Topics:
* Questions on convolution layers

* Visualization
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Assignment 2
* Duein 4 days!!!

GPU resources

 Google Cloud Credits

 Google Colab

e Should not be necessary for assignments though

Projects

Released catme, fill out by 02/28! If you have a team, no need.

Rubric/description released, my office hours went over it

Some interesting topics here. FB topics coming out this month.

Project proposal due mid-March (will re

4803 special office hours



We can have multiple kernels per layer Number Of
channels in output

We stack the feature maps together at the output is equal to number
of kernels

ﬂ = W—k,+1
4

Kernels

Feature Maps

Multiple Kernels




Does this look familiar?
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Gradients and Cross-Correlation



Plugging in to earlier equation:

ki—1ko—

dy(r' —a,c’' — b)
ax(r c) z Z dy(r' —a,c’' — b) ox(r',c’)

Does this look familiar?

ki-1ky—1

Z z ay(r' —a,c’ b)k(a b) Convolution between
upstream gradient and
kernel!

Again, all operations can be
implemented via matrix
multiplications (same as FC layer)!

(can implement by
flipping kernel and
cross- correlation)

) Backwards is Convolution




Convolutional Neural Networks (CNNs)

11117

Useful,
lower-
dimensional
features
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Convolution +
Non-Linear
Layer

Convolution +
Non-Linear
Layer

Pooling
Layer

Alternating Convolution and Pooling
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Adding a Fully Connected Layer
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INPUT: [224x224x3] ~ memory: 224'224*3=150K params:0 (Not counting biases
CONV3-64: [224x224x64] memory: 224°224°64=3.2M params: (3*3*3)°64 = 1,728
CONV3-64: [224x224x64] memory: 224°224°64=3.2M params: (3"3'64)"64 = 36,864
POOL2: [112x112x64] memory: 112°112"64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112"128=1.6M params: (3"3"64)"128 = 73,728
CONV3-128: [112x112x128] memory: 112"112*128=1.6M params: (3"3"128)"128 = 147 456
POOL2: [56x56x128] memory: 56°56"128=400K params: 0

CONV3-256: [56x56x256] memory: 56°56"256=800K params: (3"3"128)"256 = 294,912
CONV3-256: [56x56x256] memory: 56°56"256=800K params: (3*3"256)"256 = 589,824
CONV3-256: [56x56x256] memory: 56°56°256=800K params: (3"3"256)"256 = 589,824
POOL2: [28x28x256] memory: 28°28°256=200K params: 0

CONV3-512; [28x28x512] memory: 28°28°512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3"3"512)"512 = 2,359,296
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3"3"512)"512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14714°512=100K params: (3"3"512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3'512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14"14"512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7Tx7x512] memory: 7°7"512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096°4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Most memory usage in
convolution layers

Most parameters in FC
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Parameters and Memory
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Key idea: Allow information from a layer to propagate
to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recoghitic:i



Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

) Finetuning on New Dataset Gegraia |

Replace last layer with new fully-connected for
output nodes per new category




There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled | Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Task Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift
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Dealing with Low-Labeled Situations

Georgia
Tech

iu




Visualization
of Neural

Networks




Given a trained model, we'd like to understand
what it learned. —>

Weights
lane car Gradients
i = Activations ) Robustness

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

g
Hendrycks & Dietterich,
2019

Zeiler & Fergus, 2014 Simonyan et al, 2013

) Visualizing Neural Networks



FC Layer: Reshape weights for a node back into size of image, scale 0-255

plane car bérd cat deer

Conv layers: ~ i = T EEr Tt Problem:
For each kernel, [t e spa kL 3x3 filters
scale values 1 niwmy - BE=:0a esge ::;:!;' j  difficult to
from 0-255 and N E SEELNEY FILERERl;  interpret!

K -

visualize ResNet-18: ResNet-101:

64 x3x7TxT7 B4x3IxTx7

AlexNet:
64 x3x11x11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yztiti. from CS 2314

Visualizing Weights




We can also produce
visualization output
(aka activation/filter)
maps

These are larger early
in the network.

Visualizing Output Maps




Visualizing Output Maps

convl pl nil conveZ pZ nZ conv3d conv4d gonvd pd fc6 fc¥ fcB prob

. ' whole layer

input

" w
selected channel

. . f r-

Highly " al., “Understanding
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fwd convb 151 | Back: deconv (from conv 151, disp raw) Boost: 0/1




Activations — Small Output Sizes

Activations of last conv layer in VGG network




CNN101 and CNN Explainer

CNN 101 Learn Convolutional Neural Network (CNN) in your browser!

