
Backwards 
Pass for 

Convolution 
Layer



Backwards Pass for Conv Layers

It is instructive to calculate the 
backwards pass of a convolution 
layer

Similar to fully connected layer, 
will be simple vectorized linear 
algebra operation! 

We will see a duality between 
cross-correlation and convolution 



Recap: Cross-Correlation 

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)



Iterators

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 
2 pixels on right/bottom) to make output the same size 



Gradient Terms and Notation

Assume size (add padding, change 
convention a bit for convenience)

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

to access element

?



Backpropagation Chain Rule

κି𝟏 κ

κ

κ

κି𝟏 κ

κ

κି𝟏

Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)



Gradient for 
Convolution 

Layer



What a Kernel Pixel Affects at Output

κ

κ

Gradient for weight update

Calculate one pixel at a time

What does this weight 
affect at the output?

Everything!

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)



Chain Rule over all Output Pixels

Need to incorporate all upstream 
gradients:

Chain Rule:

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over 
all output 

pixels

Upstream 
gradient 
(known)

We will 
compute



Chain Rule over all Output Pixels

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

𝑾

𝑯a’,b’

r,c

ᇱ ᇱ



Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a’,b’

r,c

ᇱ ᇱ

𝑾ି𝟏

𝒄ୀ𝟎

𝑯ି𝟏

𝒓ୀ𝟎

ᇱ ᇱ



Forward and Backward Duality

…

Does this look familiar? 

Cross-correlation 
between upstream 
gradient and input!

(until 𝟏 𝟐 output)
𝑾

𝑯

Forward Pass

𝑾

𝑯

Backward Pass k(𝟎, 𝟎)

𝑾

𝑯

r,
c
r,
c

𝑾

𝑯

Backward Pass 𝒌(𝟐, 𝟐)

r,c

r,c

r,c
r,c

a’,b’

a’,b’



What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 
affect at the output?

Neighborhood around it 
(where part of the kernel 
touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

r’,c’



Extents of Kernel Touching the Pixel

𝑾

𝑯

1 2

3 4

r’,c’ r’,c’

r’,c’ r’,c’

𝑾

𝑯

𝑾

𝑯

𝑾

𝑯



Extents at the Output

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

𝑾 = 𝟓

𝑯 = 𝟓
r’,c’

1 2

3 4
This is where the 
corresponding locations 
are for the output

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 
𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4



Summing Gradient Contributions

ᇱ

 

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

Let’s derive it 
analytically this time (as 
opposed to visually)

Chain rule for affected pixels (sum gradients):

𝑾 = 𝟓

𝑯 = 𝟓 r’,c’

1 2

3 4

(𝒓ᇱ − 𝒌𝟏 + 𝟏, 𝒄ᇱ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑



Calculating the Gradient

Plug in what we actually wanted :

ᇱ ᇱ ᇱ ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ᇱୀ𝟎

𝒌𝟏ି𝟏

𝒂ᇱୀ𝟎

(we want term with ᇱ ᇱ in it; 
this happens when and 

𝒌𝟐ି𝟏

𝒃ᇱୀ𝟎

𝒌𝟏ି𝟏

𝒂ᇱୀ𝟎

Definition of cross-correlation (use ᇱ to distinguish from prior variables):

What is k
ᇱ ᇱ



Backwards is Convolution

Plugging in to earlier equation:

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

ᇱ ᇱ

ᇱ

ᇱ ᇱ

𝒌𝟐ି𝟏

𝒃ୀ𝟎

𝒌𝟏ି𝟏

𝒂ୀ𝟎

Does this look familiar? 

Convolution between 
upstream gradient and 
kernel!

(can implement by 
flipping kernel and 
cross- correlation)

Again, all operations can be 
implemented via matrix 
multiplications (same as FC layer)!



Simple 
Convolutional 

Neural 
Networks



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 
we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 
Layer

𝑯
=

𝟓



Alternating Convolution and Pooling

Image
Convolution +

Non-Linear
Layer

Pooling
Layer

Convolution +
Non-Linear

Layer

Useful, 
lower-
dimensional 
features

Convolutional Neural Networks (CNNs)



Adding a Fully Connected Layer

Image Pooling
Layer

Fully 
Connected 

Layers

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Loss



Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Receptive Fields

Image Pooling
Layer

Fully 
Connected 

Layers

Loss



Typical Depiction of CNNs 

Input
Image

PredictionsCNN

Convolutional Neural
Networks

Input
Image

Predictions



LeNet Architecture

These architectures have existed since 1980s

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



Handwriting Recognition

Image Credit:
Yann LeCun



Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:
Yann LeCun



(Some) Rotation Invariance

Image Credit:
Yann LeCun



(Some) Scale Invariance

Image Credit:
Yann LeCun



Advanced 
Convolutional 

Networks



From: https://paperswithcode.com

The Importance of Benchmarks



AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Parameters and Memory

Most memory usage in 
convolution layers

Most parameters in FC 
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



VGG – Key Characteristics

Key aspects:

Repeated application of: 

3x3 conv (stride of 1, padding 
of 1)

2x2 max pooling (stride 2)

Very large number of parameters

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter
concatenation

1x1 
convolutions

3x3 
convolutions

5x5 
convolutions

3x3 max 
pooling

Previous layer



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition 

Key idea: Allow information from a layer to propagate 
to any future layer (forward)

Same is true for gradients! 

weight layer

weight layer

+
relu

relu

identity



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 
architectures:

Evolutionary learning 
and reinforcement 
learning

Prune over-
parameterized 
networks

Learning of 
repeated blocks
typical



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications



Transfer 
Learning & 

Generalization



Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic 
Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality



Transfer Learning – Training on Large Dataset

What if we don’t have 
enough data?

Step 1: Train on large-scale 
dataset

Convolutional Neural
Networks

Input
Image

Predictions



Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights 
trained in Step 1

Replace last layer with new fully-connected for 
output nodes per new category



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 
enough data)

Replace last layer with new fully-connected for 
output nodes per new category



Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding 
Baseline for Recognition

This works 
extremely well! It 
was surprising upon 
discovery.

Features learned 
for 1000 object 
categories will 
work well for 
1001st!

Generalizes even 
across tasks 
(classification to 
object detection)



But it doesn’t always work that 
well!

If the source dataset you train on 
is very different from the target
dataset, transfer learning is not as 
effective

If you have enough data for the 
target domain, it just results in 
faster convergence

See He et al., “Rethinking 
ImageNet Pre-training”

Learning with Less Labels



Effectiveness of More Data

From: Hestness et al., Deep Learning Scaling Is 
Predictable

From: Revisiting the Unreasonable 
Effectiveness of Data 
https://ai.googleblog.com/2017/07/revisiting-
unreasonable-effectiveness.html



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Category Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift


