
Attention, Transformers,
BERT, and ViLBERT

Arjun Majumdar

Georgia Tech

Slide Credits: Andrej Karpathy, Justin Johnson, Dhruv Batra

Image Credit: Andrej Karpathy

Recall: Recurrent Neural Networks

Slide Credit: Justin Johnson

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3

bread

h4

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

x1 x2 x3 x4

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0

bread

h4

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state predict:
Initial decoder state s0

Context vector c (often c=hT)

s1

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0

[START]

y0

y1

bread

h4

estamos

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, ht-1, c)

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state predict:
Initial decoder state s0

Context vector c (often c=hT)

s1

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

h4

estamos comiendo

estamos

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, ht-1, c)

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state predict:
Initial decoder state s0

Context vector c (often c=hT)

s1

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, ht-1, c)

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state predict:
Initial decoder state s0

Context vector c (often c=hT)

s1

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, ht-1, c)

Slide Credit: Justin Johnson

x1 x2 x3 x4

Problem: Input sequence
bottlenecked through

fixed-sized vector.

s1

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

bread

h4

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, ht-1, c)

Idea: use new context vector
at each step of decoder!

Slide Credit: Justin Johnson

x1 x2 x3 x4

Problem: Input sequence
bottlenecked through

fixed-sized vector.

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Encoder: ht = fW(xt, ht-1)

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Normalize alignment scores
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖️

+

✖️ ✖️ ✖️

Compute context vector as
linear combination of hidden
states
ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Normalize alignment scores
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖️

+

✖️ ✖️ ✖️

s1

y0

y1

estamos

Compute context vector as
linear combination of hidden
states
ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Normalize alignment scores
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖️

+

✖️ ✖️ ✖️

s1

y0

y1

estamos

This is all differentiable! Do not
supervise attention weights –
backprop through everythingBahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0 Compute context vector as

linear combination of hidden
states
ct = ∑iat,ihi

Normalize alignment scores
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

✖️

+

✖️ ✖️ ✖️

Intuition: Context vector
attends to the relevant
part of the input sequence
“estamos” = “we are”

s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0 Compute context vector as

linear combination of hidden
states
ct = ∑iat,ihi

Normalize alignment scores
to get attention weights
0 < at,i < 1 ∑iat,i = 1

Compute (scalar) alignment scores
et,i = fatt(st-1, hi) (fatt is an MLP)

Use context vector in
decoder: st = gU(yt-1, st-1, ct)

This is all differentiable! Do not
supervise attention weights –
backprop through everything

a11=0.45, a12=0.45, a13=0.05, a14=0.05

Sequence-to-Sequence with RNNs

we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖️ ✖️ ✖️ ✖️

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

Repeat: Use s1

to compute new
context vector c2

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖️ ✖️ ✖️ ✖️

+

s2

y2

comiendo

y1

Use c2 to
compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

Repeat: Use s1

to compute new
context vector c2

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

✖️ ✖️ ✖️ ✖️

+

s2

y2

comiendo

y1

Intuition: Context vector
attends to the relevant part
of the input sequence
“comiendo” = “eating”

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

x1 x2 x3 x4

Use c2 to
compute s2, y2

Repeat: Use s1

to compute new
context vector c2

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

Slide Credit: Justin Johnson

x1 x2 x3 x4

Sequence-to-Sequence with RNNs and Attention

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Slide Credit: Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Slide Credit: Justin Johnson

Sequence-to-Sequence with RNNs and Attention

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures
out different word
orders

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Slide Credit: Justin Johnson

Sequence-to-Sequence with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide Credit: Justin Johnson

e21 e22 e23 e24

softmax

a21 a22 a23 a24

x1 x2 x3 x4

Attention Layer
Inputs:
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(st-1, hi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide Adapted From: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(q, Xi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide Credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi

Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide Credit: Justin Johnson

Changes:
- Use dot product for similarity

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide Credit: Justin Johnson

Changes:
- Use scaled dot product for similarity

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Slide Credit: Justin Johnson

Changes:
- Use dot product for similarity
- Multiple query vectors

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Slide Credit: Justin Johnson

Changes:
- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

Slide Credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide Credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

Slide Credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Slide Credit: Justin Johnson

Softmax()

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Slide Credit: Justin Johnson

Softmax()

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

Slide Credit: Justin Johnson

One query per input vector

Self-Attention Layer

Q1 Q2 Q3

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Queries and Keys will
be the same, but
permuted

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Similarities will be the
same, but permuted

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Attention weights will
be the same, but
permuted

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Values will be the
same, but permuted

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant
f(s(x)) = s(f(x))

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Slide Credit: Justin Johnson

Self-Attention Layer
Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self attention doesn’t “know”
the order of the vectors it is
processing!