Unit level v ‘ (a)‘ E
nput v ax_poo onv._2 con relu_2_2 max_poo
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https://poloclub.github.io/cnn-explainer/ https.//fredhohman.com/papers/cnn101




We can take the activations of
any layer (FC, conv, etc.) and
perform dimensionality
reduction

Often reduce to two
dimensions for plotting

OO~ bWk =0

E.g. using Principle
Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping
to preserve pair-wise
distances

) Dimensionality Reduction: t-SNE



Weights

plane car

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

Zeiler & Fergus, 2014

=l

Gradients

Robustness

Activations

g ﬁ‘% '
Hendrycks & Dietterich,
2019

Simonyan et al, 2013

Visualizing Neural Networks




Summary & Caveats

While these methods provide some visually
interpretable representations, they can be
misleading or uninformative (Adebayo et al.,
2018)

Assessing interpretability is difficult
Requires user studies to show usefulness

E.g. they allow a user to predict mistakes
beforehand

Neural networks learn distributed
representation

(no one node represents a particular feature)
This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.




Gradient-
Based

Visualizations




Backwards pass gives us
gradients for all layers: How
the loss changes as we change
different parts of the input

This can be useful not just for
optimization, but also to
understand what was learned

Forward Pass

Backward Pass

Gradient of loss with respect to all layers (including input!)

Gradient of any layer with respect to input (by cutting off computation

graph)

) Visualizing Neural Networks




Idea: We can backprop to the

_ Forward Pass
Image

Sensitivity of loss to individual
pixel changes

Large sensitivity implies
important pixels

Called Saliency Maps

Backward Pass

In practice:

Instead of loss, find gradient of classifier scores (pre-softmax)
Take absolute value of gradient

S um across al I Ch anne I S From: Simonyan et al., “Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps”, 293

) Gradient of Loss w.r.t. Image




Applying traditional
(non-learned) computer
vision segmentation
algorithms on gradients
gets us object
segmentation for free!

Surprising because not
part of supervision

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 293

) Object Segmentation for Free!




Can be used to
detect dataset bias

@ E.g. snow used to
misclassify as
wolf

Incorrect
predictions also
informative

(a) Husky classified as wolf (b) Explanation

From: Ribeiro et al., "Why Should | Trust You?": Explaining the Predictions of Any Classifi<r

) Detecting Bias




Rather than loss or scores, we can
pick a neuron somewhere deep in the
network and compute gradient of
activation with respect to input

Steps:
Pick a neuron

Find gradient of its activation w.r.t.
input image

Can first find highest activated <
image patches using its
corresponding neuron (based on
receptive field)

From: Ribeiro et al., "Why Should | Trust You?": Explaining the Predictions of Any Classifi<r

) Gradient of Activation with respect to Input



Normal backprop not always best
choice

Example: You may get parts of
image that decrease the feature
activation

There are probably lots of
such input pixels

Guided backprop can be used to
improve visualizations

Guided Backprop

b) 1 115 1§J01]5
Forward pass aiElE — [k
31214 o214

21011 21 3 1

Backward pass:
backpropagation

0 1) 3 2 113

01310 21 3 1
Backward pass:
; e 6lol1| < |6]3]2

deconvnet

21013 2 1] 3
Backward pass: O I © d K
guided 6JojJoO] «<— |6]3]1
backpropagation olols 21113

From:




Guided Backprop Results

guided backpropagation corresponding image crop

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"




VGG Layer-by-Layer Visualization

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.




VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.




VGG Layer-by-Layer Visualization
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From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.




VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.
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Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.

GradCAM




____________________

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.
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What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM




-

What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM




Summary

Gradients are important not just
for optimization, but also for
analyzing what neural networks
have learned

Standard backprop not always
the most informative for
visualization purposes

Several ways to modify the
gradient flow to improve
visualization results




Optimizing
the Input

Images




Idea: Since we have the
gradient of scores w.r.t.
iInputs, can we optimize the
image itself to maximize the
score?

Forward Pass

Why?

Generate images from
scratch!

Adversarial examples

G

Backward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

) Optimizing the Image



We can perform gradient
ascent on image

argmax S.(I) — 2 ||1|

2,
2

Start from random/zero image Forward Pass
Use scores to avoid
minimizing other class scores —
instead
Often need regularization term

to induce statistics of natural
imagery

E.g. small pixel values, spatial

smoothness I=1+a

G

as.,
ol

Backward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

) Gradient Ascent on the Scores




Example Images

dumbbell dalmatian

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, @a
=
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Can improve results with
various tricks:

@ Clipping of small values & Flamingo Pelican
gradients '

& Gaussian blurring

Ground Beetle Indian Cobra

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 22414

) D Example Images



Pirate Ship

Teddy Bear

Improved Results

Pitcher

i :

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015




Summary

We can optimize the input
Image to generate
examples to increase class
scores or activations

This can show us a great
deal about what examples
(not in the training set)
activate the network




Testing

Robustness




We can perform gradient
ascent on image

Rather than start from zero
image, why not real image?

