CS 4803 / 7643: Deep Learning

Topics:

- Unsupervised Learning
- Generative Models (PixelRNNs, VAEs) \

Dhruv Batra Georgia Tech

- HW4 Grades Released
	- Regrade requests close: 11/09, 11:59pm
- Grade histogram: 7643
	- Max possible: 38.5 (regular credit) + 6.5 (extra credit)

(C) Dhruv Batra 2

- HW3 Grades Released
	- Regrade requests close: 11/09, 11:59pm
- Grade histogram: 4803
	- Max possible: 34.5 (regular) + 10.5 (extra credit)

- Project submission instructions
	- Due: 11/24, 11:59pm
	- Last deliverable in the class
	- Can't use late days
	- https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/

- Guest Lecture: Emily Denton (Google AI)
	- Next class (11/10)
	- Ethics in AI

https://cephaloponderer.com/

Overview

- Unsupervised Learning
- Generative Models
	- o PixelRNN and PixelCNN
	- Variational Autoencoders (VAE)
	- Generative Adversarial Networks (GAN)

Supervised vs Reinforcement vs Unsupervised Learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Reinforcement vs Unsuperv Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

GRASS, **CAT**, **TREE**, **SKY**

Semantic Segmentation

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

A cat sitting on a suitcase on the fi

Image captioning

Ca **Ima**

Supervised vs Reinforcement vs Unsupervised Learning

Reinforcement Learning

Given: (e, r) Environment e, Reward function r (evaluative feedback)

Goal: Maximize expected reward

Examples: Robotic control, video games, board games, etc.

 π :

 \mathcal{L}_t

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised vs Reinforcement vs Unsuperv Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

Supervised vs Reinforcement vs Unsuperv Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Ara (Dimensionality reduct

Supervised vs Reinforcement vs Unsuperv

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

 $P(x_i | x_j, -x_{i+n})$

Unsupervised Learning

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels! Training data is cheap

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Data: (x, y) unsupervised learning x is data, y is label Holy grail: Solve => understand structure of visual world

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised vs Reinforcement vs Unsuperv Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

Some Data

1. \int Ask user how many clusters they'd like. *(e.g. k=5)*

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. **Randomly guess k** cluster Center locations

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
	- 4. **Each Center finds** the centroid of the points it owns

- 1. Ask user how many clusters they'd like. *(e.g. k=5)*
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
	- 4. Each Center finds the centroid of the points it owns…
	- 5. …and jumps there

6. …Repeat until (C) Dhruv Bater minated! Slide Credit: Carlos Guestrin 25

- Randomly initialize *k* centers $-\mu^{(0)} = \mu_1^{(0)}, \ldots, \mu_k^{(0)}$
- **Assign**:
	- Assign each point $i \in \{1,...n\}$ to nearest center:

$$
-\underbrace{C(i)}_{j}\leftarrow \underbrace{\arg\!\min_{j}||\mathbf{x}_{i}-\boldsymbol{\mu}_{j}||^{2}}_{\text{max}}\underbrace{\boldsymbol{\mathcal{A}}(\boldsymbol{\chi}_{i},\boldsymbol{\Psi}\boldsymbol{\mu}_{j})}_{\text{max}}
$$

- **Recenter**:
	- $-\mu_i$ becomes centroid of points assigned to cluster j

- Demo
	- http://stanford.edu/class/ee103/visualizations/kmeans/kmean s.html

What is K-means optimizing?

- Objective $F(\mu, \mathbb{C})$ function of centers μ and point allocations C: $(C(i) 64...k)$
	- *N* $-F(\mu, C) = \sum$ $||\textbf{x}_i - \boldsymbol{\mu}_{C(i)}||^2$ *i*=1 $\sqrt{\frac{10}{10}}$ *N k* $\frac{2}{\mu}$ $\sqrt{\frac{2}{\mu^2}}$ \sum 1-of-k encoding $F(\mu, a) =$ *i*=1 *j*=1
- wition • Optimal K-means: re cone) $\frac{\text{min}_{\mu} \text{min}_{a}}{\text{max}_{\mu} \alpha, \frac{\text{min}_{\mu} \overrightarrow{\mu}}{\text{min}_{\mu}}$

Supervised vs Reinforcement vs Unsuperv

Learning

Unsupervised Learning

 $Data(x)$ Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

1-d density estimation

2-d density estimat

Generative Models

Given training data, generate new samples from same distribution

Generative Classification vs Discriminative Classification vs Density Estimation

- Generative Classification
	- Model $p(x, y)$; estimate $p(x|y)$ and $p(y)$
	- Use Bayes Rule to predict y
	- E.g Naïve Bayes
- Discriminative Classification
	- Estimate p(y|x) directly
	- E.g. Logistic Regression
- **Density Estimation**

– Model $p(x)$

Generative Models

Given training data, generate new samples from same distribution

Training data $\sim p_{data}(x)$ Generated samples $\sim p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavors:

- Explicit density estimation: explicitly define and solve for $p_{model}(x)$
- Implicit density estimation: learn model that can sample from $\overline{p_{model}}(x)$ w/o explicitly defining it

$$
\frac{1}{\sqrt{1-\frac{1}{2}}}
$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Why Generative Models?

 $P(X)$

Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and \mathcal{P} planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

2017: Phillio Isola et al. 2017. Reproduced with authors permission

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Taxonomy of Generative Models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

PixelRNN and PixelCNN

Fully Observable Model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions: Γ \mathbf{r}

$$
p(x) = \prod_{i=1}^{n} p(\underbrace{x_i | x_1, ..., x_{i-1}}_{\uparrow})
$$

Likelihood of image x

given all previous pixels

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$
p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})
$$

\n
$$
\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\nLikelihood of
\n_{image x}
\n_{given all previous pixels}
\n_{pixels}
\n_{given all previous pixels}
\n_{given}
\n_{given}
\n_{given}
\n_g
\n_g
\n_g
\n_g
\n_g
\n_h
\n_h

Then maximize likelihood of training data

Complex distribution over pixel values => Express using a neural network! **Example: Character-level Language Model**

mox
W

Vocabulary: $[h,e,l,o]$

Example training sequence: **"hello"**

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example: Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Example: **Example: Example: Example: Example: Parameter** $e^{ie^{i\theta}}$ **Character-level Language Model Sampling**

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example: $\left| \begin{array}{ccc} \text{Example} & \text{Sample} \end{array} \right|$ **Character-level Language Model Sampling**

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Character-level Language Model Sampling

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

log $P(x_{s,c})$

 $\chi_{\mathsf{q}\mathsf{o}}'$

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Masked Convolutions

• Apply masks so that a pixel does not see "future" pixels

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images \boldsymbol{r}

$$
p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})
$$

Softmax loss at each pixel

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation must still proceed sequentially => still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Generation Samples

32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure 1. Image completions sampled from a PixelRNN.

Results from generating sound

• https://deepmind.com/blog/wavenet-generativemodel-raw-audio/

PixelRNN and PixelCNN

Pros:

- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples

Con: Sequential generation => slow

Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)