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Topics:
• Reinforcement Learning Part 1

• Markov Decision Processes
• Value Iteration



Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.

• Projects
• Will try to get feedback back to you in next few days or so (grading will be 

separate)

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems 

• Generative models (VAEs / GANs)
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Reinforcement 
Learning 

Introduction



Reinforcement 
Learning

⬣ Evaluative 
feedback in  the 
form of reward

⬣ No supervision on 
the right action

Types of Machine Learning

Unsupervised 
Learning

⬣ Input: 

⬣ Learning 
output: 

⬣ Example: Clustering, 
density estimation, 
etc.

Supervised 
Learning

⬣ Train Input: 

⬣ Learning output:    
, 

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environmen
t

(world)
Figure Credit: Rich Sutton



What is Reinforcement Learning?

Evaluative Feedback Sequential Decisions

⬣ Pick an action, receive a 
reward (positive or 
negative)

⬣ No supervision for what 
the “correct” action is or 
would have been, unlike 
supervised learning

⬣ Plan and execute actions 
over a sequence of 
states

⬣ Reward may be delayed, 
requiring optimization of 
future rewards (long-term 
planning).

RL: Sequential decision making in an environment with evaluative feedback.



RL API

RL: Environment Interaction API

⬣ At each time step t, the agent:

⬣ Receives observation ot

⬣ Executes action at

⬣ At each time step t, the environment:

⬣ Receives action at

⬣ Emits observation ot+1

⬣ Emits scalar reward rt+1

Slide credit: David Silver



RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the 
policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton



Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move 
forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright 
and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece 
down

⬣ Reward: +1 if win at the end of game, 
0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov 
Decision 

Processes



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 
partial observation ot of the 
state st at time t, using past 
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom



MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 
st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 
partial observation ot of the 
state st at time t, using past 
states e.g. with an RNN

⬣ Example: Poker, First-
person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture



⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and 
look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP
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⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ For this lecture, assume that we know the true reward and transition distribution
and look at algorithms for solving MDPs i.e. finding the best policy

⬣ Rewards known everywhere, no evaluative feedback

⬣ Know how the world works i.e. all transitions

MDPs in the context of RL

MDP



A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell 
left or right of direction of motion 
(except when blocked by wall).

Figure credits: Pieter Abbeel
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Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!
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Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Discount factor: 



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:
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Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy, 
next states from transition distribution



Optimal policy examples

⬣ Some optimal policies for three different grid world MDPs (gamma=0.99)

⬣ Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

R(s) = -0.03 R(s) = -0.4 R(s) = -2.0



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward 
from state s:
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⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward 
from state s:

Value Function



Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected 
cumulative reward upon taking action a in state s (and following policy 
thereafter):



Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected 
cumulative reward upon taking action a in state s (and following policy 
thereafter):



⬣ The V and Q functions corresponding to the optimal policy  

Optimal V & Q functions



Recursive Bellman expansion (from definition of Q)

Bellman Optimality Equations

(Expected) return from t = 0

(Reward at t = 0) +  gamma * (Return from expected state at t=1)



⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations



⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations



Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration



• A robot car wants to travel far, quickly
• Three states: Cool, Warm, Overheated
• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.
5 

0.
5 

0.
5 

0.
5 

1.
0 

1.
0 

+1 

+1 

+1 

+2 

+2 

-
10

Slide Credit: http://ai.berkeley.edu

Example: Racing



Racing Search Tree

Slide Credit: http://ai.berkeley.edu



0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu



Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over 
actions as well as states



Policy iteration: Start with arbitrary        and refine it.

Involves repeating two steps:

Policy Evaluation: Compute          (similar to Value Iteration)

Policy Refinement: Greedily change actions as per at next states

Why do policy iteration?

⬣ often converges to        much sooner than             to 

Policy Iteration



For Value Iteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size 
16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration



Value Iteration

⬣ Bellman update to state value 
estimates

Q-Value Iteration

⬣ Bellman update to (state, 
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

Summary: MDP Algorithms



Recap & Next Lecture

Today, we saw

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

⬣ Policy: How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

Next Lecture:

⬣ Algorithms for solving MDPs (Value Iteration)

⬣ Departure from known rewards and transitions: Reinforcement Learning



Summary: MDP Algorithms

Today, we saw

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

⬣ Policy: How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

⬣ Solving an MDP with known rewards/transition

⬣ Value Iteration: Bellman update to state value estimates

⬣ Q-Value Iteration: Bellman update to (state, action) value estimates

⬣ Policy Iteration

⬣ Policy evaluation + refinement



Next Lecture:

⬣ Departure from known rewards and transitions: Reinforcement Learning

Summary: MDP Algorithms


