Attention, Transformers,
BERT, and VILBERT

Arjun Majumdar
Georgia Tech

s
Recall: Recurrent Neural Networks

one to one one to many many to one many to many many to many

N
Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... X1
Output: Sequence y,, .., ¥t

Encoder: h, = f,,(x,, h;)

h, > h, * hy * hy
X X X3 X4
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... X1
Output: Sequence y,, .., ¥t

From final hidden state predict:

Encoder: h, = f,(x, h, ;) Initial decoder state s,
Context vector c (often c=hy)

h, » h, > hy » h, > S,
X1 X X3 X4 C
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence X, ... X; Decoder: s; = gy(Y;1, N, ©)
Output: Sequence y,, .., ¥t

estamos

From final hidden state predict:

L] L] y
Encoder: h, = f,,(x,, h;,) Initial decoder state s, 1
Context vector c (often c=hy) ‘

h, > h, > h > h, > Sg > S,
I |
X1 X2 X3 X4 " C Yo
we are eating bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence X, ... X; Decoder: s; = gy(Y;1, N, ©)
Output: Sequence y,, .., ¥t

estamos comiendo

From final hidden state predict:

oge y y

Encoder: h, = fW(Xt' ht-1) Initial decoder state s, 1 2

Context vector c (often c=h;) ‘ ‘

h, " hy " hy > hy " So " ST 5

I T

X1 X2 X3 X4 { Yo Y1
we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence X, ... X; Decoder: s; = gy(Y;1, N, ©)
Output: Sequence y,, .., ¥t

estamos comiendo pan [STOP]

From final hidden state predict:

iti y y y y

Encoder: h, = f,(x, h,-) Initial decoder state s, 1 2 3 4
Context vector c (often c=hy) ‘ ‘ ‘ ‘

h, > h, > h > h, > S, v 5 —— 5, — s, s,
1T] T
X1 = X3 X4 { Yo Y1 Y2 Ys
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence X, ... X; Decoder: s; = gy(Y;1, N, ©)
Output: Sequence y,, .., ¥t

estamos comiendo pan [STOP]
Problem: Input sequence
Encoder: h, = f,,(x, h,.-) bottlenecked through Y Y2 Y3 Y4
fixed-sized vector. ‘ ‘ ‘ ‘
h, " hy " hy > hy " So S TSy T T S3 T 54
I B . p—
X1 X2 X3 X4 " C Yo Y1 Y2 Y3
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

N
Sequence-to-Sequence with RNNs

Input: Sequence X, ... X; Decoder: s; = gy(Y;1, N, ©)
Output: Sequence y,, .., ¥t

estamos comiendo pan [STOP]
Problem: Input sequence y y y y
Encoder: h, = fW(Xtt hH) bo.ttlenef:ked through 1 2 3 4
fixed-sized vector. ‘ ‘ ‘ ‘
h, " hy " hy > hy " So S TSy T T S3 T 54
LT T
X1 X2 X3 X4 { Yo Y1 Y2 Y3
we are eating bread |dea: use new context vector [START] estamos comiendo pan

at each step of decoder!

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014

__
Sequence-to-Sequence with RNNs and Attention

Input: Sequence Xy, ... X1
Output: Sequence y,, .., ¥t

From final hidden state;

Encoder: h, = f,(x, hy;) Initial decoder state s,

h1 > h2 > h3 > h4 > SO
X Xo X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
e = fau(Ser, M) (fo is an MLP)

From final hidden state;

€11 9121 €13 €14 | Initial decoder state s,
A A} A

[! .

h, " hy " hy > hy " So

X X X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
e = fau(Ser, M) (fo is an MLP)

8111 a;z a;?, a}4 Normalize alignment scores
softmax to get attention weights
I f f I From final hidden state: O<ay <1 2a,=1
€11 €12 €13 €4 | Initial decoder state s,
A A} A
L |
h1 > h2 > h3 > h4 > SO
X1 X5 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores

| |
)4()4()4()4(e, = fau(Ser, hy) (for is an MLP)
81” a;z a;?, a}4 Normalize alignment scores
soffmax to get attention weights