And why not optimize the
score of an arbitrary
(incorrect!) class

Surprising result: You need
very small amount of pixel
changes to make the network
confidently wrong!

G

2,
2

argmax S (I) — 2 ||1|
where ¢ = cat

Forward Pass

Backward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps™, 2013

) Gradient Ascent on the Scores
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) e §
esign(VgJ (0,2, y))
“panda” “nematode” “oibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about
Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 201%

Example of Adversarial Noise




A
DEER
AIRPLANE(85.3%

BIRD
FROG(86.5%)

Single-Pixel
Attacks!

Su et al., “One Pixel
Attack for Fooling Deep
Neural Networks”, 2019.

Variations of Attacks

Misclassification
Targeted
Misclassification
Source / Target
Misclassification

Misclassification
Targeted
Misclassification
Source / Target
Misclassification
Confidence
Reduction

Confidence
Reduction

. Increasing

. Increasing " Complexity

~ Complexity

White-Box Attack Logic Corruption

Non-Adaptive
Black-Box Attack
Data Modification
Adaptive Black-

Box Attack

Strict Black-Box

Attack Increasing Increasing

Attack Difficulty Attack Difficulty
A 4 4

Decreasing Decreasing
Capability Capability

Data Injection

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018




Summary of dversarial
Attacks/Defenses

Similar to other security-related
areas, it's an active cat-and-mouse
game

Several defenses such as:

Training with adversarial
examples

Perturbations, noise, or re-
encoding of inputs

There are not universal methods
that are robust to all types of attacks




Other Forms of Robustness Testing

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Architecture Corruption Robustness

® mCE
@® Relative mCE

@

e ————

Xk V6611 T T » R

AlexNet) ‘P .\‘RESNEt“5Q
SqueezeNet 1.1

iResNet-18 .
VGG-19+BN

60 65 70 75
Architecture Accuracy (%)

Brightness




We can try to understand the biases of CNNs
& Can compare to those of humans

Example: Shape vs. Texture Bias

Geirhos, “ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness”, 2018.

(a) Texture image (b) Content image

81.4% Indian elephant 71.1% tabby cat
10.3% indri 17.3% grey fox
8.2% black swan 3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant
26.4% indri
9.6% black swan

Analyzing Bias




Shape vs. Texture Bias

Fraction of 'shape' decisions
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Geirhos, “ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness”, 2018.




Summary

Various ways to test the
robustness and biases of
neural networks

Adversarial examples have
implications for understanding
and trusting them

Exploring the gain of different
architectures in terms of
robustness and biases can also
be used to understand what has
been learned




Style

Transfer




We can generate images through
backprop

o Forward Pass
Regularization can be used to

ensure we match image

statistics Forward Pass

Idea: What if we want to preserve
the content of the image?

Match features at different
layers!

We can have a loss for this Backward Pass

) Generating Images with Content




We can generate images through e

backprop - _
Regularization can be used to AN
ensure we match image |

statistics

content - (FC FP)Z

sl

) Matching Features to Replicate Content

Idea: What if we want to preserve
the content of a particular image C?

Match features at different
layers!

We can have a loss for this




How do we deal with multiple
losses?

Remember, backwards edges
going to same node summed

We can have this content loss at
many different layers and sum them
tool!

Multiple Content Losses

=l

Leontent = Z(Fﬁ-—Ff;)z
?

;




Idea: Can we have the content of one image
and texture (style) of another image?

Yes!
| —
| —
content %

e

t
 m—
=

Replicating Content and Style




How do we represent similarity in terms of
textures?

Long history in image processing!

Key ideas revolve around summary
statistics

Should ideally remove most spatial
information

Deep learning variant: Feature correlations!

Called a Gram Matrix

) Gradient Ascent on the Scores




64
G5(0.) = ) FLIOFSG, k)
k

where i,j are particular channels in
the output map of layer £ and k is
the position (convert the map to a
vector)

T =

Compute Feature
Correlations

2
Lstyle = Z(Gﬁ' - Gﬁ)
'

Gl
i —
...] Ltotal - aLcontent + BLstyle

Gradient Ascent on the Scores




Gradient Ascent on the Scores




Gradient Ascent on the Scores




Summary

Generating images through
optimization is a powerful
concept!

Besides fun and art, methods
such as stylization also useful
for understanding what the
network has learned

Also useful for other things such
as data augmentation




