
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Convolutional Neural Networks

Administrivia

• Assignment 2
• Implement convolutional neural networks

• GPU resources
• Google Cloud Credits
• Google Colab

Interpretation 1: The model should
not rely too heavily on particular
features

⬣ If it does, it has probability
of losing that feature in an
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Data Wrangling

Class Imbalance: Focal Loss
Cross Entropy: easy examples incur a non-negligible loss,
which in aggregate mask out the harder, rare examples

Focal Loss: down-weights easy examples, to give more
attention to difficult examples

(Lin et al., 2017)

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Is this necessary?

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)

Image features are spatially
localized!

Smaller features repeated
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature
tends to appear in one location
vs. another (stationarity)

Locality of Features

Can we induce a bias in the
design of a neural network
layer to reflect this?

Each node only receives input from
𝟏 𝟐 window (image patch)

Region from which a node receives
input from is called its receptive
field

Advantages:

Reduce parameters to 𝟏 𝟐

where is number of output
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐

Nodes in different locations can share
features

No reason to think same feature
(e.g. edge pattern) can’t appear
elsewhere

Use same weights/parameters in
computation graph (shared
weights)

Advantages:

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏

We can learn many such features
for this one layer

Weights are not shared
across different feature
extractors

Parameters: 𝟏 𝟐

where is number of
features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional
analysis, convolution is a mathematical
operation on two functions f and g producing a
third function that is typically viewed as a
modified version of one of the original functions,
giving the area overlap between the two
functions as a function of the amount that one of
the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,
statistics, computer vision, image and signal
processing, electrical engineering, and
differential equations.

Visual comparison of convolution and
cross-correlation.

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D
Convolution

2D
Convolution

Notation:

𝒌 𝒏 𝒌ି𝒏

𝑵ି𝟏

𝒏ୀ𝟎

𝒚𝟎 = 𝒉𝟎 ȉ 𝒙𝟎

𝒚𝟏 = 𝒉𝟏 ȉ 𝒙𝟎 + 𝒉𝟎 ȉ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ȉ 𝒙𝟎 + 𝒉𝟏 ȉ 𝒙𝟏 + 𝒉𝟎 ȉ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ȉ 𝒙𝟎 + 𝒉𝟐 ȉ 𝒙𝟏 + 𝒉𝟏 ȉ 𝒙𝟐 + 𝒉𝟎 ȉ 𝒙𝟑

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D
Convolution

Image Kernel
(or filter)

Output /
filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride
along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾ି𝟏
𝟐

,

𝒃ୀି
𝑾ି𝟏

𝟐

𝑯ି𝟏
𝟐

,

𝒂ୀି
𝑯ି𝟏

𝟐

𝒌𝟐ି𝟏
𝟐

,

𝒃ୀି
𝒌𝟐ି𝟏

𝟐

𝒌𝟏ି𝟏
𝟐

,

𝒂ୀି
𝑲𝟏ି𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and
move back

Cross-correlation: Start in the beginning of
kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change
does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it’s a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

?

Input &
Output Sizes

Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image

𝑯
=

𝟓

𝟏

𝟐 𝟏

𝟐

𝑯
−

𝒌
𝟏

+
𝟏

𝟐

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size

𝟏

𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝟐

𝑯
+

𝟐

Stride

We can move the filter along the image using larger steps (stride)

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

𝟐

Stride = 2 (every other pixel)

Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏
Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Operation of Multi-Channel Input

Similar to before, we perform element-wise
multiplication between kernel and image
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of
channels in output
is equal to number
of kernels

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example:

𝟏 𝟐 , then

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage

Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2

Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Patch 1
Patch 2

…

Input Matrix Kernel Matrix

Number of Kernels

N
u

m
b

e
r o

f P
a

tch
es

k

X

k

K
e

rn
el 1

K
e

rn
el 2

…

Pooling
Layers

Pooling Layers

Dimensionality reduction
is an important aspect of
machine learning

Can we make a layer to
explicitly down-sample
image or feature maps?

Yes! We call one class of
these operations pooling
operations

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑯
=

𝟓

How many learned
parameters does
this layer have?

None!

Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑯
=

𝟓

𝒋

𝒊

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling
Layer

𝑯
=

𝟓

Invariance

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still
remain the same

Image
Convolution

Layer
Pooling
Layer

𝑯
=

𝟓

Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the
same translation

𝑯
=

𝟓

Backwards
Pass for

Convolution
Layer

Backwards Pass for Conv Layers

It is instructive to calculate the
backwards pass of a convolution
layer

Similar to fully connected layer,
will be simple vectorized linear
algebra operation!

We will see a duality between
cross-correlation and convolution

Recap: Cross-Correlation

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Iterators

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Some simplification: 1 channel input, 1 kernel (channel output), padding (here
2 pixels on right/bottom) to make output the same size

Gradient Terms and Notation

Assume size (add padding, change
convention a bit for convenience)

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

to access element

?

Backpropagation Chain Rule

κି𝟏 κ

κ

κ

κି𝟏 κ

κ

κି𝟏

Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)

Gradient for
Convolution

Layer

What a Kernel Pixel Affects at Output

κ

κ

Gradient for weight update

Calculate one pixel at a time

What does this weight
affect at the output?

Everything!

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Chain Rule over all Output Pixels

Need to incorporate all upstream
gradients:

Chain Rule:

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over
all output

pixels

Upstream
gradient
(known)

We will
compute

Chain Rule over all Output Pixels

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a’,b’

r,c

ᇱ ᇱ

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar?

Cross-correlation
between upstream
gradient and input!

(until 𝟏 𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a’,b’

r,c

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

ᇱ ᇱ

Forward and Backward Duality

…

Does this look familiar?

Cross-correlation
between upstream
gradient and input!

(until 𝟏 𝟐 output)
𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c
r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c
r,c

a’,b’

a’,b’

What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel
affect at the output?

Neighborhood around it
(where part of the kernel
touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

r’,c’

Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯

Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4
This is where the
corresponding locations
are for the output

(𝒓ᇱ − 𝒌𝟏 + 𝟏,
𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Summing Gradient Contributions

ᇱ

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

Let’s derive it
analytically this time (as
opposed to visually)

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓 r’,c’

1 2

3 4

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

Calculating the Gradient

Plug in what we actually wanted :

ᇱ ᇱ ᇱ ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

(we want term with ᇱ ᇱ in it;
this happens when and

𝒌𝟐ି𝟏

𝒃ᇱୀ𝟎

𝒌𝟏ି𝟏

𝒂ᇱୀ𝟎

Definition of cross-correlation (use ᇱ to distinguish from prior variables):

What is k
ᇱ ᇱ

Backwards is Convolution

Plugging in to earlier equation:

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Does this look familiar?

Convolution between
upstream gradient and
kernel!

(can implement by
flipping kernel and
cross- correlation)

Again, all operations can be
implemented via matrix
multiplications (same as FC layer)!