1 1 1 I From final hidden state: O<a;<1 2a;=1
€11 €12 €13 €4 | Initial decoder state s

I f \ 1 $ T \ $ Compute context vector as

. linear combination of hidden

h1 > h2 > h3 > h4 > S + states

I ‘ I l C; = 2@y,

X1 X2 X3 X4 C4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

| | | | Compute (scalar) alignment scores

)4()4()4()4(e, = fau(Ser, hy) (for is an MLP)
81” a;z a;?, a}4 estamos Normalize alignment scores
soffmax to get attention weights

I f f I From final hidden state: Y, O<ay <1 2a,=1
€1 €12 €13 €14 | Initial decoder state s,

I t \ 1 $ T \ } 1 ‘ Compute context vector as

. linear combination of hidden
I o
) Use context vector in

i %2 i : 151][0 decoder: s, = gy(yy1, St €
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

| | | | Compute (scalar) alignment scores

)4()4()4()4(e, = fau(Ser, hy) (for is an MLP)
81” a;z a;?, a}4 estamos Normalize alignment scores
soffmax to get attention weights

I f f I From final hidden state: Y, O<ay <1 2a,=1
€1 €12 €13 €14 | Initial decoder state s,

I i \ 1 $ T \ § 1 ‘ Compute context vector as

. linear combination of hidden
I o
) Use context vector in

i %2 i : 151][0 decoder: s, = gy(yy1, St €
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

| | | | Compute (scalar) alignment scores

)4()4()4()4(e = fan(Se, D) (fo is an MLP)
a : :
81” a;z a;?, = estamos Normalize alignment scores
soffmax to get attention weights
I f f I From final hidden state: Y, O<ay <1 2a,=1
€1 i €13 €14 | Initial decoder state s,
I 1 \ 1 $ T \ t 1 ‘ Compute context vector as
. linear combination of hidden
Cy = 28N,
I ‘ l l Intuition: Context vector ‘ ‘ .
attends to the relevant) Use context vector in
X X2 X3 Xa| partof the input sequence | ©1| Yo | decoder: s, = gy(Yy1, St.1, C)
‘estamos” = “we are”
we are eating bread

a,;=0.45, a,,=0.45, a,3=0.05, a,,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

N
Sequence-to-Sequence with RNNs

| |
)4()5)4()4(Repeat: Use s;
5 . . to compute new
3121 %2 ?3 %4 estamos context vector ¢,
soffmax
t 1 \ i 1 Y1
€23 €24
i ry

\921 \ €22 y
h, > h, > hj > h, > Sg S,

X1 X9 X3 X4 Ci] Yo Co

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

__
Sequence-to-Sequence with RNNs and Attention

| |
Py DY) A3 DY

t t | t
soffmax

1 | | t
ey \ %? ?B \ ?y

h

estamos comiendo

Y1

)

hy — hy — h; — h,
X X X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Ci] Yo

[START]

Co || Yy

estamos

Repeat: Use s;
to compute new
context vector c,

Use c, to
compute s,, Y,

__
Sequence-to-Sequence with RNNs and Attention

estamos comiendo

Y1

)

|
ChY ChY) dp3 3%4
t t t
soffmax
t f t t
€21 \ €22 €23 \ €24
a a A} a
h, > h, > hy > h, > So
I ‘ I l Intuition: Context vector
attends to the relevant part
X4 Xp X3 X4 of the input sequence
“‘comiendo” = “eating”
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Ci] Yo

[START]

Co || Yy

estamos

Repeat: Use s;
to compute new
context vector c,

Use c, to
compute s,, Y,

__
Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo pan [STOP]

h; » h, > hy h, So
A A

X X X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

__
Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a;;

Example: English to French g SE L . A
translation o 485845 28 5
F ©® 0O LWwWw< 32 n £~ Y
}
Input: “The agreement on accord
] sur
the European Economic a
Area was signed in August . zone
” economique
1 992 européenne
a
TR été
Output: “Laccord sur la signé
zone économique en
’ sy 7 e P aolt
européenne a été signé en 1092

aout 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Sequence-to-Sequence with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992

