
Sequence Models I

Wei Xu
(many slides from Greg Durrett, Dan Klein, Vivek Srikumar, Chris Manning, Yoav Artzi)

This Lecture

‣ Sequence modeling

‣ HMMs for POS tagging

‣ Viterbi, forward-backward

‣ HMM parameter esAmaAon

LinguisAc Structures

‣ Language is tree-structured

I ate the spaghe* with chops/cks I ate the spaghe* with meatballs

‣ Understanding syntax fundamentally requires trees — the sentences
have the same shallow analysis

I ate the spaghe* with chops/cks I ate the spaghe* with meatballs
PRP VBZ DT NN IN NNS PRP VBZ DT NN IN NNS

LinguisAc Structures
‣ Language is sequenAally structured: interpreted in an online way

Tanenhaus et al. (1995)

POS Tagging

Ghana ’s ambassador should have set up the big mee/ng in DC yesterday .

‣ What tags are out there?

NNP POS NN MD VB VBN RP DT JJ NN IN NNP NN .

POS Tagging

Slide credit: Dan Klein

POS Tagging

POS Tagging

Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

I’m 0.5% interested
in the Fed’s raises!

I hereby
increase interest
rates 0.5%

Fed raises interest rates 0.5 percent

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ Other paths are also plausible but even more semanAcally weird…
‣ What governs the correct choice? Word + context
‣ Word idenAty: most words have <=2 tags, many have one (percent, the)
‣ Context: nouns start sentences, nouns follow verbs, etc.

What is this good for?

‣ Text-to-speech: record, lead

‣ Preprocessing step for syntacAc parsers

‣ Domain-independent disambiguaAon for other tasks

‣ (Very) shallow informaAon extracAon

Sequence Models

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output

‣ POS tagging: x is a sequence of words, y is a sequence of tags

‣ Today: generaAve models P(x, y); discriminaAve models next Ame

Hidden Markov Models

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

‣ Model the sequence of y as a Markov process

y1 y2

‣ Markov property: future is condiAonally independent of the past given
the present

‣ If y are tags, this roughly corresponds to assuming that the next tag
only depends on the current tag, not anything before

y3 P (y3|y1, y2) = P (y3|y2)

‣ Lots of mathemaAcal theory about how Markov chains behave

Hidden Markov Models

y1 y2 yn

x1 x2 xn

…

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

Fed raises percent…

NNP VBZ NN…

Hidden Markov Models

y1 y2 yn

x1 x2 xn

…

P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

Ini>al
distribu>on

Transi>on
probabili>es

Emission
probabili>es

} }} ‣ P(x|y) is a distribuAon over
all words in the vocabulary
— not a distribuAon over
features (but could be!)

‣ MulAnomials: tag x tag
transiAons, tag x word
emissions

‣ ObservaAon (x) depends
only on current state (y)

y = (y1, ..., yn)Output ‣ Input x = (x1, ..., xn)

TransiAons in POS Tagging

‣ Dynamics model

Fed raises interest rates 0.5 percent .

VBD
VBN
NNP

VBZ
NNS

VB
VBP
NN

VBZ
NNS CD NN

‣ likely because start of sentence

‣ likely because verb ocen follows noun

‣ direct object follows verb, other verb rarely
follows past tense verb (main verbs can follow modals though!)

P (y1 = NNP)

P (y2 = VBZ|y1 = NNP)

P (y3 = NN|y2 = VBZ)

P (y1)
nY

i=2

P (yi|yi�1) NNP - proper noun, singular
 VBZ - verb, 3rd ps. sing. present
 NN - noun, singular or mass.

EsAmaAng TransiAons

‣ Similar to Naive Bayes esAmaAon: maximum likelihood soluAon =
normalized counts (with smoothing) read off supervised data

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN

‣ How to smooth?

‣ One method: smooth with unigram distribuAon over tags

‣ P(tag | NN)

P (tag|tag�1) = (1� �)P̂ (tag|tag�1) + �P̂ (tag)

= empirical distribuAon (read off from data)P̂

.

= (0.5 ., 0.5 NNS)

‣ Emissions P(x | y) capture the distribuAon of words occurring with a
given tag

Emissions in POS Tagging

‣ P(word | NN) = (0.05 person, 0.04 official, 0.03 interest, 0.03 percent …)

‣ When you compute the posterior for a given word’s tags, the distribuAon
favors tags that are more likely to generate that word

‣ How should we smooth this?

Fed raises interest rates 0.5 percent .
NNP VBZ NN NNS CD NN .

EsAmaAng Emissions

‣ P(word | NN) = (0.5 interest, 0.5 percent) — hard to smooth!

