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Topics:
• Masked Language Models
• Embeddings



Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.

• Projects
• Project proposal due March 22nd 11:59pm EST
• FB discourse forum released!

• Outline of rest of course:
• No class March 24th (“spring break” day)
• March 26th we start (deep) reinforcement learning
• Guest lectures/other topics (e.g. self-supervised learning)

• Ishan Misra (FB) April 9th

• Generative models (VAEs / GANs)



Sequences in Input or Output?

• It’s a spectrum… 

(C) Dhruv Batra 3

Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification 
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regression 
problems

Input: No 
sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: 
sentence 

classification, 
multiple-choice 

question 
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Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



The Space of Architectures
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Recall: Transformers

Transformer Block Multi-Layered Encoder/Decoder
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Recap and Intro

⬣ Recall: language models estimate the probability of sequences of words:

⬣ Masked language modeling is a related pre-training task – an auxiliary 
task, different from the final task we’re really interested in, but which can 
help us achieve better performance by finding good initial parameters for 
the model.

⬣ By pre-training on masked language modeling before training on our final 
task, it is usually possible to obtain higher performance than by simply 
training on the final task.



Masked Language Models
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Token-level Tasks



Token-level Tasks



Sentence-level Tasks



Sentence-level Tasks



Cross-lingual Masked Language Modeling



Cross-lingual Masked Language Modeling



Cross-lingual Masked Language Modeling



Cross-lingual Task: Natural Language Inference



Cross-lingual Task: Natural Language Inference



Model Size in Perspective



Knowledge Distillation to Reduce Model Sizes



Knowledge Distillation to Reduce Model Sizes



Knowledge Distillation to Reduce Model Sizes



reference distribution

cross-entropy

Knowledge Distillation to Reduce Model Sizes
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⬣ Word Embeddings

⬣ Graph Embeddings

⬣ Applications, world2vec

⬣ Additional Topics

Embeddings



⬣ Mapping Objects to Vectors through a trainable function

Introduction to Embeddings

“The neighbors' dog was a Samoyed, 
which looks a lot like a Siberian husky” 

Neural Net

[0.2, -2.1, 0.4, -0.5, …][0.4, -1.3, 2.5, -0.7, …]

Slide Credit: Yann LeCun



Introduction to Embeddings

Slide Credit: Yann LeCun



Word Embeddings

Representing words by their context

Slide Credit: Richard Socher, Christopher Manning

⬣ Distributional semantics: A word’s meaning is given by the words that 
frequently appear close-by

⬣ “You shall know a word by the company it keeps” (J.R.Firth 1957:11)

⬣ One of the most successful ideas of modern statistical NLP!

⬣ When a word w appears in a text, its context is the set of words that appear 
nearby (within a fixed-size window).

⬣ Use the many contexts of w to build up a representation of w



Word Embeddings

Collobert & Weston vectors

⬣ Idea: a word and its context is a positive training sample; a random word in that 
sample context gives a negative training sample: 

Slide Credit: Danqi Chen



Word Embeddings

Word2vec: the Skip-gram model

⬣ The idea: use words to predict their context words

⬣ Context: a fixed window of size 2m

Slide Credit: Richard Socher, Christopher Manning



Word Embeddings

Word2vec: the Skip-gram model

Slide Credit: Richard Socher, Christopher Manning

⬣ The idea: use words to predict their context words

⬣ Context: a fixed window of size 2m



Word Embeddings

Skip-gram Objective function

⬣ For each position t = 1,...,T, predict context words within a window of fixed
size m, given center word wj:

⬣ The objective function is the (average) negative loglikelihood:

Slide Credit: Richard Socher, Christopher Manning



Word Embeddings

How to define P(wt+j wt ; θ)?

⬣ We have two sets of vectors for each word in the vocabulary:
uw when w is a center word
vo when o is a context word

⬣ Use inner product (uw , vo) to measure how likely word w appears with
context word o:

⬣ θ = {uk}, {vk} are all the parameters in the model!

Expensive to compute!