Output: “Laccord sur la
zone économique
européenne a été signé en
aout 1992

Visualize attention weights a;;

agreement
European

Economic

The

Diagonal attention means Jaccord
words correspond in
order

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence-to-Sequence with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992

Output: “Laccord sur la

a été signé en
aout 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights a;;

I=
c O
Q —
(V]
e o £
(] o O
Q O S ©
U = vl O w
_CO'\C_CJLJ!_
 © o S w <

Diagonal attention means Jaccord
words correspond in
order

économique
européenne

Diagonal attention means
words correspond in
order

__
Sequence-to-Sequence with RNNs and Attention

’ 4 4 s
Py djo CPE! A4
t t t t
softmax
1 f t t
€21 €22 €23 €24
2 2 A} 2
h, " hy " hy > hy
X Xo X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

estamos comiendo pan [STOP]

Y1 Yo V! Ys

I B

[START] estamos comiendo pan

Attention Layer

Inputs: ' ' A A
State vector: (Shape: DQ) a121 aiz 6123 6%4 estamos comiendo pan [STOP]
Hidden vectors: h; (Shape: Ny x D) | ; goftmax : | . , , ,
. . . . 1 2 3 4
Similarity function: f_; en| |ex en| | ex I] [[
h, h; hs hy So S1 Sz S3 Sa
X1 X5 X3 X4 Ci | Yo C | V1 Cs3 | Y2 Ca||Ys
we are eating bread ! i I J

[START] estamos comiendo pan

Computation:

Similarities: e (Shape: Ny) e, =f_ (5.1, h))
Attention weights: a = softmax(e) (Shape: N,)
Output vector: y = >.ah. (Shape:Dy)

Attention Layer

Inputs: ' ' ' A
Query vector: q (Shape: DQ) 8121 aiz 6123 6%4 estamos comiendo pan [STOP]
: . | softmax |
Input vectors: X (Shape: Ny x Dy) ; : ' :
Similarity function: en| |en &s| e I] I I
h, h, h, hy Sy S, S, S5 S,
X1 X2 X3 X4 Ci| Yo [C2| Y1 | |C3||Y2| [Ca |V
we are eating bread ! i 1 J

[START] estamos comiendo pan

Computation:

Similarities: e (Shape: Ny) e, =f_(a, X,
Attention weights: a = softmax(e) (Shape: N,)
Output vector: y = >.a X, (Shape: Dy)

Attention Layer

Inputs: ' ' ' '
Query vector: q (Shape: DQ) 8121 aiz 6123 6%4 estamos comiendo pan [STOP]
Input vectors: X (Shape: Ny x D) | ; goftmax : | . , , ,
. . . . 1 2 3 4
Similarity function]dot product en| |ex| |em| | en I] I I
h; h; h; hy So 4 S2 S3 Sy
X1 X5 X3 X4 Ci | Yo C | V1 Cs3 | Y2 Ca||Ys
we are eating bread ! i 1 J

[START] estamos comiendo pan

Computation:
Similarities: e (Shape: Ny) [;= q - X,
Attention weights: a = softmax(e) (Shape: N,) Changes:

Output vector:y =3aX; (Shape:Dy) - Use dot product for similarity

Attention Layer

Inputs: ' ' : !
Query vector: q (Shape: DQ) 8121 aiz 6123 6%4 estamos comiendo pan [STOP]
Input vectors: X (Shape: Ny x D) | ; ,SOﬁma"t : |
Similarity function:|scaled dot product | |en o es| ex I] I I
h; h; h; hy So 4 S2 S3 Sy
X1 X5 X3 X4 Ci | Yo C | V1 Cs3 | Y2 Ca||Ys
we are eating bread ! i 1 J

[START] estamos comiendo pan

Computation:
Similarities: e (Shape: Ny) | ,=q - X;/ sqrt(Dy)
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector:y =3aX; (Shape:Dy) - Use scaled dot product for similarity

