

dE

dy

dy

ds

ds

dwk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ In a hidden layer, we do not have a target output value 
‣ But, we can compute how much each node contributed to downstream error 
‣ Defini.on of error term of each node:

Hidden Layer Update

‣ Back-propagate the error term:  

‣ Universal update formula:

31Hidden Layer Update
• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

�j = (tj � yj) y
0
j

• Back-propagate the error term
(why this way? there is math to back it up...)

�i =
⇣X

j

wj i�j
⌘
y0i

• Universal update formula
�wj k = µ �j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

31Hidden Layer Update
• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

�j = (tj � yj) y
0
j

• Back-propagate the error term
(why this way? there is math to back it up...)

�i =
⇣X

j

wj i�j
⌘
y0i

• Universal update formula
�wj k = µ �j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

31Hidden Layer Update
• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

�j = (tj � yj) y
0
j

• Back-propagate the error term
(why this way? there is math to back it up...)

�i =
⇣X

j

wj i�j
⌘
y0i

• Universal update formula
�wj k = µ �j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018



‣ Computed output:    
‣ Correct output:  

‣ Q: how do we adjust the weights?

Our Example
20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

learning 
rate

error term hidden 
node 
value

-4.5



32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

‣ Computed output:    
‣ Correct output:  
‣ Final layer weight updates (learning rate             ):

Our Example
20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

learning 
rate

error term hidden 
node 
value

-4.5



‣ Computed output:    
‣ Correct output:  
‣ Final layer weight updates (learning rate             ):

Our Example
20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

20Error

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

• Computed output: y = .76

• Correct output: t = 1.0

) How do we adjust the weights?

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

32Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0-4.6
-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

33Our Example

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Computed output: y = .76

• Correct output: t = 1.0

• Final layer weight updates (learning rate µ = 10)
– �G = (t� y) y0 = (1� .76) 0.181 = .0434

– �wGD = µ �G hD = 10⇥ .0434⇥ .90 = .391

– �wGE = µ �G hE = 10⇥ .0434⇥ .17 = .074

– �wGF = µ �G hF = 10⇥ .0434⇥ 1 = .434

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

30Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
X

j

1

2
(tj � yj)

2

• Weights k ! j are adjusted according to the node they point to

�wj k = µ(tj � yj) y
0
j hk

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

learning 
rate

error term hidden 
node 
value

-4.5



‣ Hidden node D: 

‣ Hidden node E: 

Hidden Layer Updates 34Hidden Layer Updates

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Hidden node D

– �D =
⇣P

j wj i�j
⌘
y0D = wGD �G y0D = 4.5⇥ .0434⇥ .0898 = .0175

– �wDA = µ �D hA = 10⇥ .0175⇥ 1.0 = .175
– �wDB = µ �D hB = 10⇥ .0175⇥ 0.0 = 0
– �wDC = µ �D hC = 10⇥ .0175⇥ 1 = .175

• Hidden node E

– �E =
⇣P

j wj i�j
⌘
y0E = wGE �G y0E = �5.2⇥ .0434⇥ 0.2055 = �.0464

– �wEA = µ �E hA = 10⇥�.0464⇥ 1.0 = �.464
– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

34Hidden Layer Updates

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Hidden node D

– �D =
⇣P

j wj i�j
⌘
y0D = wGD �G y0D = 4.5⇥ .0434⇥ .0898 = .0175

– �wDA = µ �D hA = 10⇥ .0175⇥ 1.0 = .175
– �wDB = µ �D hB = 10⇥ .0175⇥ 0.0 = 0
– �wDC = µ �D hC = 10⇥ .0175⇥ 1 = .175

• Hidden node E

– �E =
⇣P

j wj i�j
⌘
y0E = wGE �G y0E = �5.2⇥ .0434⇥ 0.2055 = �.0464

– �wEA = µ �E hA = 10⇥�.0464⇥ 1.0 = �.464
– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018

