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Topics:
• Convolutional Neural Networks



Administrivia

• Assignment 2
• Implement convolutional neural networks

• GPU resources
• Google Cloud Credits
• Google Colab



Interpretation 1: The model should 
not rely too heavily on particular 
features

⬣ If it does, it has probability 
of losing that feature in an 
iteration

Interpretation 2: Training 𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-
batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Data Wrangling

Class Imbalance: Focal Loss
Cross Entropy: easy examples incur a non-negligible loss, 
which in aggregate mask out the harder, rare examples

Focal Loss: down-weights easy examples, to give more 
attention to difficult examples

(Lin et al., 2017)



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed

Is this necessary? 

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Image features are spatially 
localized!

Smaller features repeated 
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in one location 
vs. another (stationarity)

Locality of Features

Can we induce a bias in the 
design of a neural network 
layer to reflect this?



Each node only receives input from 
𝟏 𝟐 window (image patch)

Region from which a node receives 
input from is called its  receptive 
field

Advantages: 

Reduce parameters to 𝟏 𝟐

where is number of output 
nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝟏

𝟐



Nodes in different locations can share 
features

No reason to think same feature 
(e.g. edge pattern) can’t appear 
elsewhere

Use same weights/parameters in 
computation graph (shared 
weights)

Advantages: 

Reduce parameters to 𝟏 𝟐

Explicitly maintain spatial 
information

Idea 2: Shared Weights

𝟏

𝟐

𝟏



We can learn many such features 
for this one layer

Weights are not shared 
across different feature 
extractors

Parameters:  𝟏 𝟐

where is number of 
features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional 
analysis, convolution is a mathematical 
operation on two functions f and g producing a 
third function that is typically viewed as a 
modified version of one of the original functions, 
giving the area overlap between the two 
functions as a function of the amount that one of 
the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 
statistics, computer vision, image and signal 
processing, electrical engineering, and 
differential equations. 

Visual comparison of convolution and 
cross-correlation.



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

1D 
Convolution

2D 
Convolution

Notation:

𝒌 𝒏 𝒌ି𝒏

𝑵ି𝟏

𝒏ୀ𝟎

𝒚𝟎 = 𝒉𝟎 ȉ 𝒙𝟎 

𝒚𝟏 = 𝒉𝟏 ȉ 𝒙𝟎 + 𝒉𝟎 ȉ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ȉ 𝒙𝟎 + 𝒉𝟏 ȉ 𝒙𝟏 + 𝒉𝟎 ȉ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ȉ 𝒙𝟎 +  𝒉𝟐 ȉ 𝒙𝟏 + 𝒉𝟏 ȉ 𝒙𝟐 + 𝒉𝟎 ȉ 𝒙𝟑



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map



2D Discrete Convolution

K =
−𝟏    𝟎     𝟏
−𝟐    𝟎     𝟐
−𝟏    𝟎     𝟏

2D 
Convolution

Image Kernel 
(or filter)

Output / 
filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 
along image



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝑾ି𝟏
𝟐

,

𝒃ୀି
𝑾ି𝟏

𝟐

𝑯ି𝟏
𝟐

,

𝒂ୀି
𝑯ି𝟏

𝟐



𝒌𝟐ି𝟏
𝟐

,

𝒃ୀି
𝒌𝟐ି𝟏

𝟐

𝒌𝟏ି𝟏
𝟐

,

𝒂ୀି
𝑲𝟏ି𝟏

𝟐

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

( −
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)



Convolution and Cross-Correlation

As we have seen:

Convolution: Start at end of kernel and 
move back

Cross-correlation: Start in the beginning of 
kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 
along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)



𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 
does not matter!



Cross-Correlation

K’  =
1     0     − 1
2    0     − 2
1    0     − 1

X(0: 2,0: 2)  =
200  150     150
100     50     100
25     25       10

X(0:2,0:2) ⋅ 𝐾ᇱ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 
operations

Why bother with this and not just say it’s a 
linear layer with small receptive field?

There is a duality between them during 
backpropagation

Convolutions have various 
mathematical properties people care 
about

This is historically how it was inspired

?



