
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Questions on convolution layers
• Visualization



Administrivia

• Assignment 2
• Due in 2 days!!!

• Projects
• Released catme, fill out by 02/28! If you have a team, no need. 
• Rubric/description released, my office hours went over it
• Some interesting topics here. FB topics coming out this month. 
• Project proposal due mid-March (will re



Visualizing Neural Networks

Given a trained model, we’d like to understand 
what it learned. 

Fei-Fei Li, Justin Johnson, 
Serena Yeung, from CS 

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich, 
2019

Robustness



Visualizing Weights

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Conv layers: 
For each kernel, 
scale values 
from 0-255 and 
visualize

Problem: 
3x3 filters 
difficult to 
interpret!



Visualizing Output Maps

Highly 
Activating 

Image 
Patches

From: Yosinski et 
al., “Understanding 

Neural Networks 
Through Deep 
Visualization”, 

2015



Guided Backprop

Normal backprop not always best 
choice

Example: You may get parts of 
image that decrease the feature 
activation

There are probably lots of 
such input pixels

Guided backprop can be used to 
improve visualizations

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



Grad-CAM 7

Guided 
Grad-
CAM

Backprop till 
conv

Guided Backpropagation

Rectified Conv 
Feature Maps

+

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 
Networks via Gradient-based Localization, 2016.



Grad-CAM

What animal is in this picture? Cat
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 
Networks via Gradient-based Localization, 2016.



Optimizing 
the Input 
Images



Optimizing the Image

Idea: Since we have the 
gradient of scores w.r.t. 
inputs, can we optimize the 
image itself to maximize the 
score?

Why? 

Generate images from 
scratch!

Adversarial examples

Backward Pass

Forward Pass

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Gradient Ascent on the Scores

We can perform gradient 
ascent on image

Start from random/zero image

Use scores to avoid 
minimizing other class scores 
instead

Often need regularization term 
to induce statistics of natural 
imagery

E.g. small pixel values, spatial 
smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒄 𝟐

𝟐

𝒄



Example Images

Note: You might have to squint!
From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Example Images

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Can improve results with 
various tricks:

Clipping of small values & 
gradients

Gaussian blurring



Improved Results

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015



We can optimize the input 
image to generate
examples to increase class 
scores or activations

This can show us a great 
deal about what examples 
(not in the training set) 
activate the network

Summary 



Testing 
Robustness



Gradient Ascent on the Scores

We can perform gradient 
ascent on image

Rather than start from zero 
image, why not real image?

And why not optimize the 
score of an arbitrary 
(incorrect!) class 

Surprising result: You need 
very small amount of pixel 
changes to make the network 
confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒄 𝟐

𝟐

where



Example of Adversarial Noise

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about

Can add many small values that add up in right direction
From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015



Variations of Attacks

Single-Pixel 
Attacks!

Su et al., “One Pixel 
Attack for Fooling Deep 
Neural Networks”, 2019.

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018



Summary of dversarial
Attacks/Defenses

Similar to other security-related 
areas, it’s an active cat-and-mouse 
game

Several defenses such as:

Training with adversarial 
examples

Perturbations, noise, or re-
encoding of inputs

There are not universal methods 
that are robust to all types of attacks



Other Forms of Robustness Testing

m
C

E

Hendrycks & Dietterich, “Benchmarking Neural Network 
Robustness to Common Corruptions and Perturbations”, 2019.



Analyzing Bias 

We can try to understand the biases of CNNs

Can compare to those of humans

Example: Shape vs. Texture Bias Geirhos, “ImageNet-trained CNNs are biased towards texture; 
increasing shape bias improves accuracy and robustness”, 2018.



Shape vs. Texture Bias

Humans

AlexNet

VGG

GoogleNet

ResNet-50

Geirhos, “ImageNet-trained CNNs are biased towards texture; 
increasing shape bias improves accuracy and robustness”, 2018.



Summary 

Various ways to test the 
robustness and biases of 
neural networks

Adversarial examples have 
implications for understanding 
and trusting them

Exploring the gain of different 
architectures in terms of 
robustness and biases can also 
be used to understand what has 
been learned



Style 
Transfer



Generating Images with Content

We can generate images through 
backprop

Regularization can be used to 
ensure we match image 
statistics

Idea: What if we want to preserve 
the content of the image?

Match features at different 
layers!

We can have a loss for this

Forward Pass

Backward Pass

Forward Pass



Matching Features to Replicate Content

We can generate images through 
backprop

Regularization can be used to 
ensure we match image 
statistics

Idea: What if we want to preserve 
the content of a particular image ?

Match features at different 
layers!

We can have a loss for this

𝒄𝒐𝒏𝒕𝒆𝒏𝒕 𝑪
𝟏

𝑷
𝟏 𝟐



Multiple Content Losses

How do we deal with multiple 
losses?

Remember, backwards edges 
going to same node summed

We can have this content loss at 
many different layers and sum them 
too!

𝒄𝒐𝒏𝒕𝒆𝒏𝒕 𝑪
κ

𝑷
κ 𝟐

 

κ



Replicating Content and Style

Idea: Can we have the content of one image 
and texture (style) of another image? 

Yes!

𝒔𝒕𝒚𝒍𝒆𝒄𝒐𝒏𝒕𝒆𝒏𝒕



Gradient Ascent on the Scores

How do we represent similarity in terms of 
textures?