Attention Layer

Inputs:
Query vectors:|Q (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dg)

Computation:

Similarities: E = OXT (Shape: Nq x Ny) E;; = Q; - X;/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: N x Ny) Changes:

Output vectors: Y = AX (Shape: Ng x Dy) Y; = 3A; X, - Use dot product for similarity

- Multiple query vectors

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:
\;(ey vectors: K = XW, (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: N, x D)
imilarities: E = OK™ (Shape: Ny x N,) E;; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) Changes:
Output vectors: Y = AV (Shape: No x D) Y; = AV, - Use dot product for similarity
- Multiple query vectors
- Separate and value

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X,
Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Nq x Ny) E;; = Q; - K./ sqrt(Dy) X,
Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)

Output vectors: Y = AV (Shape: No x D) Y; = AV, X,

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X; — K,
Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Nq x Ny) E;; = Q; - K./ sqrt(Dy) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)

Output vectors: Y = AV (Shape: No x D) Y; = AV, X, — K,

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, Es; E,,

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K;/ sqrt(Dg) X, — K, — | Eq, s B s

Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)

Output vectors: Y = AV (Shape: No x D) Y; = AV, Xs — Ky — Eqq B B B
T I I I

-
Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg) A, A, As; Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) A, Ay Az, AL

Value matrix: W,, (Shape: Dy x D))

Softmax(1)
Computation:
Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, Es; E,,
Value Vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K;/ sqrt(Dg) X, — K, — | Eq, s B s
Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)
Output vectors: Y = AV (Shape: No x D) Y; = AV, Xs — Ky — Eqq B B B

T I I I
| Q| |0s| |a

Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg) » Vi, — A A, As; Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) " Vo — A A, Ay Ay

Value matrix: W,, (Shape: Dy x D))

Vg | A Ags Azs Ays
Softmax(1)

Computation:
Key vectors: K = XW, (Shape: Ny x Dg) - X; — Ky — Ey; E,, Es; E,,
Value Vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K;/ sqrt(Dg) X, — K, — | Eq, s B s
Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)
Output vectors: Y = AV (Shape: No x D) Y; = AV, Xs — Ky — Eqq E,. B B

Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ng x Ny) E;; =

/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: N x Ny)
Output vectors: Y = AV (Shape: No x D) Y; = AV,

Y, Y, Y, Y,

l 1 1 |

>V,
>V,
>V,
X1 K1
X2 K2
X, K,

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Value matrix; W., (Shape: D, x D)

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: O = XW, K,
Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D) Ky
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t

-
Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: O = X K, = Eq E,, E;,
Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t £

-
Self-Attention Layer

One per input vector
Inputs: A3 Az3 Az
Input vectors: X (Shape: Ny x Dy) Al | Al | As
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: D, x D) Ain A Asg
Query matrix: W, (Shape: Dy x Dg) t

Softmax(1)
t

Computation:
Query vectors: O = X K, = Eq E,, E;,
Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t £

-
Self-Attention Layer

One query per input vector

Inputs: Vs = A3 Az3 Az
Input vectors: X (Shape: Ny x Dy) TV, = AL ALl | A,
Key matrix: W, (Shape: Dy x D) ' ' '
Value matrix: W,, (Shape: Dy x D)) TVi = Ay Az Az
Query matrix: W, (Shape: Dy x Dg) t

Softmax(1)
t

Computation:
Query vectors: O = XW, Ky, = Eqs E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t

X Xy X3

Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

Y, Y, Y,
1 % %
Product(—), Sum(?)
t
A1 3 A2,3 A3,3
A1 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(1)
t
E1 3 E2,3 E3,3
E1 2 E2,2 E3,2
E, 1 E2,1 E3,1
t t t
Q1 Q2 Q3
t t t
X Xy X3

e
Self-Attention Layer .

Consider permuting , - 1
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x D,) -
Query matrix: W, (Shape: Dy x Dg) t
Softmax(1)
t
Computation: —
Query vectors: O = XW, —
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) -
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, 1 t 1
X3 X Xy

e
Self-Attention Layer .