In order to make processing
position-aware, concatenate
input with positional encoding

E can be learned lookup table,
or fixed function

E(1) E(2) E(3)

Slide Credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Masked Self-Attention Layer

Don’t let vectors “look
ahead” in the sequence

Used for language
modeling (predict next
word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2

E3,1

0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Multihead Self-Attention Layer

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

Split

Concat

Use H independent
“Attention Heads” in
parallel

Slide Credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Slide Credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Slide Credit: Justin Johnson

x1 x2 x3 x4

Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(-) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

Slide Credit: Justin Johnson

x1 x2 x3 x4x1 x2 x3 x4

Three Ways of Processing Sequences

x

1

x

2

x

3

y1 y2 y3

x

4

y4

x

1

x

2

x

3

x

4

y1 y2 y3 y4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

Attention is all you need
Vaswani et al, NeurIPS 2017

Slide Credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide Credit: Justin Johnson

x1 x2 x3 x4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact
with each other

Slide Credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

+

Slide Credit: Justin Johnson

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

Slide Credit: Justin Johnson

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

Slide Credit: Justin Johnson

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Slide Credit: Justin Johnson

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Residual connection
Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016
All vectors interact
with each other

Residual connection

MLP independently
on each vector

Residual connection

Slide Credit: Justin Johnson

x1 x2 x3 x4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide Credit: Justin Johnson

x1 x2 x3 x4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

A Transformer is a
sequence of transformer
blocks

Slide Credit: Justin Johnson

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

From Transformers To BERT

Encoder Block

Bert Architecture

Get rid of the decoder.

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

From Transformers To BERT

Encoder Block

Encoder

Encoder

Encoder
…

Bert Architecture

Get rid of the decoder.

Stack a series of
Transformer encoder
blocks.

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

From Transformers To BERT

Encoder Block

Encoder

Encoder

Encoder
…

Bert Architecture

Get rid of the decoder.

Stack a series of
Transformer encoder
blocks.

Pre-train with Masked
Language Modeling and
Next Sentence Prediction
(on massive datasets).

Devlin et al BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

source: https://super.gluebenchmark.com/leaderboard

SuperGLUE

SYSTEM PROMPT (HUMAN-WRITTEN)
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s

Unicorn. These four-horned, silver-white unicorns were previously unknown to

science.

Now, after almost two centuries, the mystery of what sparked this odd

phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and

several companions, were exploring the Andes Mountains when they found a small

valley, with no other animals or humans. Pérez noticed that the valley had what

appeared to be a natural fountain, surrounded by two peaks of rock and silver

snow.

Pérez and the others then ventured further into the valley. “By the time we

reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAI, “Better Language Models and Their Implications”

https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

BERT

ViLBERT: A Visolinguistic Transformer

ViLBERT Architecture
Start with a pre-trained
BERT model.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

BERT

ViLBERT: A Visolinguistic Transformer

ViLBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an
image using pre-trained
detector.

RPN

CNN
RoI

Pool

Faster R-CNN

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

Language

ViLBERT: A Visolinguistic Transformer

ViLBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an
image using pre-trained
detector.

Use another BERT-like
model to process the
visual “tokens.”

Vision

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

Language

ViLBERT Architecture
Start with a pre-trained
BERT model.

Extract regions from an
image using pre-trained
detector.

Use another BERT-like
model to process the
visual “tokens.”

Connect the vision and
language processing!

Vision

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

RPN

CNN
RoI

Pool

Visual Encoder

Faster R-CNN

Visual and Language Processing

Vision Language

BERT-Like Model

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

ViLBERT Pre-Training

blue sofa in the living
room.

a worker helps to clear
the debris.

pop artist performs at the
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

ViLBERT Pre-Training

blue sofa in the living
room.

a worker helps to clear
the debris.

pop artist performs at the
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

ViLBERT Pre-Training

blue sofa in the living
room.

a worker helps to clear
the debris.

pop artist performs at the
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

ViLBERT Demo:
https://vilbert.cloudcv.org/

https://vilbert.cloudcv.org/

Large-scale Web Data
(Conceptual Captions)

Embodied Visual Navigation
(Room-to-Room)

Walk through the bedroom and out of the door into the
hallway. Walk down the hall along the banister rail

through the open door. Continue into the bedroom with a
round mirror on the wall and butterfly sculpture.

Blue sofa in the living room.

Transfer
Grounding

VLN-BERT: Transformers for VLN

Majumdar et al. "Improving Vision-and-Language Navigation with

Image-Text Pairs from the Web." ECCV 2020

Summary

Self-Attention Transformer Model ViLBERT

