
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:
• Reinforcement Learning Part 1

• Markov Decision Processes
• Value Iteration

Administrivia

• Assignment 4 out
• Due date extended to April 8th 11:59pm EST.

• Projects
• Will try to get feedback back to you before project period starts

• Outline of rest of course:
• Reinforcement Learning
• Guest lectures/other topics (e.g. self-supervised learning, audio)

• April 7th: Wav2Vec !!
• April 9th: Ishan Misra (FB) on Self-Supervised Learning
• April 14th: Automatic Speech Recognition Systems

• Generative models (VAEs / GANs)

Nirbhay Modhe

Nirbhay Modhe is a PhD Student in the School of
Interactive Computing at Georgia Tech advised by
Prof. Dhruv Batra. His research interests within
Reinforcement Learning (RL) include model based
RL, generalization guarantees in RL and
unsupervised or reward-free RL for exploration. Prior
to starting his PhD program in 2017, he received his
Bachelor’s degree in Computer Science at the Indian
Institute of Technology (IIT), Kanpur where he
worked with Prof. Piyush Rai on Bayesian ML
applied to multi-label learning.

Slides Brought to You By…

Replace with photo.
Add glow: 022539 HEX color

at 5 pt size with 60%
transpareancy

Recap & Overview

Previous Lecture

⬣ RL: Definitions, interaction API, tasks/challenges

⬣ MDPs: Theoretical framework underlying RL, solving MDPs

Today

⬣ Policy (continued): How an agents acts at states

⬣ Value function (Utility): How good is a particular state or state-action pair?

⬣ Algorithms for solving MDPs (Value Iteration)

⬣ Departure from known rewards and transitions: Reinforcement Learning (RL), Deep RL

⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist.,
Discount factor (gamma)

⬣ Policy:

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

Recap: MDPs, Policy

MDP

Deterministic Stochastic

⬣ Markov Decision Processes (MDPs)

⬣ States, Actions, Reward dist., Transition dist.,
Discount factor (gamma)

⬣ Policy:

⬣ Mapping from states to actions (deterministic)

⬣ Distribution of actions given states (stochastic)

⬣ What is a good policy?

⬣ Maximize discounted sum of future rewards

⬣ Discount factor:

Recap: MDPs, Policy

MDP

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy,
next states from transition distribution

⬣ A value function is a prediction of discounted sum of future reward

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair?

⬣ In this state, what is the impact of this action on my future?

Value Function

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward
from state s:

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

⬣ The V and Q functions corresponding to the optimal policy

Optimal V & Q functions

⬣ Recursive Bellman expansion (from definition of Q)

Bellman Optimality Equations

(Expected) return from t = 0

(Reward at t = 0) + (Return for expected state at t=1)

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

• A robot car wants to travel far, quickly
• Three states: Cool, Warm, Overheated
• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+
2

-10

Slide Credit: http://ai.berkeley.edu

Example: Racing

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over
actions as well as states

Policy iteration: Start with arbitrary and refine it.

Involves repeating two steps:

Policy Evaluation: Compute (similar to Value Iteration)

Policy Refinement: Greedily change actions as per at next states

Why do policy iteration?

⬣ often converges to much sooner than to

Policy Iteration

For Value Iteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size
16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration

Value Iteration

⬣ Bellman update to state value
estimates

Q-Value Iteration

⬣ Bellman update to (state,
action) value estimates

Policy Iteration

⬣ Policy evaluation + refinement

Summary: MDP Algorithms

Reinforcement
Learning,
Deep RL

⬣ Recall RL assumptions:

⬣ unknown, how actions affect the environment.

⬣ unknown, what/when are the good actions?

⬣ But, we can learn by trial and error.

⬣ Gather experience (data) by performing actions.

⬣ Approximate unknown quantities from data.

Learning Based Methods: RL

Reinforcement Learning

⬣ Old Dynamic Programming Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

⬣ RL Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Learning Based Methods: RL

Slide credit: Dhruv Batra

Q-Learning
• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)
– This sample suggests

– But we want to average over results from (s,a)
– So keep a running average

Slide Credit: http://ai.berkeley.edu

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
– You have to explore enough
– You have to eventually make the learning rate

small enough
– … but not decrease it too quickly
– Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning

Slide Credit: http://ai.berkeley.edu

Deep
Q-Learning

Generalizing Across States
• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
– Too many states to visit them all in training
– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states from experience
– Generalize that experience to new, similar situations
– This is the fundamental idea in machine learning!

[demo – RL pacman]

Slide Credit: http://ai.berkeley.edu

Example: Pacman

Let’s say we
discover through

experience that this
state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Slide Credit: http://ai.berkeley.edu

Feature-Based Representations
• Solution: describe a state using a vector of features (properties)

– Features are functions from states to real numbers (often 0/1) that capture important properties of the state
– Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Slide Credit: http://ai.berkeley.edu

Linear Value Functions
• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Slide Credit: http://ai.berkeley.edu

⬣ State space is too large and complicated for feature engineering though!

⬣ Recall: Value iteration not scalable (chess, RGB images as state space, etc)

⬣ Solution: Deep Learning! … more precisely, function approximation.

⬣ Use deep neural networks to learn state representations

⬣ Useful for continuous action spaces as well

Learning Based Methods: Deep RL

Deep Reinforcement Learning

⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy with a parametrized policy

⬣ Model-based RL

⬣ Approximate transition function and reward function

⬣ Plan by looking ahead in the (approx.) future!

RL: Algorithm Categories

Homework

⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value

⬣ Minibatch of

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

⬣ In practice, for stability:

⬣ Freeze and update parameters

⬣ Set at regular intervals

Deep Q-Learning

Deep Q-Learning

How to gather experience?

This is why RL is hard

How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

⬣ What should be?

⬣ Greedy? -> Local minimas, no exploration

⬣ An exploration strategy:

⬣

Exploration Problem

⬣ Samples are correlated => high variance gradients => inefficient learning

⬣ Current Q-network parameters determines next training samples => can lead
to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be
dominated by samples going right, may fall into local minima

Correlated Data Problem

R=10 R=1

⬣ Correlated data: addressed by using experience replay

 A replay buffer stores transitions

 Continually update replay buffer as game (experience) episodes are
played, older samples discarded

 Train Q-network on random minibatches of transitions from the replay
memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay

Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay

Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk

In today’s class, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Policy Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Next class:

⬣ Policy-based RL algorithms (policy gradients)

Summary