Consider permuting , - 1
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Do) Queries and Keys will
Value matrix: W, (Shape: Dy x D,) be the same, but -
Query matrix: W, (Shape: Dy x Dg) permuted t
Softrqax(T)
C . K,
omputation:
Query vectors: O = XW, K,
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) Ks 1T
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) $ + t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t 1
X3 X X3

e
Self-Attention Layer .

Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Dg) Similarities will be the
Query matrix: W, (Shape: Dy x Dg) — t o
ortmax
4

Computation: Ky |7 | Es2 Eq, E;,

Query vectors: O = XW, Ki || Egs; E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D) Ks | T Ess Eqs Ezs

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) f t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,

Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t
X3 X Xy

e
Self-Attention Layer .

Consider permuting 4 A A A
Inputs: the input vectors: 82 1.2 22
Input vectors: X (Shape: Ny x Dy) . -+ Ay, A A,
Key matrix: W, (Shape: Dy x Do) Attention weights will) : ' '
Value matrix: W,, (Shape: Dy x D) be the same, but ' Tl Ass| [Az| | Ags
Query matrix: W, (Shape: Dy x Dg) permuted t

Softmax(1)
t

Computation:

Query vectors: O = XW, Ky = Egs; E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D) Ks = Es3 Eqs Ezs

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,

Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t
X3 X Xy

e
Self-Attention Layer .

Consider permuting Jv. |4
Inputs: the input vectors: . Az | [Aiz| [Aa
Input vectors: X (Shape: Ny x Dy) VA A A,
Key matrix: W, (Shape: Dy x Do) Values will be the ‘ | | |
Value matrix: W,, (Shape: Dy x D) same, but permuted T Vs [T Ags As Agg
Query matrix: W, (Shape: Dy x Dg) t

Computation:

Query vectors: O = XW, Ky = Egs; E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D) Ks = Es3 Eqs Ezs

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,

Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t
X3 X Xy

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Outputs will be the
same, but permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

A3,2 A1 2 A2,2
A3,1 A1)1 A2,‘I
A3,3 A1 -5 A2,3
t
Softmax(1)
t
E3,2 E1 2 E2,2
E3,1 E1)1 E2,1
E3,3 E1 S E2,3
t t t
Q3 Q1 Q2
t t t
X3 X X3

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Outputs will be the
same, but permuted

Self-attention layer is

Permutation
Computation: Equivariant
Query vectors: O = XW, f(s(x)) = s(f(x))
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: N, x D)
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

A3,2 A1 2 A2,2
A3,1 A1)1 A2,‘I
A3,3 A1 -5 A2,3
t
Softmax(1)
t
E3,2 E1 2 E2,2
E3,1 E1)1 E2,1
E3,3 E1 S E2,3
t t t
Q3 Q1 Q2
t t t
X3 X X3

Self-Attention Layer

Self attention doesn't “know”

Inputs: NO
Input vectors: X (Shape: Ny x D) the orde.r of the vectors it is
processing!

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = X

Key vectors: K = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

Y, Y, Y,
t) t
Product(—), Sum(?)
t
A1 3 A2,3 A3,3
A1 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(1)
t
E1 3 E2,3 E3,3
E1 2 E2,2 E3,2
E, 1 E2,1 E3,1
t t)
Q, Q, Q;
t t t
X Xy X3

Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Query matrix: W, (Shape: Dy x D) In order to make processing

position-aware, concatenate
input with positional encoding

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: N, x D)
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

E can be learned lookup table,
or fixed function

Y, Y, Y,
4 4 4
Product(—), Sum(?)

t
= Agg Ajs Ass
= A Az, Az,
= A Azq Az,

t

Softmax(1)

1
— B3 E, 3 Ess
— Eq, E,, Es»
— Eqq E, | E;;
) 1))
Q, Q, Q,
t t)
X, X, X3
E(T) [E(2)| [EM)

e
Big cat [END]