Input & 
Output Sizes



Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



Valid Convolution

Output size of vanilla convolution operation is 𝟏 𝟐

This is called a “valid” convolution and only applies kernel within image 

𝑯
=

𝟓

𝟏

𝟐 𝟏

𝟐

𝑯
−

𝒌
𝟏

+
𝟏

 

𝟐



Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size 

𝟏

𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

 

𝟐

𝑯
+

𝟐



Stride

We can move the filter along the image using larger steps (stride) 

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

 

𝟐

Stride = 2 (every other pixel)



Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input 



Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image

𝟐

𝒌
𝟏
Kernel

Feature Map

𝟐𝑯
−

𝒌
𝟏

+
𝟏



Operation of Multi-Channel Input

Similar to before, we perform element-wise 
multiplication between kernel and image 
patch, summing them up (dot product)

Except with 𝟏 𝟐 values

We have shown inputs as a one-channel image but in reality they have three 
channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑯

Image



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝟐

𝒌
𝟏

Kernels
Feature Maps

𝟐𝑯
−

𝒌
𝟏

+
𝟏

Number of 
channels in output 
is equal to number 
of kernels

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝟏 𝟐

Example: 

𝟏 𝟐 , then  

𝟐

𝒌
𝟏

𝟐𝑯
−

𝒌
𝟏

+
𝟏

𝑯

Kernels
Feature MapsImage



Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Input Image

Im2col
=>

Patch 1
Patch 2

…Patch
1

Patch
2



Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Patch 1
Patch 2

…

Input Matrix Kernel Matrix

Number of Kernels

N
u

m
b

e
r o

f P
a

tch
es

k

X

k

K
e

rn
el 1

K
e

rn
el 2

…



Pooling 
Layers



Pooling Layers

Dimensionality reduction 
is an important aspect of 
machine learning

Can we make a layer to 
explicitly down-sample
image or feature maps?

Yes! We call one class of 
these operations pooling
operations 

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d



Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑯
=

𝟓

How many learned 
parameters does 
this layer have?

None!



Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice

𝑯
=

𝟓

 

𝒋

 

𝒊



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Invariance 

This combination adds some invariance to translation of the features 

If feature (such as beak) translated a little bit, output values still 
remain the same

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the 
same translation

𝑯
=

𝟓



Backwards 
Pass for 

Convolution 
Layer



Backwards Pass for Conv Layers

It is instructive to calculate the 
backwards pass of a convolution 
layer

Similar to fully connected layer, 
will be simple vectorized linear 
algebra operation! 

We will see a duality between 
cross-correlation and convolution 



Recap: Cross-Correlation 

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)



Iterators

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 
2 pixels on right/bottom) to make output the same size 



Gradient Terms and Notation

Assume size (add padding, change 
convention a bit for convenience)

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

to access element

?



Backpropagation Chain Rule

κି𝟏 κ

κ

κ

κି𝟏 κ

κ

κି𝟏

Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)



Gradient for 
Convolution 

Layer



What a Kernel Pixel Affects at Output

κ

κ

Gradient for weight update

Calculate one pixel at a time

What does this weight 
affect at the output?

Everything!

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)



Chain Rule over all Output Pixels

Need to incorporate all upstream 
gradients:

Chain Rule:

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over 
all output 

pixels

Upstream 
gradient 
(known)

We will 
compute



Chain Rule over all Output Pixels

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a’,b’

r,c

ᇱ ᇱ



Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a’,b’

r,c

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

ᇱ ᇱ



Forward and Backward Duality

…

Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)
𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c
r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c
r,c

a’,b’

a’,b’



What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 
affect at the output?

Neighborhood around it 
(where part of the kernel 
touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

r’,c’



Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯



Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4
This is where the 
corresponding locations 
are for the output

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 
𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Summing Gradient Contributions

ᇱ

 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

Let’s derive it 
analytically this time (as 
opposed to visually)

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓 r’,c’

1 2

3 4

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑



Calculating the Gradient

Plug in what we actually wanted :

ᇱ ᇱ ᇱ ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

(we want term with ᇱ ᇱ in it; 
this happens when and 

𝒌𝟐ି𝟏

𝒃ᇱୀ𝟎

𝒌𝟏ି𝟏

𝒂ᇱୀ𝟎

Definition of cross-correlation (use ᇱ to distinguish from prior variables):

What is k
ᇱ ᇱ



Backwards is Convolution

Plugging in to earlier equation:

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Does this look familiar? 

Convolution between 
upstream gradient and 
kernel!

(can implement by 
flipping kernel and 
cross- correlation)

Again, all operations can be 
implemented via matrix 
multiplications (same as FC layer)!