Solution:

⬣ Hierarchical Softmax
⬣ Negative Sampling

Slide Credit: Richard Socher, Christopher Manning



Negatives

Negative Sampling

Slide Credit: Danqi Chen, Christopher Manning 

Intuition:

⬣ For each (w, c) pair, we sample k negative pairs (w, c′):
(k = 5, 10, .., 20)

⬣ Maximize probability that real outside word appears, minimize 
prob. that random words appear around center word.

⬣ Distribution makes less frequent words be sampled more often.

Expensive to compute!



Multi-Model Embeddings



word embedding evaluation

Word Embeddings

⬣ Evaluate word vectors by how well
their cosine distance after addition
captures intuitive semantic and
syntactic analogy questions

⬣ More examples:
http://download.tensorflow.org/data/qu
estions-words.txt

Intrinsic

Slide Credit: Richard Socher, Christopher Manning



Graph
Embeddings



Graph Embeddings

(Big) Graph Data is Everywhere
Knowledge Graphs

Standard domain for studying graph 
embeddings (Freebase, …)

Wang, Zhenghao & Yan, Shengquan & Wang, Huaming & Huang, Xuedong. (2014). 
An Overview of Microsoft Deep QA System on Stanford WebQuestions Benchmark. 

Recommender Systems
Deals with graph-like data, but 

supervised
(MovieLens, …)

Social Graphs
Predict attributes based on homophily

or structural similarity
(Twitter, Yelp, …)

Slide Credit: Adam Lerer



Graph Embeddings

Graph Embedding & Matrix Completion

item1 item2 … itemN

person1 - + +

person2 + ?

…

personP + - ?

⬣ Relations between items
(and people)

⬣ Items in {people, movies,
page, articles, products,
word sequences…}

⬣ Predict if someone will like
an item, if a word will follow
a word sequence

Slide Credit: Yann LeCun



Graph Embeddings

A

B
C

D E

A multi-relation graph

Embedding: A learned map from entities to 
vectors of numbers that encodes similarity
⬣ Word embeddings:  word vector
⬣ Graph embeddings: node vector

Graph Embedding: Optimize the objective 
that connected nodes have more similar 
embeddings than unconnected nodes via 
gradient descent.

Slide Credit: Adam Lerer



Graph Embeddings

Why Graph Embeddings?

Graph embeddings are a form of 
unsupervised learning on graphs. 

⬣ Task-agnostic entity representations
⬣ Features are useful on downstream tasks 

without much data
⬣ Nearest neighbors are semantically 

meaningful

Slide Credit: Adam Lerer
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A multi-relation graph



Graph Embeddings

Margin loss between the score for an edge 𝑓(𝑒) and 
a negative sampled edge 𝑓 𝑒ᇱ

The score for an edge is a similarity (e.g. dot product) 
between the source embedding and a transformed 
version of the destination embedding, e.g.

        𝑓 𝑒 = cos (𝜃௦, 𝜃௥ + 𝜃ௗ)

Negative samples are constructed by taking a real 
edge and replacing the source or destination with a 
random node.

Slide Credit: Adam Lerer
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A multi-relation graph



Graph Embeddings

Margin loss between the score for an edge 𝑓(𝑒) and 
a negative sampled edge 𝑓 𝑒ᇱ

The score for an edge is a similarity (e.g. dot product) 
between the source embedding and a transformed 
version of the destination embedding, e.g.

        𝑓 𝑒 = cos (𝜃௦, 𝜃௥ + 𝜃ௗ)

Negative samples are constructed by taking a real 
edge and replacing the source or destination with a 
random node.
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Slide Credit: Adam Lerer

A multi-relation graph



Graph Embeddings

Margin loss between the score for an edge 𝑓(𝑒) and 
a negative sampled edge 𝑓 𝑒ᇱ

The score for an edge is a similarity (e.g. dot product) 
between the source embedding and a transformed 
version of the destination embedding, e.g.

        𝑓 𝑒 = cos (𝜃௦, 𝜃௥ + 𝜃ௗ)

Negative samples are constructed by taking a real 
edge and replacing the source or destination with a 
random node.
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Slide Credit: Adam Lerer

A multi-relation graph



Graph Embeddings

Multiple Relations in Graphs

Figure Credit: Alex Peysakhovich

⬣ Identity:

⬣ Translator:

⬣ Affine:

⬣ Diagonal:

[Bordes et al. 13’]

[Nickel et al., 11’]

[Yang et al., 15’]



Graph Embeddings

Embedding a Knowledge Base [Bordes et al. 2013]

“Who did Clooney marry in 1987?”

