
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Calibration (Fairness/Bias)
• Recurrent Neural Networks



Administrivia

• Assignment 3 out
• Due March 14th 11:59pm EST.

• Projects
• Released assignments; please reach out to your groups to discuss team 

formation 
• Note: Some may have already found groups, etc. Note that it doesn’t have to be 4 

members so you can go with smaller. You can also converge on high-level topic and 
then reach out on piazza looking for members. 

• Rubric/description, project proposal instructions, FB projects released
• Project proposal due March 22nd



Here is an FAQ/guide for questions I've received in the past:
• What is this about? I already have a team and didn't fill out catme (or get a catme assignment email); 

what do I do? Nothing! Just submit the project proposal on time :) The catme assignments are only for 
those that DIDN'T have a team and filled out the survey.

• I got assigned to a catme group but I already have a team: Let the team members know ASAP so that they 
can plan accordingly!

• All my catme teammates already found other teams, so now I have no team: Try to reach out to existing 
teams that are looking for members. This can be on piazza (new posts or @5) or the project proposals on 
Canvas (they are all visible to everyone, and have a field indicating if they are looking for new members).

• We have a team but are looking for additional members: Post on piazza that you're looking (along with 
potential topics you're interested in). If you have a project planned already, post it on the Canvas project 
proposal assignment so that others can see, and indicate you're looking for additional members.

• I didn't fill out catme but don't have a team: See #3 above.
• I requested removal from catme but still got assigned; do I have to join this new team? No. Sorry about 

that, I received lots of these requests across many different communication channels, so may have missed 
some. See #2 above for what you should do.



Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)



Bias & 
Fairness



ML and Fairness

• AI effects our lives in many ways
• Widespread algorithms with many small interactions

– e.g. search, recommendations, social media
• Specialized algorithms with fewer but higher-stakes 

interactions
– e.g. medicine, criminal justice, finance

• At this level of impact, algorithms can have unintended 
consequences

• Low classification error is not enough, need fairness
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ML and Fairness
• Fairness is morally and legally motivated
• Takes many forms
• Criminal justice: recidivism algorithms (COMPAS)

– Predicting if a defendant should receive bail
– Unbalanced false positive rates: more likely to wrongly deny a black 

person bail
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Why Fairness is Hard
• Suppose we are a bank trying to fairly decide who should get a loan

– i.e. Who is most likely to pay us back?

• Suppose we have two groups, A and B (the sensitive attribute)
– This is where discrimination could occur

• The simplest approach is to remove the sensitive attribute from the data, so that our classier doesn't 
know the sensitive attribute
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Why Fairness is Hard

• However, if the sensitive attribute is correlated with the other attributes, this isn't good enough
• It is easy to predict race if you have lots of other information (e.g. home address, spending patterns)
• More advanced approaches are necessary
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Definitions of Fairness – Group Fairness

• So we've built our classier . . . how do we know if we're being fair?
• One metric is demographic parity | requiring that the same percentage of A and B receive loans

– What if 80% of A is likely to repay, but only 60% of B is?
– Then demographic parity is too strong

• Could require equal false positive/negative rates
– When we make an error, the direction of that error is equally likely for both groups

• These are definitions of group fairness
• Treat different groups equally"
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Definitions of Fairness – Individual Fairness
• Also can talk about individual fairness | “Treat similar examples similarly"
• Learn fair representations

– Useful for classification, not for (unfair) discrimination
– Related to domain adaptation
– Generative modelling/adversarial approaches
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Conclusion

• This is an exciting field, quickly developing
• Central definitions still up in the air
• AI moves fast | lots of (currently unchecked) power
• Law/policy will one day catch up with technology
• Those who work with AI should be ready

– Think about implications of what you develop!
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Calibration 
and the 
Fairness 

Impossibility 
Theorems



Definition

Measuring Calibration

Calibrating models

Limitations of Calibration



A classifier is well-calibrated if the probability of the observations 
with a given probability score of having a label is equal to the 
proportion of observations having that label

Example: if a binary classifier gives a score of 0.8 to 100 
observations, then 80 of them should be in the positive class

where  is the predicted label and  is the predicted probability 
(or score) for class 





Group Calibration: the scores for 
subgroups of interest are calibrated 
(or at least, equally mis-calibrated)



Post-processing approach requiring an additional validation 
dataset

Platt scaling (binary classifier)

Learn parameters so that the calibrated probability is 

𝒊 𝒊  )where 𝒊 is the network’s logit output)

Temperature scaling extends this to multi-class classification

Learn a temperature , and produce calibrated probabilities 

𝒊
𝒌

𝑺𝒐𝒇𝒕𝑴𝒂𝒙 𝒊



Group based

The Inherent Tradeoffs of 
Calibration



It is impossible for a classifier to achieve both equal 
calibration and error rates between groups, (if there is a 

difference in prevalence between the groups and the 
classifier is not perfect)

Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. "Inherent trade-offs in the fair determination of risk scores." 
arXiv preprint arXiv:1609.05807 (2016).

