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Topics:
• Reinforcement Learning Part 1

• Value Iteration
• Deep Q-Learning



Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.

• Projects
• Will try to get feedback back to you before project period starts

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems 

• Generative models (VAEs / GANs)
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Recap & Overview

Previous Lecture

⬣ RL: Definitions, interaction API, tasks/challenges

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

Today

⬣ Policy (continued): How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

⬣ Algorithms for solving MDPs (Value Iteration)

⬣ Departure from known rewards and transitions: Reinforcement Learning (RL), Deep RL



⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist., 
Discount factor (gamma)

⬣ Policy: 

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

Recap: MDPs, Policy

MDP

Deterministic Stochastic



⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist., 
Discount factor (gamma)

⬣ Policy: 

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

⬣ What is a good policy? 

⬣ Maximize discounted sum of future rewards

⬣ Discount factor: 

Recap: MDPs, Policy

MDP



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy, 
next states from transition distribution



⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function



Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward 
from state s:



Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected 
cumulative reward upon taking action a in state s (and following policy 
thereafter):



⬣ The V and Q functions corresponding to the optimal policy  

Optimal V & Q functions



⬣ Recursive Bellman expansion (from definition of Q)

Bellman Optimality Equations

(Expected) return from t = 0

(Reward at t = 0) + (Return for expected state at t=1)



⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations



• A robot car wants to travel far, quickly
• Three states: Cool, Warm, Overheated
• Two actions: Slow, Fast
• Going faster gets double reward
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Slide Credit: http://ai.berkeley.edu

Example: Racing



Racing Search Tree

Slide Credit: http://ai.berkeley.edu



0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

Racing Search Tree
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Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over 
actions as well as states



Policy iteration: Start with arbitrary        and refine it.

Involves repeating two steps:

Policy Evaluation: Compute          (similar to Value Iteration)

Policy Refinement: Greedily change actions as per at next states

Why do policy iteration?

⬣ often converges to        much sooner than             to 

Policy Iteration



For Value Iteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size 
16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration



Value Iteration

⬣ Bellman update to state value 
estimates

Q-Value Iteration

⬣ Bellman update to (state, 
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

Summary: MDP Algorithms



Reinforcement 
Learning, 
Deep RL



⬣ Recall RL assumptions:

⬣ unknown, how actions affect the environment.

⬣ unknown, what/when are the good actions?

⬣ But, we can learn by trial and error.

⬣ Gather experience (data) by performing actions.

⬣ Approximate unknown quantities from data.

Learning Based Methods: RL

Reinforcement Learning



⬣ Old Dynamic Programming Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

⬣ RL Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Learning Based Methods: RL

Slide credit: Dhruv Batra 



Q-Learning
• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)
– This sample suggests

– But we want to average over results from (s,a) 
– So keep a running average

Slide Credit: http://ai.berkeley.edu



Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough
– You have to eventually make the learning rate

small enough
– … but not decrease it too quickly
– Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning 

Slide Credit: http://ai.berkeley.edu



Deep 
Q-Learning



Generalizing Across States
• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
– Too many states to visit them all in training
– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states from experience
– Generalize that experience to new, similar situations
– This is the fundamental idea in machine learning!

[demo – RL pacman]

Slide Credit: http://ai.berkeley.edu



Example: Pacman

Let’s say we 
discover through 

experience that this 
state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Slide Credit: http://ai.berkeley.edu



Feature-Based Representations
• Solution: describe a state using a vector of features (properties)

– Features are functions from states to real numbers (often 0/1) that capture important properties of the state
– Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Slide Credit: http://ai.berkeley.edu



Linear Value Functions
• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Slide Credit: http://ai.berkeley.edu



⬣ State space is too large and complicated for feature engineering though!

⬣ Recall: Value iteration not scalable (chess, RGB images as state space, etc)

⬣ Solution: Deep Learning!     … more precisely, function approximation.

⬣ Use deep neural networks to learn state representations

⬣ Useful for continuous action spaces as well

Learning Based Methods: Deep RL

Deep Reinforcement Learning



⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating  with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy        with a parametrized policy 

⬣ Model-based RL

⬣ Approximate transition function   and reward function  

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

Homework



⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson, 
Serena Yeung, CS 231n



⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network



⬣ In practice, for stability:

⬣ Freeze              and update parameters   

⬣ Set at regular intervals

Deep Q-Learning



Deep Q-Learning

How to gather experience?

This is why RL is hard



How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data



⬣ What should be? 

⬣ Greedy? -> Local minimas, no exploration

⬣ An exploration strategy:

⬣

Exploration Problem



⬣ Samples are correlated => high variance gradients => inefficient learning 

⬣ Current Q-network parameters determines next training samples => can lead 
to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be 
dominated by samples going right, may fall into local minima

Correlated Data Problem

R=10 R=1



⬣ Correlated data: addressed by using experience replay

 A replay buffer stores transitions 

 Continually update replay buffer as game (experience) episodes are 
played, older samples discarded

 Train Q-network on random minibatches of transitions from the replay 
memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay



Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay



Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk



In today’s class, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Policy Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Next class:

⬣ Policy-based RL algorithms (policy gradients)

Summary