Word embeddings lookup table

Clooney
K.Preston

ERLexingto
n

1987

Travolta

Model

Honolul
u

Acto
rMale

Ocean’
s 11

Freebase embeddings lookup table

Detect ion of 
Freebase ent ity 
in the quest ion

Embedding model

Freebase subgraph

Embedding 
of the 

subgraph

1-hot  
encoding 

of the 
quest ion

Embedding 
of the 

quest ion

Question

Subgraph of a 
candidate answer 
(here K. Preston)

Score
How the candidate 

answer fi ts the 
quest ion

Dot  
product 1-hot  

encoding of 
the 

subgraph

Slide Credit: Yann LeCun



Graph Embeddings

Embedding Wikidata Graph
[Lerer et al. 19’]

https://github.com/facebookresearch/Py
Torch-BigGraph



Applications,
world2vec



Application: TagSpace, PageSpace

TagSpace

Reference: [Weston et al. 14’], [Wu et al. 18’]
https://github.com/facebookresearch/StarSpace

Input: restaurant has great food

Label: #yum, #restaurant

Use-cases: 

⬣ Labeling posts

⬣ Clustering of hashtags

Input: (user, page) pairs

Use-cases: 

⬣ Clustering of pages

⬣ Recommending pages to users

PageSpace



Application: TagSpace, PageSpace

Faiss: a library for efficient similarity 
search and clustering of dense vectors.
https://github.com/facebookresearch/faiss

Search nearest neighbor for page The New York Times:

Washington Post, score: 0.80
Bloomberg Politics, score: 0.77
VICE News, score: 0.71
Bloomberg: 0.69
Financial Times: 0.68

PageSpace

Other information:

⬣ Title and description (words)
⬣ Images
⬣ Videos



Application: VideoSpace

Classification, Recommendation

Page
owns

Colorful vegetables 

Page Embedding

CNN

Word EmbeddingVideo Embedding

Lookup Table Lookup Table

MLP
VideoSpace



Application: world2vec

Slide Credit: Alex Peysakhovich



Application: world2vec

⬣ What pages or topics might
you be interested in?

⬣ Which posts contain 
misinformation, hate speech, 
election interference, …?

⬣ Is a person’s account fake / 
hijacked?

⬣ What songs might you like? 
(even if you’ve never provided 
any song info)

The Power of Universal Behavioral Features

Slide Credit: Adam Lerer



Users

⬣ Bad Actor Cluster

Groups

⬣ ‘For Sale’ Group prediction

Pages

⬣ Recommendation

⬣ Page category prediction

⬣ Identify spam / hateful pages

Domains

⬣ Domain type prediction

⬣ Identify mis-Information

Application: world2vec

Slide Credit: Alex Peysakhovich

T-SNE plot of page embeddings. Pages 
labeled as misinformation marked in green.



Application: world2vec

BEHAVIOR GRAPH

Unsupervised
Graph Embedding

Method

NODE EMBEDDINGS

VISUALIZATION

CLUSTERING

CLASSIFICATION

RANKING

NEAREST NEIGHBOR

OTHER STUFF:
CONTENT FEATURES, 

COUNTERS, ETC

Learning Node Features

Slide Credit: Adam Lerer



CONSTRUCT EDGELIST

PRUNE / WEIGHT
EDGES

Application: world2vec

DOWNSTREAM
TASKS

PYTORCH-BIGGGRAPH 
WORKFLOW

NEAREST NEIGHBORS

RETRIEVAL / 
RECOMMENDATION

VISUALIZATION

ANALYSIS
CLUSTERING 

FEATURES  DB FOR 
MODEL FEATURE

CLASSIFICATION
RANKING 

PREPROCESSING

POSTPROCESSING

PREPROCESSING

PYTORCH-BIGGRAPH

Slide Credit: Adam Lerer

COLLECT DATA



Application: world2vec

Slide Credit: Adam Lerer