4 $ $
Masked Self-Attention Layer f——
Inputs: Vs |=| 0 0 Ass
Input vectors: X (Shape: Ny, x D —
Kepy matrix: (éhapz Dx);(Do;() Don't let vectors “look Va 0 Ara| [As
Value matrix: W, (Shape: Dy x D) ahead” in the sequence Vi = A A Ay
Query matrix: W, (Shape: Dy x Dg) t
Used for language Softmax()
modeling (predict next
Computation: word) 9 (p Aslll — |[SSaR(R{EO Eaa
Query vectors: O = X K, |[—| -00 E,, E;,
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: N, x D) Ky =By Bz Es
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV, t t t

[START] Big cat

Multihead Self-Attention Layer || |

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Product(=>) EBum(T) Product(>)Eum(T) Product(>) BSum(T)
_' Azl (A] [Ass _’ Az Ay | (Ass _’ Azl Ay (Ass

Query matrix: W,, (Shape: Dy X D) Use H independent EEE EEEE TEEE
Attention Heads" in e | =
parallel || e

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg) 4

Value Vectors: V = XW,, (Shape: Ny x D) Split

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K,/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 AV,

Three Ways of Processing Sequences

Recurrent Neural Network

Y. ™ Yo /" Y3 /™ Y,

IR

X X, X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Yo T Yo T Y3 T/ Y,

IR R

X X, X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

IX XX

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Three Ways of Processing Sequences

Recurrent Neural Network

Yo T Yo T Y3 T/ Y,

IR R

X X, X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

IX XX

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(-) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need
one RNN layer, h; "sees” the to stack many conv layers for
whole sequence outputs to “see” the whole

(-) Not parallelizable: need to sequence

compute hidden states (+) Highly parallel: Each output

sequentially can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X Xo X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Residual connection :@

All vectors interact Self-Attention

with each other N t t t t
1 1 1 1
X Xo X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)
scale: y (Shape: D)
shift: g (Shape: D)
u; = (1/D)3; hy; (scalar)
a; = (2 (hy; - w)?)"> (scalar)

z,=(h-w)/ o Layer Normalization
i=vizi+h Residual connection :@:.)
All vectors interact Self-Attention
Ba et al, 2016 with each other 1 t t 1
I I I I
X X, X4 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Recall Layer Normalization:

Given h,, .., hy (Shape: D) X
scale: y (Shape: D) . I | T I |
shift: 8 (Shape: D) MLP independently MLP| |MLP| |MLP| |MLP
U = (1/D)Zj hi,j (scalar) on each vector . .
g; = (zj (hi,j - u;)*)V> (scalar) |
z,=(h-w)/ o Layer Normalization
k7
Yisy*zi+p Residual connection :@:.)
All vectors interact Self-Attention
Ba et al, 2016 with each other |t t t t
I I I I
X X5 X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Recall Layer Normalization:

Given hs, .., hy (Shape: D) Residual connection :@P
scale: y (Shape: D) d dentl | | T !
shift: 8 (Shape: D) MLP independently MLP| |MLP| |MLP| |MLP
ui = (1/D)3; hy, (scalar) on each vector . .
a; = (2 (hy; - w)?)"> (scalar)
z,=(h-w)/ o Layer Normalization
=y*z
VigyTzi+p Residual connection :@:.)
All vectors interact Self-Attention
Ba et al, 2016 with each other o 1 1 f
I I I I
X1 X2 X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)

scale: y (Shape: D)
shift: g (Shape: D)
u; = (1/D)3; hy; (scalar)
a; = (2 (hy; - w)?)"> (scalar)
z; = (h;-) / o

Yi=y*zi+p

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Y1 Y2 Y3 Ya
I I I I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
Layer Normalization
:
Self-Attention
t t t t
I I I I
X4 Xo X3 X4

The Transformer S =

Layer Normalization
Transformer Block: G
Input: Set of vectors x

Output: Set of vectors y I [[I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :G:B
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable 1 1 1 1

X X X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurlPS 2017

A Transformeris a

sequence of transformer

blocks

! ! ! !

