Topics:

- Questions on convolution layers
- Visualization

CS 4803-DL / 7643-A ZSOLT KIRA

• Assignment 2

• Due in 4 days!!!

GPU resources

- Google Cloud Credits
- Google Colab
- Should not be necessary for assignments though

• Projects

- Released catme, fill out by **02/28!** If you have a team, no need.
- Rubric/description released, my office hours went over it
- Some interesting topics <u>here</u>. FB topics coming out this month.
- Project proposal due mid-March (will re
- 4803 special office hours

$$\frac{\partial y(r,c)}{\partial k(a',b')} = x(r+a',c+b')$$

$$\frac{\partial L}{\partial k(a',b')} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a',c+b')$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)

Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! **Does this look familiar?**

Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)

(not counting biases) memory: 224*224*3=150K params: 0 INPUT: [224x224x3] CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096.000

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Step 3: (Continue to) train on new dataset

- **Finetune:** Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

There is a large number of different low-labeled settings in DL research

Setting	Source	Target	Shift Type	
Semi-supervised	Single labeled	Single unlabeled	None	
Domain Adaptation	Single labeled	Single unlabeled	Non-semantic	
Domain Generalization	Multiple labeled	Unknown	Non-semantic	
Cross-Task Transfer	Single labeled	Single unlabeled	Semantic	
Few-Shot Learning	Single labeled	Single few-labeled	Semantic	
Un/Self-Supervised	Single unlabeled	Many labeled	Both/Task	

Non-Semantic Shift

Semantic Shift

Dealing with Low-Labeled Situations

Georgia Tech∦

Visualization of Neural Networks

Given a **trained** model, we'd like to understand what it learned.

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Conv layers: For each kernel, scale values from 0-255 and visualize

AlexNet: 64 x 3 x 11 x 11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Young, from CS 2310

0

Geo

Visualizing Weights

We can also produce visualization output (aka activation/filter) maps

These are **larger** early in the network.

Visualizing Output Maps

From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization", 2015 Georgan

Activations – Small Output Sizes

Problem: Small conv outputs also hard to interpret

Activations of last conv layer in VGG network

CNN101 and CNN Explainer

https://poloclub.github.io/cnn-explainer/

We can take the activations of any layer (FC, conv, etc.) and **perform dimensionality reduction**

- Often reduce to two dimensions for plotting
- E.g. using Principle
 Component Analysis (PCA)

t-SNE is most common

 Performs non-linear mapping to preserve pair-wise distances

Van der Maaten & Hinton, "Visualizing Data using t-SNE", 2008.

Dimensionality Reduction: t-SNE

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Zeiler & Fergus, 2014

Activations

Gradients

Simonyan et al, 2013

Robustness

Hendrycks & Dietterich, 2019

Visualizing Neural Networks

Summary & Caveats

While these methods provide **some** visually interpretable representations, they can be misleading or uninformative (Adebayo et al., 2018)

Assessing interpretability is difficult

- Requires user studies to show usefulness
- E.g. they allow a user to predict mistakes beforehand

Neural networks learn **distributed** representation

- (no one node represents a particular feature)
- This makes interpretation difficult

Adebayo et al., "Sanity Checks for Saliency Maps", 2018.

Gradient-Based Visualizations

Backwards pass gives us gradients for all layers: How the loss changes as we change different parts of the input

This can be **useful not just for optimization**, but also to understand what was learned

- Gradient of loss with respect to all layers (including input!)
- Gradient of any layer with respect to input (by cutting off computation graph)

Idea: We can backprop to the image

- Sensitivity of loss to individual pixel changes
- Large sensitivity implies important pixels
- Called Saliency Maps

In practice:

- Take absolute value of gradient
- Sum across all channels

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Gradient of Loss w.r.t. Image

Applying traditional (non-learned) computer vision segmentation algorithms on gradients gets us **object segmentation for free**!

Surprising because **not** part of supervision

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Object Segmentation for Free!

Can be used to detect dataset bias

 E.g. snow used to misclassify as wolf

Incorrect predictions also informative

From: Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier

Detecting Bias

Rather than loss or scores, we can pick a neuron somewhere deep in the network and compute gradient of **activation** with respect to input

Steps:

- Pick a neuron
- Find gradient of its activation w.r.t. input image
- Can first find highest activated image patches using its corresponding neuron (based on receptive field)

From: Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier

Gradient of Activation with respect to Input

Normal backprop not always best choice

Example: You may get parts of image that **decrease** the feature activation

 There are probably lots of such input pixels

Guided backprop can be used to improve visualizations

b) Forward pass	1 · 2 ·	-1 . -5 . 2 .	5 -7 4	→	1 2 0	0 0 2	5 0 4	
Backward pass: backpropagation	-2 6 0	0 · 0 /	-1 0 3	←	<mark>-2</mark> 6 2	3 -3 -1	-1 1 3	
Backward pass: "deconvnet"	0 6 2	3 0 0	0 1 3	←	-2 6 2	3 -3 -1	-1 1 3	
Backward pass: guided backpropagation	0 6 0	0 / 0 / 0 /	0 0 3	←	<mark>-2</mark> 6 2	3 -3 -1	-1 1 3	

From: Springenberg et al., "Striving For Simplicity: The All Convolutional Nev"

Guided Backprop

Guided Backprop Results

From: Springenberg et al., "Striving For Simplicity: The All Convolutional Net"

Geo

Note: These images were created by a slightly different method called **deconvolution**, which ends up being similar to guided backprop

From: "Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

From: "Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

From: "Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.

