
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Reinforcement Learning Part 1

• Markov Decision Processes
• Value Iteration

Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.

• Projects
• Will try to get feedback back to you in next few days or so (grading will be

separate)

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems

• Generative models (VAEs / GANs)

Nirbhay Modhe

Nirbhay Modhe is a PhD Student in the School of
Interactive Computing at Georgia Tech advised by
Prof. Dhruv Batra. His research interests within
Reinforcement Learning (RL) include model based
RL, generalization guarantees in RL and
unsupervised or reward-free RL for exploration. Prior
to starting his PhD program in 2017, he received his
Bachelor’s degree in Computer Science at the Indian
Institute of Technology (IIT), Kanpur where he
worked with Prof. Piyush Rai on Bayesian ML
applied to multi-label learning.

Slides Brought to You By…

Replace with photo.
Add glow: 022539 HEX color

at 5 pt size with 60%
transpareancy

Reinforcement
Learning

Introduction

Reinforcement
Learning

⬣ Evaluative
feedback in the
form of reward

⬣ No supervision on
the right action

Types of Machine Learning

Unsupervised
Learning

⬣ Input:

⬣ Learning
output:

⬣ Example: Clustering,
density estimation,
etc.

Supervised
Learning

⬣ Train Input:

⬣ Learning output:
,

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environmen
t

(world)
Figure Credit: Rich Sutton

What is Reinforcement Learning?

Evaluative Feedback Sequential Decisions

⬣ Pick an action, receive a
reward (positive or
negative)

⬣ No supervision for what
the “correct” action is or
would have been, unlike
supervised learning

⬣ Plan and execute actions
over a sequence of
states

⬣ Reward may be delayed,
requiring optimization of
future rewards (long-term
planning).

RL: Sequential decision making in an environment with evaluative feedback.

RL API

RL: Environment Interaction API

⬣ At each time step t, the agent:

⬣ Receives observation ot

⬣ Executes action at

⬣ At each time step t, the environment:

⬣ Receives action at

⬣ Emits observation ot+1

⬣ Emits scalar reward rt+1

Slide credit: David Silver

RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the
policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton

Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move
forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright
and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece
down

⬣ Reward: +1 if win at the end of game,
0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov
Decision

Processes

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own
partial observation ot of the
state st at time t, using past
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own
partial observation ot of the
state st at time t, using past
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ For this lecture, assume that we know the true reward and transition distribution
and look at algorithms for solving MDPs i.e. finding the best policy

⬣ Rewards known everywhere, no evaluative feedback

⬣ Know how the world works i.e. all transitions

MDPs in the context of RL

MDP

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Discount factor:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy,
next states from transition distribution

Optimal policy examples

⬣ Some optimal policies for three different grid world MDPs (gamma=0.99)

⬣ Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

R(s) = -0.03 R(s) = -0.4 R(s) = -2.0

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Value Function

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

⬣ The V and Q functions corresponding to the optimal policy

Optimal V & Q functions

Recursive Bellman expansion (from definition of Q)

Bellman Optimality Equations

(Expected) return from t = 0

(Reward at t = 0) + gamma * (Return from expected state at t=1)

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

• A robot car wants to travel far, quickly
• Three states: Cool, Warm, Overheated
• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.
5

0.
5

0.
5

0.
5

1.
0

1.
0

+1

+1

+1

+2

+2

-
10

Slide Credit: http://ai.berkeley.edu

Example: Racing

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over
actions as well as states

Policy iteration: Start with arbitrary and refine it.

Involves repeating two steps:

Policy Evaluation: Compute (similar to Value Iteration)

Policy Refinement: Greedily change actions as per at next states

Why do policy iteration?

⬣ often converges to much sooner than to

Policy Iteration

For Value Iteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size
16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration

Value Iteration

⬣ Bellman update to state value
estimates

Q-Value Iteration

⬣ Bellman update to (state,
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

Summary: MDP Algorithms

Recap & Next Lecture

Today, we saw

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

⬣ Policy: How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

Next Lecture:

⬣ Algorithms for solving MDPs (Value Iteration)

⬣ Departure from known rewards and transitions: Reinforcement Learning

Summary: MDP Algorithms

Today, we saw

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

⬣ Policy: How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

⬣ Solving an MDP with known rewards/transition

⬣ Value Iteration: Bellman update to state value estimates

⬣ Q-Value Iteration: Bellman update to (state, action) value estimates

⬣ Policy Iteration

⬣ Policy evaluation + refinement

Next Lecture:

⬣ Departure from known rewards and transitions: Reinforcement Learning

Summary: MDP Algorithms