Layer@Normalization

\MW\\MW\\MW\\MW\

Layer@fNormalization

Self-Attention
t f f f

! ! f !
! ! ! !

Layer@Normalization

—

Me | (M| wmiee | ML

LayeriNormalization

Self-Attention
t t f f

R
ettt

Layer@Normalization

—

\MW\\MW\\MW\\MW\

Layer@fNormalization

Self-Attention
t f f f

B

Output
Probabilities
he Transformer
Linear
g)
| Add & Norm lﬁ
Feed
Forward
4 ™ Add & Norm
_ .
Aol ol Multi-Head
Feed Attention
Forward F I S Nx
N e—
Nx
r—>| Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
NEEIEEE) &= =
r—— J st
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder-Decoder

Vaswani et al, “Attention is all you need”, NeurlPS 2017

From Transformers To BERT

Bert Architecture

Get rid of the decoder. 4

[Feed Forward J

——
—b[Add &INorm]

Multi-Head
Attention

e
- y
HO

Encoder Block

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

From Transformers To BERT

Bert Architecture

Get rid of the decoder.) HEY .
—D[Add & Norm]
StaCk d SerIeS Of [EnCOder } [Feed Forward :
Transformer encoder oo —
bIOCkS 4 N —b[Add&INorm)
| Encoder ==
> < s
Encoder \ J

) _ HO

B W W W B gncoder Block

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

From Transformers To BERT

Bert Architecture

Get rid of the decoder. _ Y .
—D[Add & Norm]
StaCk d SerIeS Of [EnCOder J [Feed Forward :
Transformer encoder eoe _>[—1dd& ,
blocks. EnCOC er [I\::tlgrlu:iid :
Pre-train with Masked f Encoder \ L K‘Ui
Language Modeling and - g HO

Next Sentence Prediction

(on massive datasets). Il BN BN B . Encoder Block

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

GLUE Benchmark

Rank Name ColLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C}J. 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 912 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 91.2
4 ERNIE Team - Baidu ERNIE C)Jl 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 C}J. 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 928 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C/J‘ 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C)Jl 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C}J. 89.4 7.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 958 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C)Jl 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C}J. 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa C/J‘ 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C)Jl 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428
14 GLUE Human Baselines GLUE Human Baselines g 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 928 91.2 93.6 95.9 -
15 Stanford Hazy Research Snorkel MeTaL C/J‘ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFL iFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C}J' 90.6 75.3 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C’J 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team - Google T5 C)J' 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 928 94.5 5aN]
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C’J‘ 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C)J' 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facebook Al RoBERTa C)Jl 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble [3' 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
GLUE Human Baselines GLUE Human Baselines 5 4 .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTaL CJ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 399

source: https://gluebenchmark.com/leaderboard

SuperG

Leaderboard Version: 2.0

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE wic WscC AX-b AX-g

1 SuperGLUE Human Baselines SuperGLUE Human Baselines [:)u' 89.8 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 76.6 99.3/99.7

+ 2 T5Team - Google T5 C}J' 89.3 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 65.6 92.7/91.9
+ 3 Huawei Noah's Ark Lab NEZHA-Plus [:)l' 86.7 87.8 94.4/96.0 93.6 84.6/55.1 90.1/89.6 89.1 74.6 93.2 58.0 87.1/74.4
+ 4 Alibaba PAI&ICBU PAI Albert 86.1 88.1 92.4/96.4 91.8 84.6/54.7 89.0/88.3 88.8 74.1 93.2 75.6 98.3/99.2
+ 5 Tencent Jarvis Lab RoBERTa (ensemble) 85.9 88.2 92.5/95.6 90.8 84.4/53.4 91.5/91.0 87.9 741 91.8 57.6 89.3/75.6
6 Zhuiyi Technology RoBERTa-mtl-adv 85.7 87.1 92.4/95.6 91.2 85.1/543 91.7/91.3 88.1 721 91.8 58.5 91.0/78.1