Chouldechova, Alexandra. "Fair prediction with disparate impact: A study of bias in recidivism prediction instruments." Big 
data 5, no. 2 (2017): 153-163.



Module 3 
Introduction



Recurrent Neural 
Networks

Fully Connected
Neural Networks

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions

Attention-Based 
Networks 

+

Graph-Based 
Networks 



Recurrent Neural Networks

Fully Connected
Neural Networks

PredictionsInput
Data

Convolutional Neural
Networks

Input
Image

Predictions

Same function!

Recurrent Neural 
Networks



New Topic: RNNs
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Why model sequences?

Figure Credit: Carlos Guestrin



Why model sequences?
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Image Credit: Alex Graves



Sequences are everywhere…
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Image Credit: Alex Graves and Kevin Gimpel



Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”

Even where you might not expect a sequence… 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence… 

• Output ordering = sequence
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Image Credit: Ba et al.; Gregor et al



Sequences in Input or Output?

• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
/ 

regression 
problems Image Credit: Andrej Karpathy



Sequences in Input or Output?

• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
/ 

regression 
problems

Input: No 
sequence

Output: Sequence

Example: 
Im2Caption

Image Credit: Andrej Karpathy



Sequences in Input or Output?

• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
/ 

regression 
problems

Input: No 
sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: 
sentence 

classification, 
multiple-choice 

question 
answering
Image Credit: Andrej Karpathy



Sequences in Input or Output?

• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
/ 

regression 
problems

Input: No 
sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: 
sentence 

classification, 
multiple-choice 

question 
answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



(Non-Deep) Ways to deal with sequence labelling

• Autoregressive models
– Predict the next term in a sequence from a fixed number of previous terms using delay 

taps.
– 1st-order Autoregressive model, AR(1): 𝑦௧ = 𝑤 + 𝑤ଵ𝑦௧ିଵ + 𝜖௧
– 2nd-order Autoregressive model, AR(2): 𝑦௧ = 𝑤 + 𝑤ଵ𝑦௧ିଵ + 𝑤ଶ𝑦௧ିଶ + 𝜖௧
– And so on.

• Hidden Markov Model, HMM
– HMMs have a discrete one-of-N hidden state. Transitions between states are stochastic 

and controlled by a transition probability matrix. Also, the outputs produced by a state are 
also stochastic, and are controlled by emission probabilities.

• We can not be sure which state produced a given output. So, the state is “hidden”
• It is easy to represent a probability distribution across the N states with N probabilities.

– To predict the next output we need to infer the probability distribution over hidden states. 
HMMs have efficient algorithms for inference and learning.

Slide Credit: Ashis Biswas



What’s wrong with MLPs?

• Problem 1: Can’t model sequences
– Fixed-sized Inputs & Outputs
– No temporal structure
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What’s wrong with MLPs?

• Problem 1: Can’t model sequences
– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback
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Image Credit: Alex Graves, book



2 Key Ideas

• Parameter Sharing
– in computation graphs = adding gradients
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Slide Credit: Marc'Aurelio Ranzato
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Computational Graph



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



2 Key Ideas

• The notion of memory (state)

• Parameter Sharing
– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing
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How do we model sequences?

• No input
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Image Credit: Bengio, Goodfellow, Courville



How do we model sequences?

• No input
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How do we model sequences?

• With inputs
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Image Credit: Bengio, Goodfellow, Courville



2 Key Ideas

• Parameter Sharing
– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check
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New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)
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Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…

x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…

x2x1
W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

…

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Distributed Representations Toy Example

• Local vs Distributed
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Distributed Representations Toy Example

• Can we interpret each dimension?
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Slide Credit: Moontae Lee 



Power of distributed representations!
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Local

Distributed

Slide Credit: Moontae Lee 