Long history in image processing!

Key ideas revolve around summary 
statistics

Should ideally remove most spatial 
information

Deep learning variant: Feature correlations!

Called a Gram Matrix



Gradient Ascent on the Scores

𝒔𝒕𝒚𝒍𝒆 𝑺
κ

𝑷
κ 𝟐

 

κ

𝑺
κ

𝑺
κ

𝑺
κ

 

𝒌
where i,j are particular channels in 
the output map of layer and 

64

Compute Feature 
Correlations

𝒊,𝒋
𝒍

𝒕𝒐𝒕𝒂𝒍 𝒄𝒐𝒏𝒕𝒆𝒏𝒕 𝒔𝒕𝒚𝒍𝒆



Gradient Ascent on the Scores



Gradient Ascent on the Scores



Summary 

Generating images through 
optimization is a powerful 
concept!

Besides fun and art, methods 
such as stylization also useful 
for understanding what the 
network has learned

Also useful for other things such 
as data augmentation



Image 
Segmentation 

Networks



Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)



Segmentation Tasks

Given an image, output another image

⬣ Each output contains class distribution per pixel

⬣ More generally an image-to-image problem

Semantic Segmentation
(Class distribution per pixel)

Instance Segmentation
(Class distribution per pixel with unique ID)



Input & Output

Probability distribution over 
classes for this one pixel

?

Model



Idea 1: Fully-Convolutional Network

Fully connected layers no longer explicitly retain spatial information (though the 
network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Fully 
Connected 

Layers

Loss

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer



Converting FC Layers to Conv Layers

Each kernel has the size of entire input! (output is 1 scalar)

⬣ This is equivalent to Wx+b!

⬣ We have one kernel per output node

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Pooling
Layer

Fully 
Convolutional
Hidden Layer

Loss

Fully 
Convolutional
Hidden Layer

Fully 
Convolutional
Output Layer

… … …



Same Kernel, Larger Input

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Original:

Larger:

Input Conv Kernel Output

𝑯
=

𝟕

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Fully 
Convolutional 
Layer Kernel

Fully 
Convolutional 
Layer Kernel



Inputting Larger Images

Original sized image

Larger Image

Larger Output Maps

Larger 
Output 
Size!

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

Why does this matter?

⬣ We can stride the “fully connected” classifier across larger inputs!

⬣ Convolutions work on arbitrary input sizes (because of striding)



Idea 2: “De”Convolution and UnPooling

Image
Convolution 

+
Non-Linear

Layer

Pooling
Layer

Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution 

+
Non-Linear

Layer

(Un)Pooling
Layer

(De)Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

We can develop learnable 
or non-learnable 

upsampling layers!

Encoder

Decoder



Max Unpooling

Example : Max pooling

Stride window across image but perform per-patch max operation

𝑾 = 𝟓

𝑯
=

𝟓

𝑾 = 𝟓

𝑯
=

𝟓

Idea: Remember max elements in encoder! Copy value from equivalent position, 
rest are zeros

Copy value to position chosen as max 
in encoder, fill reset of this window 
with zeros

Pooling UnPooling



Max Unpooling Example (one window)

𝟐𝐱𝟐 max unpool

Decoder

𝟐𝐱𝟐 max pool

Encoder



Max Unpooling Example

𝟐𝐱𝟐 max pool

𝟐𝐱𝟐 max unpool

Encoder

Decoder

Contributions from 
multiple windows 

are summed



Symmetry in Encoder/Decoder

We pull max indices from 
corresponding layers 
(requires symmetry in 

encoder/decoder)

Image
Convolution 

+
Non-Linear

Layer

Pooling
Layer

Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution 

+
Non-Linear

Layer(Un)Pooling
Layer

(De)Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

Encoder

Decoder



“De”Convolution (Transposed Convolution) 

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

How can we upsample using convolutions and learnable kernel? 

Normal Convolution

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

𝑯
=

𝟓
𝑯

−
𝒌

𝟏
+

𝟏
 

𝑾 − 𝒌𝟐 + 𝟏



Transposed Convolution Example

Contributions from 
multiple windows 

are summed

Incorporate 
X(0,0)

Incorporate 
X(1,0)



Symmetry in Encoder/Decoder

We can either learn the kernels, 
or take corresponding encoder 
kernel and rotate 180 degrees 

(no decoder learning)

Image
Convolution 

+
Non-Linear

Layer

Pooling
Layer

Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution 

+
Non-Linear

Layer(Un)Pooling
Layer

(De)Convolution 
+

Non-Linear
Layer

Useful, lower-
dimensional 
features

Decoder



Transfer Learning

We can start with a 
pre-trained 

trunk/backbone (e.g. 
network pretrained on 

ImageNet)!

Input
Image

PredictionsCNN

CNN



U-Net

You can 
have skip 

connections 
to bypass 

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015



⬣ Various ways to get image-like outputs, for 
example to predict segmentations of input 
images

⬣ Fully convolutional layers essentially apply 
the striding idea to the output classifiers, 
supporting arbitrary input sizes 
⬣ (without output size depending on what 

the input size is)

⬣ We can have various upsampling layers that 
actually increase the size

⬣ Encoder/decoder architectures are popular 
ways to leverage these to perform general 
image-to-image tasks

Summary


