Backwards Pass for **Convolution** Layer

It is instructive to calculate **the
backwards pass** of a convolution
layer backwards pass of a convolution layer

- Similar to fully connected layer, will be simple vectorized linear algebra operation!
- We will see a duality between cross-correlation and convolution

2 pixels on right/bottom) to make output the same size

$$
y(r,c) = (x * k)(r, c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r + a, c + b) k(a, b)
$$

Gradient for Convolution Convolution Convolution Convolution Convolution Convolution Convolution Convolution Co Convolution Layer

$\frac{\partial L}{\partial k} = \frac{\partial L}{\partial h^{\ell}}$	What does this weight affect at the output?		
Gradient for weight update	$\frac{\partial L}{\partial k(a, b)}$	Everything!	
(0,0)	1	1/2	1/3
(0,0)	1/4	1/4	
$\frac{\partial L}{\partial k(a, b)}$	1/4	2/4	
$\frac{\partial L}{\partial k(a, b)}$	2/4		
$\frac{\partial L}{\partial k(a, b)}$	3/4		
$\frac{\partial L}{\partial k(a, b)}$	4/4		
$\frac{\partial L}{\partial k(a, b)}$	5/4		
$\frac{\partial L}{\partial k(a, b)}$	6/4		
$\frac{\partial L}{\partial k(a, b)}$	7/4		
$\frac{\partial L}{\partial k(a, b)}$	8/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$	1/4		
$\frac{\partial L}{\partial k(a, b)}$			

Need to incorporate all upstream Chain Rule: gradients:

 $W-1$ as a $($

 $H-1 W-1$

$$
\frac{\partial y(r,c)}{\partial k(a',b')} = x(r+a',c+b')
$$

$$
\frac{\partial L}{\partial k(a',b')} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a',c+b')
$$

$$
\frac{\partial y(r,c)}{\partial k(a',b')} = x(r+a',c+b')
$$

$$
\frac{\partial L}{\partial k(a',b')} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a',c+b')
$$

Does this look familiar?

Cross-correlation $\mathbf{v} \cdot \mathbf{v} + \mathbf{h}$ between upstream gradient and input! (until $k_1 \times k_2$ output)

$$
k_1 = 3
$$

$$
k_2=3
$$

corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

Definition of cross-correlation (use a' , b' to distinguish from prior variables):

$$
y(r',c') = (x * k)(r',c') = \sum_{a'=0}^{k_1-1} \sum_{b'=0}^{k_2-1} x(r'+a',c'+b') k(a',b')
$$

Plug in what we actually wanted :

$$
y(r'-a,c'-b)=(x*k)(r',c')=\sum_{a'=0}^{k_1-1}\sum_{b'=0}^{k_2-1}x(r'-a+a',c'-b+b') k(a',b')
$$

What is
$$
\frac{\partial y(r'-a,c'-b)}{\partial x(r',c')} = k(a,b)
$$

What is $\frac{\partial y(r'-a,c'-b)}{\partial x(c',c')} = k(a,b)$ (we want term with $x(r',c')$ in it; this happens when $a' = a$ and $b' = b$

Calculating the Gradient

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}
$$

$$
= \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a, c'-b)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Does this look familiar?

Convolution between upstream gradient and kernel! **Does this look familiar?**
Convolution between
upstream gradient and
kernel!
(can implement by
flipping kernel and
cross- correlation)
 $\frac{1}{2}$

(can implement by flipping kernel and

Simple **Convolutional Neural Networks**

Since the **output** of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

These architectures have existed since 1980s

Handwriting Recognition

Image Credit: Yann LeCun $\overline{\mathcal{O}}$ \Rightarrow Georgia

Image Credit: Yann LeCunGeo

(Some) Rotation Invariance

Image Credit: Yann LeCun \Rightarrow Geor

(Some) Scale Invariance

Image Credit: Yann LeCun╱ \Rightarrow Geor

Advanced Convolutional **Networks**

The Importance of Benchmarks

Full (simplified) AlexNet architecture: [227x227x3] INPUT 11x11 filters at stride 4, pad 0

11x11 filters at stride 4, pad 0

Secondization layer

12.3x3 filters at stride 1, pad 1

12.3x3 filters at stride 1, pad 1

12.3x3 filters at stride 1, pad 1

86 3x3 filters at stride 1,

Key aspects:

-
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- **Ensembling**

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 memory. 11271212254. Fally params: (3°3142)128-1*47,46*

memory. 11271121224-1.6M params: (3°31128)128-147,466

memory. Sefect226-400K params: (3°3128)128-147,466

memory. Sefect28-600K params: (3°3128)1286-589,824

memory

Most memory usage in convolution layers

Most parameters in FC layers

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

Repeated application of:

- of 1)
- 2x2 max pooling (stride 2)

Very large number of parameters

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

But have become deeper and more complex

Inception Architecture

Key idea: Repeated blocks and multi-scale features

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to learn architectures:

- Evolutionary learning \int_{s}^{s} and reinforcement

learning

Prupe over learning
- Prune overparameterized networks and the contract of \mathbb{R}^n

Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity

 \Rightarrow

Geo

From: An Analysis Of Deep Neural Network Models For Practical Applications

Transfer Learning & **Generalization**

What if we don't have enough data?

Step 1: Train on large-scale dataset

Input

Networks

Step 2: Take your custom data and initialize the network with weights trained in Step 1

Step 3: (Continue to) train on new dataset

- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

This works extremely well! It

was surprising upon discovery.

- **Features learned** so for 1000 object $\begin{array}{|c|c|}\n\hline\n\end{array}$ categories will $\begin{array}{|c|c|c|} \hline & & & & \end{array}$ work well for 1001st!
- across tasks (classification to object detection)

Baseline for Recognition

Surprising Effectiveness of Transfer Learning

Learning with Less Labels

But it doesn't always work that well!

- **If the source** dataset you train on is very different from the target dataset, transfer learning is not as effective
- **If you have enough data for the** target domain, it just results in faster convergence
	- See He et al., "Rethinking ImageNet Pre-training"

Effectiveness of More Data

Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html

Prom: Revisiting the Unreasonable From: Hestness et al., Deep Learning Scaling Is From: Hestness et al., Deep Learning Scaling Is

There is a large number of different low-labeled settings in DL research

Dealing with Low-Labeled Situations **Separate Labeled Situations**