7 Facebook Al RoBERTa C}Jl 84.6 87.1 90.5/95.2 90.6 84.4/52.5 90.6/90.0 88.2 69.9 89.0 579 91.0/78.1

+ 8 Infosys: DAWN : Al Research RoBERTa-iCETS 77.4 84.7 88.2/91.6 858 78.4/37.5 82.9/82.4 83.8 69.1 65.1 35.2 93.8/68.8
+ 9 Timo Schick iPET (ALBERT) - Few-Shot (32 Examples) [:}u. 75.4 81.2 79.9/88.8 90.8 74.1/31.7 859/85.4 70.8 49.3 88.4 36.2 97.8/579
10 IBM Research Al BERT-mtl 7385 84.8 89.6/94.0 73.8 73.2/30.5 74.6/74.0 84.1 66.2 61.0 29.6 97.8/57.3

11 Ben Mann GPT-3 few-shot - OpenAl [:}u' 71.8 76.4 52.0/75.6 92.0 75.4/30.5 91.1/90.2 69.0 49.4 80.1 211 90.4/55.3

12 SuperGLUE Baselines BERT++ C}Jl 71.5 79.0 84.8/90.4 73.8 70.0/241 72.0/71.3 79.0 69.6 64.4 38.0 99.4/514

BERT E}l' 69.0 77.4 75.7/83.6 70.6 70.0/24.1 72.0/71.3 7.7 69.6 64.4 23.0 97.8/51.7

source: https://super.gluebenchmark.com/leaderboard

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon 1s finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
SNOW .

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

VILBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.

VILBERT: A Visolinguistic Transformer

VILBERT Architecture
Start with a pre-trained
BERT model.

BERT

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.

VILBERT: A Visolinguistic Transformer

VILBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an

image using pre-trained
detector.

RPN I_l

\I Rol
CN) ” Pool

BERT

Faster R-CNN

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT: A Visolinguistic Transformer

VILBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an

image using pre-trained EEEENE
detector.
. Vision Language
Use another BERT-like
model to process the HEENEN
visual “tokens.” [. RPN | /
eo—L20

Faster R-CNN

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT: A Visolinguistic Transformer

VILBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an
image using pre-trained
detector.

Use another BERT-like
model to process the
visual “tokens.”

Connect the vision and
language processing!

|‘ RPN _l
| Rol
I@ | Pool

Faster R-CNN

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

Vision

Language

'

VILBERT: A Visolinguistic Transformer

Visual Encoder Visual and Language Processing

RPN I_l H EENEN
CN\NI | Ro Vision e Language
) Pool

S~ H B E BN
Faster R-CNN BERT-Like Model

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT Pre-Training

Paula Bronstein
e -

;ttylmagg‘s"\| B

pop artist performs at the a worker helps to clear blue sofa in the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VILBERT Pre-Training

K—=n L

pop artist performs at the a worker helps to clear blue sofa in the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VILBERT Pre-Training

Paula Bronstein
e -

;ttylma S zg-’\ 2

b S

A A
TN

pop artist performs at the a worker helps to clear B i~ the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VILBERT Demo:
https://vilbert.cloudcv.org/

https://vilbert.cloudcv.org/

VLN-BERT: Transformers for VLN

Large-scale Web Data Embodied Visual Navigation
(Conceptual Captions) (Room-to-Room)

Transfer
Grounding

Blue sofa in the living room. Walk through the bedroom and out of the door into the
hallway. Walk down the hall along the banister rail
Majumdar et al. "Improving Vision-and-Language Navigation with thI'OUQh the Opéﬂ door. Continue into the bedroom with a
Image-Text Pairs from the Web." ECCV 2020 round mirror on the wall and butterfly sculpture.

Summary

Self-Attention

Y, Y; Y3
t t t
| Product(—), Sum(t) |

01‘ ‘Qz Qs‘
t t t

Transformer Model

Output
Probabilities

Add & Norm
Feed
Forward
| Add & Norm |::
(@) Mult-Head
Feed Attention
Forward) Nx
———
Nx Add & Norm
f->| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
AEE=E)! L
\— J/ \ ‘_’J
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

VILBERT

Vision

7<

Language

