
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Generative Adversarial Networks (GANs)
– Closing time



Administrativia
• Last class today

• Project submission 
– Due: 11/24, 11:59pm
– Last deliverable in the class
– Can’t use late days 8 free late days
– https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/
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Generative Adversarial 
Networks (GAN)



Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)

• Unsupervised learning
– Discover structure in data
– Training data does not include desired outputs
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Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks (GANs)
GANs are a combination of the following ideas:

1. Learning to Sample
• (High-level) Connection to Inverse Transform Sampling

2. Adversarial Training 
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Easy Interview Question
• I give you u ~ U(0,1)

• Use u to produce a sample x ~ Bern(𝜃)
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Slightly Harder Interview Question
• I give you u ~ U(0,1)

• Use u to produce a sample x ~ Cat(π)
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Slightly Harder Interview Question
• I give you u ~ U(0,1)

• Use u to produce a sample x ~ Cat(π)
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Harder Interview Question
• I give you u ~ U(0,1)

• Use u to produce a sample x ~ FX(x)
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Harder Interview Question
• I give you u ~ U(0,1)

• Use u to produce a sample x ~ FX(x)
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Generative Adversarial Networks
Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Q: What can we use to 
represent this complex 
transformation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Generative Adversarial Networks

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution

Q: What can we use to 
represent this complex 
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks (GANs)
GANs are a combination of the following ideas:

1. Learning to Sample
• Connection to Inverse Transform Sampling

2. Adversarial Training 
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Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

High gradient signal 

Low gradient signal 

Aside: Jointly training two 
networks is challenging, 
can be unstable.  
Choosing objectives with 
better loss landscapes 
helps training, is an active 
area of research.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images 

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

After training, use generator network to 
generate new images 

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training GANs: Two-player game
Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



GANs
• Demo

– https://poloclub.github.io/ganlab/
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Generative Adversarial Nets

Nearest neighbor from training set

Generated samples

Figures copyright Ian Goodfellow et al., 2014. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014



Generative Adversarial Nets: Convolutional Architectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Generator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Samples 
from the 
model look 
much 
better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Interpolating 
between 
random 
points in 
latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Results over the years

38The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation, 2018.
https://arxiv.org/abs/1802.07228



BigGAN

39Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



BigGAN

40Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096



BigGAN
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“The GAN Zoo”

Explosion of GANs

“The GAN Zoo”

https://github.com/hindupuravinash/the-gan-zoo

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Also see https://paperswithcode.com/task/image-generation/latest

https://paperswithcode.com/task/image-generation/latest


GANs
Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Generative Adversarial Networks (GANs)

• Closing the loop
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So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Building A Complicated Function

Given a library of simple functions

Compose into a

complicate function

Idea 2: Compositions
• Deep Learning

• Grammar models

• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Any DAG of differentialble modules is 
allowed!

Differentiable Computation Graph

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 48



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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• “Shallow” models

• Deep models

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Learned Internal Representations

“Shallow” vs Deep Learning

“Simple” Trainable 

Classifier

hand-crafted

Feature Extractor
fixed learned

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Forward-Prop
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Key Computation: Back-Prop
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So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Distributed Representations Toy Example
• Can we interpret each dimension?
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Power of distributed representations!
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Local

Distributed

Slide Credit: Moontae Lee 



What is this class about?
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What is this class about?
• Introduction to Deep Learning

• Goal: 
– After finishing this class, you should be ready to get started 

on your first DL research project. 
• CNNs
• RNNs
• Deep Reinforcement Learning
• Generative Models (VAEs, GANs)
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What did we learn?
• Background & Basics

• Neural Networks, Backprop, Optimization (SGD)

• Module 1: Convolutional Neural Networks (CNNs)
• Architectures, Pre-training, Fine-tuning
• Visualizations, Fooling CNSS, Adversarial examples 
• Different tasks: detection CNNs, segmentation CNNs

• Module 2: Recurrent Neural Networks (RNNs)
• Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU
• RNNs for Sequence-to-Sequence (machine translation & image captioning, VQA, 

Visual Dialog)

• Module 3: Deep Reinforcement Learning
• Overview, policy gradients 
• Optimizing Neural Sequence Models for goal-driven rewards

• Module 4: Deep Unsupervised Learning
• Variational Inference
• Variational Auto Encoders (VAEs)
• GANs, Adversarial Learning
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Arxiv Fire Hose
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PhD Student

Deep 
Learning 
papers



Feedback
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http://b.gatech.edu/cios

http://b.gatech.edu/cios
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Thanks! 
(We hope your future learnings are deep)