‣ Fancy techniques from language modeling, e.g. look at type ferAlity
— P(tag|word) is flaker for some kinds of words than for others)

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

P (word|tag) = P (tag|word)P (word)

P (tag)

‣ AlternaAve: use Bayes’ rule

‣ Can interpolate with distribuAon looking at word shape
P(word shape | tag) (e.g., P(capitalized word of len >= 8 | tag))

‣ P(word|tag) can be a log-linear model — we’ll see this in a few lectures

Inference in HMMs

‣ Inference problem:

‣ ExponenAally many possible y here!

‣ SoluAon: dynamic programming (possible because of Markov structure!)

‣ Many neural sequence models depend on enAre previous tag
sequence, need to use approximaAons like beam search

‣ Input x = (x1, ..., xn) y = (y1, ..., yn)Output

y1 y2 yn

x1 x2 xn

… P (y,x) = P (y1)
nY

i=2

P (yi|yi�1)
nY

i=1

P (xi|yi)

argmaxyP (y|x) = argmaxy
P (y,x)

P (x)

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Vivek Srikumar

best (par>al) score for
a sequence ending in state s

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Dan Klein

‣ “Think about” all possible immediate
prior state values. Everything before
that has already been accounted for by
earlier stages.

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Vivek Srikumar

Viterbi Algorithm

slide credit: Vivek Srikumar

Forward-Backward Algorithm
‣ In addiAon to finding the best path, we may want to compute

marginal probabiliAes of paths P (yi = s|x)

P (yi = s|x) =
X

y1,...,yi�1,yi+1,...,yn

P (y|x)

‣ What did Viterbi compute? P (ymax|x) = max
y1,...,yn

P (y|x)

‣ Can compute marginals with dynamic programming as well using an
algorithm called forward-backward

Forward-Backward Algorithm
P (y3 = 2|x) =

sum of all paths through state 2 at time 3

sum of all paths

Forward-Backward Algorithm

slide credit: Dan Klein

P (y3 = 2|x) =
sum of all paths through state 2 at time 3

sum of all paths

=

‣ Easiest and most flexible to do one
pass to compute and one to
compute

Forward-Backward Algorithm

↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

‣ IniAal:

‣ Recurrence:

‣ Same as Viterbi but summing
instead of maxing!

‣ These quanAAes get very small!
Store everything as log probabiliAes

Forward-Backward Algorithm

‣ IniAal:

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

‣ Recurrence:

‣ Big differences: count emission for
the next Amestep (not current one)

Forward-Backward Algorithm
↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

‣ Big differences: count emission for
the next Amestep (not current one)

Forward-Backward Algorithm
↵1(s) = P (s)P (x1|s)

↵t(st) =
X

st�1

↵t�1(st�1)P (st|st�1)P (xt|st)

�n(s) = 1

�t(st) =
X

st+1

�t+1(st+1)P (st+1|st)P (xt+1|st+1)

P (s3 = 2|x) = ↵3(2)�3(2)P
i ↵3(i)�3(i)

‣ What is the denominator here? P (x)

=

HMM POS Tagging

‣ Baseline: assign each word its most frequent tag: ~90% accuracy

‣ Trigram HMM: ~95% accuracy / 55% on unknown words

Slide credit: Dan Klein

Trigram Taggers

‣ Trigram model: y1 = (<S>, NNP), y2 = (NNP, VBZ), …

‣ P((VBZ, NN) | (NNP, VBZ)) — more context! Noun-verb-noun S-V-O

Fed raises interest rates 0.5 percent
NNP VBZ NN NNS CD NN

‣ Tradeoff between model capacity and data size — trigrams are a
“sweet spot” for POS tagging

HMM POS Tagging

‣ Baseline: assign each word its most frequent tag: ~90% accuracy

‣ Trigram HMM: ~95% accuracy / 55% on unknown words

‣ TnT tagger (Brants 1998, tuned HMM): 96.2% accuracy / 86.0% on unks

Slide credit: Dan Klein

‣ State-of-the-art (BiLSTM-CRFs): 97.5% / 89%+

Errors

official knowledge made up the story recently sold shares
JJ/NN NN VBD RP/IN DT NN RB VBD/VBN NNS

Slide credit: Dan Klein / Toutanova + Manning (2000)(NN NN: tax cut, art gallery, …)

Remaining Errors

‣ Underspecified / unclear, gold standard inconsistent / wrong: 58%

‣ Lexicon gap (word not seen with that tag in training) 4.5%
‣ Unknown word: 4.5%

‣ Could get right: 16% (many of these involve parsing!)
‣ Difficult linguisAcs: 20%

They set up absurd situa/ons, detached from reality
VBD / VBP? (past or present?)

a $ 10 million fourth-quarter charge against discon/nued opera/ons
adjecAve or verbal parAciple? JJ / VBN?

Manning 2011 “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some Linguis>cs?”

Other Languages

Petrov et al. 2012

Next Time

‣ CRFs: feature-based discriminaAve models

‣ Structured SVM for sequences

‣ Named enAty recogniAon