Grad-CAM

What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.

Summary

- Gradients are important not just for optimization, but also for analyzing what neural networks have learned
- Standard backprop not always the most informative for visualization purposes
- Several ways to modify the gradient flow to improve visualization results

Optimizing the Input Images

Idea: Since we have the gradient of scores w.r.t. inputs, can we *optimize* the image itself to maximize the score?

Why?

- Generate images from scratch!
- Adversarial examples

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

We can perform **gradient ascent** on image

- Start from random/zero image
- Use scores to avoid minimizing other class scores instead

Often need **regularization term** to induce statistics of natural imagery

E.g. small pixel values, spatial smoothness

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Example Images

Note: You might have to squint!

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 20 10

Geo

Can improve results with **various tricks**:

- Clipping of small values & gradients
- Gaussian blurring

From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization", 2010

Improved Results

From: Yosinski et al., "Understanding Neural Networks Through Deep Visualization", 2015

Summary

We can optimize the input image to **generate** examples to increase class scores or activations

This can show us a great deal about what examples (not in the training set) activate the network

Testing Robustness 00 Geo

We can perform gradient ascent on image

- Rather than start from zero image, why not real image?
- And why not optimize the score of an arbitrary (incorrect!) class

Surprising result: You need very small amount of pixel changes to make the network confidently wrong!

From: Simonyan et al., "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", 2013

Note this problem is not specific to deep learning!

- Other methods also suffer from it
- Can show how linearity (even at the end) can bring this about
 - Can add many small values that add up in right direction

From: Goodfellow et al., "Explaining and Harnessing Adversarial Examples", 2015

Variations of Attacks

BIRD FROG(86.5%)

Single-Pixel Attacks!

Su et al., "One Pixel Attack for Fooling Deep Neural Networks", 2019.

White vs. Black-Box Attacks of Increasing Complexity

Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018

Summary of dversarial Attacks/Defenses

Similar to other security-related areas, it's an active **cat-and-mouse** game

Several defenses such as:

- Training with adversarial examples
- Perturbations, noise, or reencoding of inputs

There are **not universal methods** that are robust to all types of attacks

Other Forms of Robustness Testing

$$\operatorname{CE}_{c}^{f} = \left(\sum_{s=1}^{5} E_{s,c}^{f}\right) / \left(\sum_{s=1}^{5} E_{s,c}^{\operatorname{AlexNet}}\right).$$

We can try to understand the biases of CNNs

Can compare to those of humans

Example: Shape vs. Texture Bias

Geirhos, "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", 2018.

Geo

Geirhos, "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", 2018.

Summary

- Various ways to test the robustness and biases of neural networks
- Adversarial examples have implications for understanding and trusting them
- Exploring the gain of different architectures in terms of robustness and biases can also be used to understand what has been learned

- We can generate images through backprop
 - Regularization can be used to ensure we match image statistics
- Idea: What if we want to preserve the content of the image?
 - Match features at different layers!
 - We can have a loss for this

- We can generate images through backprop
 - Regularization can be used to ensure we match image statistics
- Idea: What if we want to preserve the content of a particular image C?
 - Match features at different layers!
 - We can have a loss for this

Matching Features to Replicate Content

- How do we deal with multiple losses?
 - Remember, backwards edges going to same node summed
- We can have this content loss at many different layers and sum them too!

Idea: Can we have the *content* of one image and *texture* (style) of another image?

Geo

Replicating Content and Style

- How do we represent similarity in terms of textures?
- Long history in image processing!
 - Key ideas revolve around summary statistics
 - Should ideally remove most spatial information

Deep learning variant: Feature correlations!

Called a Gram Matrix

$$G_{S}^{\ell}(i,j) = \sum_{k} F_{S}^{\ell}(i,k) F_{S}^{\ell}(j,k)$$

where i, j are particular **channels** in the output map of layer ℓ and k is the position (convert the map to a vector)

$$L_{style} = \sum_{\ell} \left(G_{S}^{\ell} - G_{P}^{\ell} \right)^{2}$$

$$L_{total} = \alpha L_{content} + \beta L_{style}$$

Summary

- Generating images through optimization is a powerful concept!
- Besides fun and art, methods such as stylization also useful for understanding what the network has learned
- Also useful for other things such as data augmentation

