Topics:

• Convolutional Neural Networks

CS 4803-DL / 7643-A ZSOLT KIRA

• Assignment 2

• Implement convolutional neural networks

• GPU resources

- Google Cloud Credits
- Google Colab

Interpretation 1: The model should not rely too heavily on particular features

If it does, it has probability $1-p$ of losing that feature in an iteration

Interpretation 2: Training 2^n ayer hidden layer 1 networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Why Dropout Works

We can combine these transformations to add even more variety!

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Combining Transformations

Class Imbalance: Focal Loss

Cross Entropy: easy examples incur a non-negligible loss, which in aggregate mask out the harder, rare examples

$$
CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1 - p) & \text{otherwise.} \end{cases}
$$

Focal Loss: down-weights easy examples, to give more attention to difficult examples

$$
FL(p_t) = -(1-p_t)^\gamma \log(p_t).
$$

(Lin et al., 2017)

Data Wrangling

The connectivity in linear layers doesn't always make sense

How many parameters? \bullet M*N (weights) + N (bias)

Hundreds of millions of parameters for just one layer

Connected More parameters => More data needed

Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
	- Edges
	- **Color**
	- Motifs (corners, etc.)
-
- \bullet No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a bias in the design of a neural network layer to reflect this?

Locality of Features

Each node only receives input from $K_1 \times K_2$ window (image patch)

Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to $(K_1 \times K_2 +$ 1) $*$ N where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Idea 1: Receptive Fields

Nodes in different locations can share features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1)$
- Explicitly maintain spatial information

Idea 2: Shared Weights

We can learn **many** such features for this one layer

- Weights are not shared across different feature extractors
- **Parameters:** $(K_1 \times K_2 +$ 1) $*$ M where M is number of features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is **extremely common** in electrical/computer engineering!

In mathematics and, in particular, functional **Convolution** analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of \mathbb{I} ^{t*g} the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

From https://en.wikipedia.org/wiki/Convolution

2D Discrete Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

2D Discrete Convolution

1. Flip kernel (rotate 180 degrees)

2. Stride along image

The Intuitive Explanation

Mathematics of Discrete 2D Convolution

Centering Around the Kernel

As we have seen:

- Convolution: Start at end of kernel and move back **Convolution:** Start at end of kernel and

move back
 Cross-correlation: Start in the beginning of
- kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip") $K' = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$
Perform cross-correlation
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
y(r,c) = (x * k)(r, c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a, c+b) k(a, b)
$$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad X(0:2,0:2) \cdot K' = 65 + bias
$$

Dot product
(element-wise multiply and sum)

Dot product (element-wise multiply and sum)

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- **There is a duality between them during** backpropagation
- Convolutions have various mathematical properties people care about

Input & Output SizesGec

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) Number of channels in the input image
- out_channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- . stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0
- . padding_mode (string, optional) 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nl

Output size of vanilla convolution operation is $(H - k_1 + 1) \times (W - k_2 + 1)$

This is called a "valid" convolution and only applies kernel within image

Valid Convolution

We can **pad the images** to make the output the same size:
 \bullet Zeros, mirrored image, etc.

-
- **pad the images** to make the output the same size:
Zeros, mirrored image, etc.
Note padding often refers to pixels added to **one size** (P Note padding often refers to pixels added to **one size** ($P = 1$ here)

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride = 2 (every other pixel)

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

 W

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product) **el image** but in reality they have three
 ication between kernel and image

summing them up (**dot product**)

Except with $k_1 * k_2 * 3$ values

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Example:
 $k_1 = 3, k_2 = 3, N = 4$ *input channels* = 3, then $(3 * 3 * 3 + 1) * 4 = 1$ Example: $k_1 = 3, k_2 = 3, N = 4$ input channels = 3, then $(3 * 3 * 3 + 1) * 4 = 112$

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Just as before, in practice we can vectorize this operation

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?
- **Yes!** We call one class of these operations pooling

these of the window to take a max over

stride - the stride of the window. Default value is kernel_size operations

Parameters

-
-
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Not restricted to max; can use any differentiable function

Since the **output** of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

This combination adds some **invariance** to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the same translation

Backwards Pass for **Convolution** Layer

It is instructive to calculate the backwards pass of a convolution layer

- Similar to fully connected layer, will be simple vectorized linear algebra operation!
- We will see a duality between cross-correlation and convolution

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 2 pixels on right/bottom) to make output the same size

$$
y(r,c) = (x * k)(r, c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r + a, c + b) k(a, b)
$$

 $|y|=H\times W$

Gradient Terms and Notation

Gradient for **Convolution** Layer

$\frac{\partial L}{\partial k} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial k}$	What does this weight affect at the output?	
Gradient for weight update	$\frac{\partial L}{\partial k(a, b)}$	Everything!
(0,0)	$k_1 = 3$	verything!
$H = 5$	$k_2 = 3$	$k_1 = 3$
$k_2 = 3$	$k_1 = 1, k_2 = 1$	
$W = 5$	$(H - 1, W - 1)$	

\nWhat a Kernel pixel Affects at Output

Need to incorporate all upstream Chain Rule: gradients:

 $W-1$ as a $($

 $H-1 W-1$

$$
\frac{\partial y(r,c)}{\partial k(a',b')} = x(r+a',c+b')
$$

$$
\frac{\partial L}{\partial k(a',b')} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a',c+b')
$$

$$
\frac{\partial y(r,c)}{\partial k(a',b')} = x(r+a',c+b')
$$

$$
\frac{\partial L}{\partial k(a',b')} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a',c+b')
$$

Does this look familiar?

Cross-correlation $\mathbf{v} \cdot \mathbf{v} + \mathbf{h}$ between upstream gradient and input! (until $k_1 \times k_2$ output)

$$
k_1 = 3
$$

$$
k_2=3
$$

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

Definition of cross-correlation (use a' , b' to distinguish from prior variables):

$$
y(r',c') = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r'+a',c'+b') k(a',b')
$$

Plug in what we actually wanted :

$$
y(r'-a,c'-b)=(x*k)(r',c')=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}x(r'-a+a',c'-b+b') k(a',b')
$$

What is
$$
\frac{\partial y(r'-a, c'-b)}{\partial x(r', c')} = k(a, b)
$$
 (we want term with $x(r', c')$ in it;
this happens when $a = a'$ and $b = b'$

this happens when $a = a'$ and $b = b'$

Calculating the Gradient

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}
$$

$$
= \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a, c'-b)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Does this look familiar?

Convolution between upstream gradient and kernel! **Does this look familiar?**
Convolution between
upstream gradient and
kernel!
(can implement by
flipping kernel and
cross- correlation)
 $\frac{1}{2}$

(can implement by flipping kernel and