34Hidden Layer Updates

.90

.17

1

.76

1.0

0.0

1

4.5

-5.2

-2.0
-4.6-1.5

3.7
2.9

3.7

2.9

A

B

C

D

E

F

G

4.891 —

-5.126 ——

-1.566 ——

• Hidden node D

– �D =
⇣P

j wj i�j
⌘
y0D = wGD �G y0D = 4.5⇥ .0434⇥ .0898 = .0175

– �wDA = µ �D hA = 10⇥ .0175⇥ 1.0 = .175
– �wDB = µ �D hB = 10⇥ .0175⇥ 0.0 = 0
– �wDC = µ �D hC = 10⇥ .0175⇥ 1 = .175

• Hidden node E

– �E =
⇣P

j wj i�j
⌘
y0E = wGE �G y0E = �5.2⇥ .0434⇥ 0.2055 = �.0464

– �wEA = µ �E hA = 10⇥�.0464⇥ 1.0 = �.464
– etc.

Philipp Koehn Machine Translation: Introduction to Neural Networks 27 September 2018https://inst.eecs.berkeley.edu/~cs182/sp06/notes/backprop.pdf

-4.5



Logis.c Regression with NNs

P (y|x) = exp(w>f(x, y))P
y0 exp(w>f(x, y0))

‣ Single scalar probability

P (y|x) = softmax
�
[w>f(x, y)]y2Y

� ‣ Compute scores for all possible 
labels at once (returns vector)

softmax(p)i =
exp(pi)P
i0 exp(pi0)

‣ soWmax: exps and normalizes a 
given vector

P (y|x) = softmax(Wf(x)) ‣ Weight vector per class; 
W is [num classes x num feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now one hidden layer



Neural Networks for Classifica.on

V

n features

d hidden units

d x n matrix num_classes x d 
matrix

soWmaxWf
(x
)

z

nonlinearity 
(tanh, relu, …)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes 

probs

We can think of a neural network classifier with one hidden layer as building a vector z which is a hidden layer representation 
(i.e. latent features) of the input, and then running standard logistic regression on the features that the network develops in z.



Training Neural Networks

‣ Maximize log likelihood of training data

‣ i*: index of the gold label

‣ ei: 1 in the ith row, zero elsewhere. Dot by this = select ith index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)



Compu.ng Gradients

‣ Gradient with respect to W

if i = i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks like logis.c regression with z as the features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

W

index of 
gold label index of vector z 

index of 
output space    Y

num_classes x d 
matrix



Neural Networks for Classifica.on

V soWmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz



Compu.ng Gradients

‣ Gradient with respect to 

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

@L(x, i⇤)
@z

= Wi⇤ �
X

j

P (y = j|x)Wj

z

err(root) = ei⇤ � P (y|x)
dim = num_classesdim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

[some math…]



@L(x, i⇤)
@z

= err(z) = W>err(root)

Backpropaga.on: Picture

V soWmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)err(z)

z

‣ Can forget everything aWer z, treat 
it as the output and keep backpropping



Compu.ng Gradients: Backpropaga.on
z = g(V f(x))

Ac.va.ons at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

err(root) = ei⇤ � P (y|x)
dim = num_classes dim = d

@L(x, i⇤)
@z

= err(z) = W>err(root)

L(x, i⇤) = Wz · ei⇤ � log
X

j

exp(Wz) · ej

[some math…]

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij



z = g(V f(x))

Ac.va.ons at 
hidden layer

‣ Gradient with respect to V: apply the chain rule

a = V f(x)

‣ First term: gradient of nonlinear acBvaBon funcBon at a (depends on 
current value)

‣ Second term: gradient of linear funcBon

‣ Straighxorward computa.on once we have err(z)

Compu.ng Gradients: Backpropaga.on

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

Vij

@z

Vij
=

@g(a)

@a

@a

@Vij

L(x, i⇤) = Wz · ei⇤ � log
mX

j=1

exp(Wz · ej)



Backpropaga.on: Picture

V soWmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@W err(root)@z

@V
err(z)

zf(x)

@L(x, i⇤)
@z

= err(z) = W>err(root)

err(root) = ei⇤ � P (y|x)

@L(x, i⇤)
@Vij

=
@L(x, i⇤)

