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• Generally, this is performance on held-out data.  

• Evaluation is typically done by (partially) training the network and evaluating its 
performance on held-out data.
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• Motivated by the observation that a DNN architecture can be specified by a 
string of variable length (i.e. Breadth-first traversal of their DAG) 

• Use reinforcement learning to train an RNN that builds the network
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Under review as a conference paper at ICLR 2017

A APPENDIX

Figure 7: Convolutional architecture discovered by our method, when the search space does not
have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters. Note
that the skip connections are not residual connections. If one layer has many input layers then all
input layers are concatenated in the depth dimension.
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• Performance is on-par with other CNNs 
of the time

Under review as a conference paper at ICLR 2017

A APPENDIX

Figure 7: Convolutional architecture discovered by our method, when the search space does not
have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters. Note
that the skip connections are not residual connections. If one layer has many input layers then all
input layers are concatenated in the depth dimension.
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• This is a very general method 

• The cost of that is compute: This used 800 GPUs (for an unspecified amount of 
time) and trained >12,000 candidate architectures
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• Instead, limit the search space with “blocks” 

• This is similar to “Human Neural Architecture Search”
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• Instead, limit the search space with “blocks”

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.

Search via Reinforcement Learning
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• Instead, limit the search space with “blocks”

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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• Instead, limit the search space with “blocks”

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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• Instead, limit the search space with “blocks”

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure 3.

4.1. Results on CIFAR-10 Image Classification

For the task of image classification with CIFAR-10, we
set N = 4 or 6 (Figure 2). The test accuracies of the
best architectures are reported in Table 1 along with other
state-of-the-art models. As can be seen from the Table, a
large NASNet-A model with cutout data augmentation [12]
achieves a state-of-the-art error rate of 2.40% (averaged
across 5 runs), which is slightly better than the previous
best record of 2.56% by [12]. The best single run from our
model achieves 2.19% error rate.

4.2. Results on ImageNet Image Classification

We performed several sets of experiments on ImageNet
with the best convolutional cells learned from CIFAR-10.
We emphasize that we merely transfer the architectures
from CIFAR-10 but train all ImageNet models weights from
scratch.

Results are summarized in Table 2 and 3 and Figure 5.
In the first set of experiments, we train several image clas-
sification systems operating on 299x299 or 331x331 reso-
lution images with different experiments scaled in compu-
tational demand to create models that are roughly on par
in computational cost with Inception-v2 [29], Inception-v3
[60] and PolyNet [69]. We show that this family of mod-
els achieve state-of-the-art performance with fewer floating
point operations and parameters than comparable architec-
tures. Second, we demonstrate that by adjusting the scale
of the model we can achieve state-of-the-art performance
at smaller computational budgets, exceeding streamlined

CNNs hand-designed for this operating regime [24, 70].
Note we do not have residual connections between con-

volutional cells as the models learn skip connections on
their own. We empirically found manually inserting resid-
ual connections between cells to not help performance. Our
training setup on ImageNet is similar to [60], but please see
Appendix A for details.

Table 2 shows that the convolutional cells discov-
ered with CIFAR-10 generalize well to ImageNet prob-
lems. In particular, each model based on the convolu-
tional cells exceeds the predictive performance of the cor-
responding hand-designed model. Importantly, the largest
model achieves a new state-of-the-art performance for Ima-
geNet (82.7%) based on single, non-ensembled predictions,
surpassing previous best published result by ⇠1.2% [8].
Among the unpublished works, our model is on par with
the best reported result of 82.7% [25], while having signif-
icantly fewer floating point operations. Figure 5 shows a
complete summary of our results in comparison with other
published results. Note the family of models based on con-
volutional cells provides an envelope over a broad class of
human-invented architectures.

Finally, we test how well the best convolutional cells
may perform in a resource-constrained setting, e.g., mobile
devices (Table 3). In these settings, the number of float-
ing point operations is severely constrained and predictive
performance must be weighed against latency requirements
on a device with limited computational resources. Mo-
bileNet [24] and ShuffleNet [70] provide state-of-the-art re-
sults obtaining 70.6% and 70.9% accuracy, respectively on
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Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure 3.

4.1. Results on CIFAR-10 Image Classification

For the task of image classification with CIFAR-10, we
set N = 4 or 6 (Figure 2). The test accuracies of the
best architectures are reported in Table 1 along with other
state-of-the-art models. As can be seen from the Table, a
large NASNet-A model with cutout data augmentation [12]
achieves a state-of-the-art error rate of 2.40% (averaged
across 5 runs), which is slightly better than the previous
best record of 2.56% by [12]. The best single run from our
model achieves 2.19% error rate.

4.2. Results on ImageNet Image Classification

We performed several sets of experiments on ImageNet
with the best convolutional cells learned from CIFAR-10.
We emphasize that we merely transfer the architectures
from CIFAR-10 but train all ImageNet models weights from
scratch.

Results are summarized in Table 2 and 3 and Figure 5.
In the first set of experiments, we train several image clas-
sification systems operating on 299x299 or 331x331 reso-
lution images with different experiments scaled in compu-
tational demand to create models that are roughly on par
in computational cost with Inception-v2 [29], Inception-v3
[60] and PolyNet [69]. We show that this family of mod-
els achieve state-of-the-art performance with fewer floating
point operations and parameters than comparable architec-
tures. Second, we demonstrate that by adjusting the scale
of the model we can achieve state-of-the-art performance
at smaller computational budgets, exceeding streamlined

CNNs hand-designed for this operating regime [24, 70].
Note we do not have residual connections between con-

volutional cells as the models learn skip connections on
their own. We empirically found manually inserting resid-
ual connections between cells to not help performance. Our
training setup on ImageNet is similar to [60], but please see
Appendix A for details.

Table 2 shows that the convolutional cells discov-
ered with CIFAR-10 generalize well to ImageNet prob-
lems. In particular, each model based on the convolu-
tional cells exceeds the predictive performance of the cor-
responding hand-designed model. Importantly, the largest
model achieves a new state-of-the-art performance for Ima-
geNet (82.7%) based on single, non-ensembled predictions,
surpassing previous best published result by ⇠1.2% [8].
Among the unpublished works, our model is on par with
the best reported result of 82.7% [25], while having signif-
icantly fewer floating point operations. Figure 5 shows a
complete summary of our results in comparison with other
published results. Note the family of models based on con-
volutional cells provides an envelope over a broad class of
human-invented architectures.

Finally, we test how well the best convolutional cells
may perform in a resource-constrained setting, e.g., mobile
devices (Table 3). In these settings, the number of float-
ing point operations is severely constrained and predictive
performance must be weighed against latency requirements
on a device with limited computational resources. Mo-
bileNet [24] and ShuffleNet [70] provide state-of-the-art re-
sults obtaining 70.6% and 70.9% accuracy, respectively on
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Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.
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• Finds networks with very little computation cost (~1 GPU day) that perform 
better or on-par with existing NAS methods
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• Neural Architecture Search (NAS) focuses on automatically finding highly 
performant network architectures 

• Search is commonly done with either RL or gradient methods (e.g. DARTS) 

• One fruitful use has been searching for compute efficient networks