@z

@z

@Vij

@L(x, i⇤)
@z

= err(z) = W>err(root)
@L(x, i⇤)

@Vij
=

@L(x, i⇤)
@z

@z

@Vij



Backpropaga.on

‣ Step 1: compute err(root) = ei⇤ � P (y|x)

‣ Step 2: compute deriva.ves of W using err(root)

‣ Step 3: compute @L(x, i⇤)
@z

= err(z) = W>err(root)

‣ Step 4: compute deriva.ves of V using err(z)

‣ Step 5+: con.nue backpropaga.on (compute err(f(x)) if necessary…)

P (y|x) = softmax(Wg(V f(x)))

(vector)

(vector)

(matrix)

(matrix)



Backpropaga.on: Takeaways

‣ Gradients of output weights W are easy to compute — looks like 
logis.c regression with hidden layer z as feature vector

‣ Can compute deriva.ve of loss with respect to z to form an “error 
signal” for backpropaga.on

‣ Easy to update parameters based on “error signal” from next layer, 
keep pushing error signal back as backpropaga.on

‣ Need to remember the values from the forward computa.on



ApplicaBons



NLP with Feedforward Networks

Botha et al. (2017)

…

Fed raises interest rates in order to …

f(x)
??

em
b(raises)

‣ Word embeddings for each word form input

‣ ~1000 features here — smaller feature vector 
than in sparse models, but every feature fires on 
every example

em
b(interest)

em
b(rates)‣ Weight matrix learns posi.on-dependent 

processing of the words

previous word

curr word

next word

other words, feats, etc.

‣ Part-of-speech tagging with FFNNs



NLP with Feedforward Networks

‣ Hidden layer mixes these 
different signals and learns 
feature conjunc.ons

Botha et al. (2017)



NLP with Feedforward Networks
‣ Mul.lingual tagging results:

Botha et al. (2017)

‣ Gillick used LSTMs; this is smaller, faster, and beder



Sen.ment Analysis
‣ Deep Averaging Networks: feedforward neural network on average of 

word embeddings from input

Iyyer et al. (2015)



Sen.ment Analysis

{

{
Bag-of-words

Tree RNNs / 
CNNS / LSTMS

Wang and 
Manning (2012)

Kim (2014)

Iyyer et al. (2015)



Coreference Resolu.on
‣ Feedforward networks iden.fy coreference arcs

Clark and Manning (2015), Wiseman et al. (2015)

President Obama signed…

He later gave a speech…

?



ImplementaBon Details



Computa.on Graphs

‣ Compu.ng gradients is hard!

‣ Automa.c differen.a.on: instrument code to keep track of deriva.ves

y = x * x (y,dy) = (x * x, 2 * x * dx)
codegen

‣ Computa.on is now something we need to reason about symbolically

‣ Use a library like PyTorch or TensorFlow. This class: PyTorch



Computa.on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)

    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))

‣ Define forward pass for



Computa.on Graphs in Pytorch

P (y|x) = softmax(Wg(V f(x)))

ffnn = FFNN()

loss.backward()

probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold_label)

optimizer.step()

def make_update(input, gold_label):

ffnn.zero_grad() # clear gradient variables

ei*: one-hot vector  
of the label  
(e.g., [0, 1, 0])



Training a Model
Define a computa.on graph

For each epoch:

Compute loss on batch

For each batch of data:

Decode test set

Autograd to compute gradients and take step



Batching

‣ Batching data gives speedups due to more efficient matrix opera.ons

‣ Need to make the computa.on graph process a batch at the same .me

probs = ffnn.forward(input) # [batch_size, num_classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))

...

‣ Batch sizes from 1-100 oWen work well

def make_update(input, gold_label)

# input is [batch_size, num_feats]  
# gold_label is [batch_size, num_classes]

...



RegularizaBon: Dropout

65

‣ Very simple!   
‣ In each forward pass, randomly set the ac.va.ons for some nodes 

(neurons) to zero.  
‣ Probability of dropping is a hyper-parameter; 0.5 is common. 


